Dual-energy CT 原理を理解し臨床で活用する

出版社: メジカルビュー社
著者:
発行日: 2019-09-30
分野: 臨床医学:一般  >  放射線/核医学
ISBN: 9784758316125
電子書籍版: 2019-09-30 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:約3営業日

8,580 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

8,580 円(税込)

商品紹介

Dual-energy CTの技術が導入され,Photon-countingへとCTの撮像テクノロジーが進化し続けている。より多くの情報をいかに適切に扱うか,部位ごとの的確な画像の再構築,定量化に向け,これまでにない確固たる基礎知識が求められ始めている。
本書では,放射線科医にとって今後必要不可欠となる力,特にDual-energyが有用とされる根拠を一つずつひもとき,造影,被ばくの課題と複雑に絡み合う撮像技術と画像診断に役立つ実践知識がまとめられている。
「なんとなく使っている」から「正確に使いこなせる」へのステップアップを目指そう!

目次

  • ■基礎編
    1. Dual-energy CTの現状
    2. Dual-energy CTを理解するための物理
    3. Dual-energy CTのソフトウェア
    4. Dual-energy CTのハードウェア
    5.Photon-counting detector CT

    ■臨床編
    1. 頭部
    2.胸部
    3.腹部
    4.骨・関節

    Appendix 文献の集計方法

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

基礎編

P.7 掲載の参考文献
1) Rutherford RA, et al : Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology, 11 : 15-21. 1976.
2) McCollough CH, et al : Dual- and Multi-Energy CT : Principles, Technical Approaches, and Clinical Applications. Radiology, 276 : 637-653. 2015.
3) Schlomka JP, et al : Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol, 53 : 4031-4047. 2008.
4) Symons R, et al : Coronary artery calcium scoring with photoncounting CT : first in vivo human experience. Int J Cardiovasc Imaging, 35 : 733-739. 2019.
5) Moghiseh M, et al : Spectral Photon-Counting Molecular Imaging for Quantification of Monoclonal Antibody-Conjugated Gold Nanoparticles Targeted to Lymphoma and Breast Cancer : An In Vitro Study. Contrast Media Mol Imaging, 2018 Dec 18. eCollection 2018.
6) Dangelmaier J, et al : Experimental feasibility of spectral photoncounting computed tomography with two contrast agents for the detection of endoleaks following endovascular aortic repair. Eur Radiol, 28 : 3318-3325. 2018.
7) Genant HK, et al : Noninvasive assessment of bone mineral and structure : state of the art. J Bone Miner Res, 11 : 707-730. 1996.
8) Niklason LT, et al : Simulated pulmonary nodules : detection with dual-energy digital versus conventional radiography. Radiology, 160 : 589-593. 1986.
9) Brody WR, et al : A method for selective tissue and bone visualization using dual energy scanned projection radiography. Med Phys, 8 : 353-357. 1981.
10) Johns PC, et al : Theoretical optimization of dual-energy x-ray imaging with application to mammography. Med Phys, 12 : 289-296. 1985.
11) Lewin JM, et al : Dual-energy contrast-enhanced digital subtraction mammography : feasibility. Radiology, 229 : 261-268. 2003.
12) Johnson T, et al : Physical Background. Dual energy CT in Clinical Practice, Johnson T, et al, ed. Springer, Heidelberg, 2011, p3-9.
13) Lee SW, et al : Improvement in Ventilation-Perfusion Mismatch after Bronchoscopic Lung Volume Reduction : Quantitative Image Analysis. Radiology, 285 : 250-260. 2017.
14) Chae EJ, et al : Xenon ventilation CT with a dual-energy technique of dual-source CT : initial experience. Radiology, 248 : 615-624. 2008.
15) Szczykutowicz TP : Hallway Conversations in PhysicsWhy Do I See Iodine Signal Coming From Bones on Dual-Energy CT Images? AJR Am J Roentgenol, 208 : W193-W194. 2017.
16) NCBI PubMed. https://www.ncbi.nlm.nih.gov/pubmed
17) Dubal L, et al : Tomochemistry of the brain. J Comput Assist Tomogr, 1 : 300-307. 1977.
18) Genant HK, et al : Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol, 12 : 545-551. 1977.
19) Nickoloff EL, et al : Bone mineral assessment : new dual-energy CT approach. Radiology, 168 : 223-228. 1988.
20) 兵頭朋子ほか : Dual Energy CTの臨床. 日獨医報, 57 : 177-191. 2012.
21) 兵頭朋子 : Dual energy CTの最新動向と今後の展望. 月刊インナービジョン, 33 : 2-7. 2018.
22) Marin D, et al : Low-tube-voltage, high-tube-current multidetector abdominal CT : improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience. Radiology, 254 : 145-153. 2010.
23) Lv P, et al : Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose : initial experience. Eur Radiol, 27 : 374-383. 2017.
P.17 掲載の参考文献
1) Hsieh J : Computed Tomography Princeples, Design, Artifacts, and Recent Advances. Second Edition. SPIE Press, Washinton, 2009.
2) 西臺武弘 : 放射線医学物理学, 第3版. 分光堂, 東京, 2011.
3) 青柳泰司ほか編著 : 改訂新版 放射線機器学 (I) -診療画像機器. コロナ社, 東京, 2015.
