1) Peters R, Beckett N, Forette F, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG) : a double-blind, placebo controlled trial. Lancet Neurol. 2008 ; 7 : 683-9.
3) Chang-Quan H, Hui W, Chao-Min W, et al. The association of antihypertensive medication use with risk of cognitive decline and dementia : a meta-analysis of longitudinal studies. Int J Clin Pract. 2011 ; 65 : 1295-305.
4) Knopman DS, Penman AD, Catellier DJ, et al. Vascular risk factors and longitudinal changes on brain MRI : the ARIC study. Neurology. 2011 ; 76 : 1879-85.
5) Verhaaren BF, Vernooij MW, de Boer R, et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension. 2013 ; 61 : 1354-9.
6) Appelman AP, Vincken KL, van der Graaf Y, et al. White matter lesions and lacunar infarcts are independently and differently associated with brain atrophy : the SMART-MR study. Cerebrovasc Dis. 2010 ; 29 : 28-35.
7) Hajjar I, Quach L, Yang F, et al. Hypertension, white matter hyperintensities, and concurrent impairments in mobility, cognition, and mood : the Cardiovascular Health Study. Circulation. 2011 ; 123 : 858-65.
8) Waldstein SR, Rice SC, Thayer JF, et al. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008 ; 51 : 99-104.
9) Nation DA, Wierenga CE, Delano-Wood L, et al. Elevated pulse pressure is associated with age-related decline in language ability. J Int Neuropsychol Soc. 2010 ; 16 : 933-8.
10) Shah NS, Vidal JS, Masaki K, et al. Midlife blood pressure, plasma beta-amyloid, and the risk for Alzheimer disease : the Honolulu Asia Aging Study. Hypertension. 2012 ; 59 : 780-6.
11) Rodrigue KM, Rieck JR, Kennedy KM, et al. Risk factors for beta-amyloid deposition in healthy aging : vascular and genetic effects. JAMA Neurol. 2013 ; 70 : 600-6.
12) Schneider JA, Arvanitakis Z, Leurgans SE, et al. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol. 2009 ; 66 : 200-8.
13) Li J, Wang YJ, Zhang M, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011 ; 76 : 1485-91.
14) Duron E, Rigaud AS, Dubail D, et al. Effects of antihypertensive therapy on cognitive decline in Alzheimer's disease. Am J Hypertens. 2009 ; 22 : 1020-4.
15) Inaba S, Iwai M, Tomono Y, et al. Exaggeration of focal cerebral ischemia in transgenic mice carrying human Renin and human angiotensinogen genes. Stroke. 2009 ; 40 : 597-603.
16) Inaba S, Iwai M, Furuno M, et al. Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension. 2009 ; 53 : 356-62.
17) Ciobica A, Bild W, Hritcu L, et al. Brain renin-angiotensin system in cognitive function : pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg. 2009 ; 109 : 171-80.
18) Starr JM, Whalley LJ, Deary IJ. The effects of antihypertensive treatment on cognitive function : results from the HOPE study. J Am Geriatr Soc. 1996 ; 44 : 411-5.
19) Tzourio C, Anderson C, Chapman N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch Intern Med. 2003 ; 163 : 1069-75.
20) Sekizawa K, Jia YX, Ebihara T, et al. Role of substance P in cough. Pulm Pharmacol. 1996 ; 9 : 323-8.
21) Iwata N, Tsubuki S, Takaki Y, et al. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma : suppression leads to biochemical and pathological deposition. Nat Med. 2000 ; 6 : 143-50.
22) Savaskan E, Hock C, Olivieri G, et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer's dementia. Neurobiol Aging. 2001 ; 22 : 541-6.
24) Hemming ML, Selkoe DJ. Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005 ; 280 : 37644-50.
25) Li NC, Lee A, Whitmer RA, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population : prospective cohort analysis. BMJ. 2010 ; 340 : b5465.
26) Ito T, Yamakawa H, Bregonzio C, et al. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 2002 ; 33 : 2297-303.
27) Benicky J, Sanchez-Lemus E, Honda M, et al. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology. 2011 ; 36 : 857-70.
28) Zhu D, Shi J, Zhang Y, et al. Central angiotensin II stimulation promotes beta amyloid production in Sprague Dawley rats. PLoS One. 2011 ; 6 : e16037.
29) Danielyan L, Klein R, Hanson LR, et al. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010 ; 13 : 195-201.
30) Wang J, Ho L, Chen L, et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007 ; 117 : 3393-402.
31) Tsukuda K, Mogi M, Iwanami J, et al. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. Hypertension. 2009 ; 54 : 782-7.
32) Washida K, Ihara M, Nishio K, et al. Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-gamma activation in mice with chronic cerebral hypoperfusion. Stroke. 2010 ; 41 : 1798-806.
33) Trenkwalder P. The Study on COgnition and Prognosis in the Elderly (SCOPE) --recent analyses. J Hypertens Suppl. 2006 ; 24 : S107-14.
36) Investigators O, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008 ; 358 : 1547-59.
37) Anderson C, Teo K, Gao P, et al. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease : analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol. 2011 ; 10 : 43-53.
38) Luong K, Nguyen LT. The role of beta-adrenergic receptor blockers in Alzheimer's disease : potential genetic and cellular signaling mechanisms. Am J Alzheimers Dis Other Demen. 2013 ; 28 : 427-39.
39) Arrieta-Cruz I, Wang J, Pavlides C, et al. Carvedilol reestablishes long-term potentiation in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2010 ; 21 : 649-54.
40) Wang J, Ono K, Dickstein DL, et al. Carvedilol as a potential novel agent for the treatment of Alzheimer's disease. Neurobiol Aging. 2011 ; 32 : 2321e1-12.
41) Dobarro M, Orejana L, Aguirre N, et al. Propranolol restores cognitive deficits and improves amyloid and Tau pathologies in a senescence-accelerated mouse model. Neuropharmacology. 2013 ; 64 : 137-44.
42) Madden DJ, Blumenthal JA, Ekelund LG. Effects of beta-blockade and exercise on cardiovascular and cognitive functioning. Hypertension. 1988 ; 11 : 470-6.
43) Fogari R, Mugellini A, Zoppi A, et al. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J Hum Hypertens. 2003 ; 17 : 781-5.
44) Yasar S, Xia J, Yao W, et al. Antihypertensive drugs decrease risk of Alzheimer disease : Ginkgo Evaluation of Memory Study. Neurology. 2013 ; 81 : 896-903.
45) Gelber RP, Ross GW, Petrovitch H, et al. Antihypertensive medication use and risk of cognitive impairment : the Honolulu-Asia Aging Study. Neurology. 2013 ; 81 : 888-95.
46) Toescu EC, Verkhratsky A. The importance of being subtle : small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell. 2007 ; 6 : 267-73.
47) Gorelick PB, Nyenhuis D, American Society of Hypertension Writing G, Materson BJ, Calhoun DA, Elliott WJ, et al. Blood pressure and treatment of persons with hypertension as it relates to cognitive outcomes including executive function. J Am Soc Hypertens. 2012 ; 6 : 309-15.
48) Small DH, Gasperini R, Vincent AJ, et al. The role of Abeta-induced calcium dysregulation in the pathogenesis of Alzheimer's disease. J Alzheimers Dis. 2009 ; 16 : 225-33.
49) Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010 ; 47 : 183-9.
50) Weiss JH, Pike CJ, Cotman CW. Ca2+channel blockers attenuate beta-amyloid peptide toxicity to cortical neurons in culture. J Neurochem. 1994 ; 62 : 372-5.
51) Ueda K, Shinohara S, Yagami T, et al. Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+channels : a possible involvement of free radicals. J Neurochem. 1997 ; 68 : 265-71.
52) Anekonda TS, Quinn JF, Harris C, et al. L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer's disease. Neurobiol Dis. 2011 ; 41 : 62-70.
53) Copenhaver PF, Anekonda TS, Musashe D, et al. A translational continuum of model systems for evaluating treatment strategies in Alzheimer's disease : isradipine as a candidate drug. Dis Model Mech. 2011 ; 4 : 634-48.
54) Trompet S, Westendorp RG, Kamper AM, et al. Use of calcium antagonists and cognitive decline in old age. The Leiden 85-plus study. Neurobiol Aging. 2008 ; 29 : 306-8.
55) Scriabine A, van den Kerckhoff W. Pharmacology of nimodipine. A review. Ann N Y Acad Sci. 1988 ; 522 : 698-706.
56) Sze KH, Sim TC, Wong E, et al. Effect of nimodipine on memory after cerebral infarction. Acta Neurol Scand. 1998 ; 97 : 386-92.
57) Pantoni L, Bianchi C, Beneke M, et al. The Scandinavian Multi-Infarct Dementia Trial : a double-blind, placebo-controlled trial on nimodipine in multi-infarct dementia. J Neurol Sci. 2000 ; 175 : 116-23.
58) Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998 ; 352 : 1347-51.