4) Kang MJ, et al : Dual-energy CT : clinical applications in various pulmonary diseases. Radiographics, 30 : 685-698, 2010.
5) Goodsitt MM, et al : Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys, 38 : 2222-2232, 2011.
P.24 掲載の参考文献
1) 粟井和夫, 陣崎雅弘 : 最新Body CT診断-検査の組み立てから読影まで-. メディカル・サイエンス・インターナショナル, 東京, 2018.
2) Alvarez RE, Macovski A : Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol, 21 : 733-744, 1976.
3) Tremblay JE, et al : A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography. Med Phys, 41 : 081905, 2014.
4) Yu L, et al : Virtual monochromatic imaging in dual-source dual-energy CT : radiation dose and image quality. Med Phys, 38 : 6371-6379, 2011.
5) Maass C, et al : Image-based dual energy CT using optimized precorrection functions : a practical new approach of material decomposition in image domain. Med Phys, 36 : 3818-3829, 2009.
6) Zou Y, Silver MD, eds : Analysis of fast kV-switching in dual energy CT using a pre-reconstruction decomposition technique. The International Society for Optical Engineering, 2008.
P.31 掲載の参考文献
1) Yu L, et al : Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol, 199 (5 Suppl) : S9-S15, 2012.
2) Kuchenbecker S, et al : Dual energy CT : how well can pseudomonochromatic imaging reduce metal artifacts? Med Phys, 42 : 1023-1036, 2015.
3) Wu R, et al : Quantitative Comparison of Virtual Monochromatic Images of Dual Energy Computed Tomography Systems : Beam Hardening Artifact Correction and Variance in Computed Tomography Numbers : A Phantom Study. J Comput Assist Tomogr, 42 : 648-654, 2018.
4) Barrett JF, Keat N : Artifacts in CT : recognition and avoidance. Radiographics, 24 : 1679-1691, 2004.
5) Schindera ST, et al : Effect of beam hardening on arterial enhancement in thoracoabdominal CT angiography with increasing patient size : an in vitro and in vivo study. Radiology, 256 : 528-535, 2010.
6) Marin D, et al : Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. Eur Radiol, 23 : 3325-3335, 2013.
7) Mileto A, et al : Dual-energy MDCT in hypervascular liver tumors : effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol, 203 : 1257-1264, 2014.
8) Shuman WP, et al : Dual-energy liver CT : effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol, 203 : 601-606, 2014.
9) Husarik DB, et al : Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions : ex-vivo and patient experience in various body sizes. Invest Radiol, 50 : 695-702, 2015.
10) Leng S, et al : Dual-Energy CT for Quantification of Urinary Stone Composition in Mixed Stones : A Phantom Study. AJR Am J Roentgenol, 207 : 321-329, 2016.
11) Lambert JW, et al. The Effect of Patient Diameter on the Dual-Energy Ratio of Selected Contrast-Producing Elements. J Comput Assist Tomogr, 41 : 505-510, 2017.
12) Bayasgalan E, et al : Improved detectability of hyper-dense nodules with dual-energy CT scans : Phantom study using simulated liver harboring nodules. Hiroshima J Med Sci, 67 : 63-69, 2018.
13) Bucher AM, et al : Quantitative evaluation of beam-hardening artefact correction in dual-energy CT myocardial perfusion imaging. Eur Radiol. 26 : 3215-3222, 2016.
14) Carrascosa PM, et al : Comparison of myocardial perfusion evaluation with single versus dual-energy CT and effect of beam-hardening artifacts. Acad Radiol, 22 : 591-599, 2015.
15) Rodriguez-Granillo GA, et al : Beam hardening artifact reduction using dual energy computed tomography : implications for myocardial perfusion studies. Cardiovasc Diagn Ther, 5 : 79-85, 2015.
16) Schindera ST, et al : Decreased detection of hypovascular liver tumors with MDCT in obese patients : a phantom study. AJR Am J Roentgenol, 196 : W772-776, 2011.
17) Leng S, et al : Maximizing Iodine Contrast-to-Noise Ratios in Abdominal CT Imaging through Use of Energy Domain Noise Reduction and Virtual Monoenergetic Dual-Energy CT. Radiology, 276 : 562-570, 2015.
18) Winklhofer S, et al : Pelvic Beam-Hardening Artifacts in Dual-Energy CT Image Reconstructions : Occurrence and Impact on Image Quality. AJR Am J Roentgenol, 208 : 114-123, 2017.
P.43 掲載の参考文献
1) Yu L, et al : Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol, 199 (5 Suppl) : S9-S15, 2012.
2) Kim TM, et al : Optimal Kiloelectron Volt for Noise-Optimized Virtual Monoenergetic Images of Dual-Energy Pediatric Abdominopelvic Computed Tomography : Preliminary Results. Korean J Radiol, 20 : 283-294, 2019.
3) van Hamersvelt RW, et al : Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors : a phantom study. Int J Cardiovasc Imaging, 34 : 1265-1275, 2018.
4) Kuchenbecker S, et al : Dual energy CT : how well can pseudomonochromatic imaging reduce metal artifacts? Med Phys, 42 : 1023-1036, 2015.
5) Katsura M, et al : Current and Novel Techniques for Metal Artifact Reduction at CT : Practical Guide for Radiologists. RadioGraphics, 38 : 450-461, 2018.
6) Pessis E, et al : Virtual monochromatic spectral imaging with fast kilovoltage switching : reduction of metal artifacts at CT. RadioGraphics, 33 : 573-583, 2013.
7) Jacobsen MC, et al : Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation : A Phantom Study. Radiology, 287 : 224-234, 2018.
8) Forghani R, et al : Dual-Energy Computed Tomography : Physical Principles, Approaches to Scanning, Usage, and Implementation : Part 2. Neuroimaging Clin N Am, 27 : 385-400, 2017.
9) De Santis D, et al : Contrast media injection protocol optimization for dual-energy coronary CT angiography : results from a circulation phantom. Eur Radiol, 28 : 3473-3481, 2018.
10) Oda S, et al : Low contrast material dose coronary computed tomographic angiography using a dual-layer spectral detector system in patients at risk for contrast-induced nephropathy. Br J Radiol, Epub 2018 Nov 9.
11) Agrawal MD, et al : Prospective Comparison of Reduced-Iodine-Dose Virtual Monochromatic Imaging Dataset From Dual-Energy CT Angiography With Standard-Iodine-Dose Single-Energy CT Angiography for Abdominal Aortic Aneurysm. AJR Am J Roentgenol, 207 : W125-W32, 2016.
12) Shuman WP, et al : Dual-energy CT Aortography with 50% Reduced Iodine Dose Versus Single-energy CT Aortography with Standard Iodine Dose. Acad Radiol. 23 : 611-618, 2016.
13) Shuman WP, et al : Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus singleenergy CT aortography using standard iodine dose in the same patient. Abdom Radiol (NY), 42 : 759-765, 2017.
14) Sugawara H, et al : Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging : advantages and disadvantages. Eur Radiol, 29 : 1400-1407, 2019.
15) Han D, et al : Iodine load reduction in dual-energy spectral CT portal venography with low energy images combined with adaptive statistical iterative reconstruction. Br J Radiol, Epub 2019 Mar 22.
16) Nagayama Y, et al : Dual-layer detector CT of chest, abdomen, and pelvis with a one-third iodine dose : image quality, radiation dose, and optimal monoenergetic settings. Clin Radiol, 73 : 1058 e21-e29, 2018.
17) Nagayama Y, et al : Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load : a matched-pair comparison with a 120 kVp protocol. Eur Radiol, 28 : 1719-1730, 2018.
18) Hyodo T, et al, eds : Iodine Load Reduction at Hepatic Dynamic CT using Virtual Monochromatic Imaging with a Fast kVp Switching Dual-Energy CT. RSNA, 2015.
19) Ascenti G, et al : Stone-targeted dual-energy CT : a new diagnostic approach to urinary calculosis. AJR Am J Roentgenol, 195 : 953-958, 2010.
20) Duan X, et al : Characterization of Urinary Stone Composition by Use of Third-Generation Dual-Source Dual-Energy CT With Increased Spectral Separation. AJR Am J Roentgenol, 205 : 1203-1207, 2015.
21) Jepperson MA, et al : Dual-energy CT for the evaluation of urinary calculi : image interpretation, pitfalls and stone mimics. Clin Radiol, 68 : e707-714, 2013.
22) Mansouri M, et al : Dual-Energy Computed Tomography Characterization of Urinary Calculi : Basic Principles, Applications and Concerns. Curr Probl Diagn Radiol, 44 : 496-500, 2015.
23) Chou H, et al : Dual-energy CT in gout-A review of current concepts and applications. J Med Radiat Sci, 64 : 41-51, 2017.
24) Dalbeth N, Choi HK : Dual-energy computed tomography for gout diagnosis and management. Curr Rheumatol Rep, 15 : 301, 2013.
25) Ramon A, et al : Role of dual-energy CT in the diagnosis and follow-up of gout : systematic analysis of the literature. Clin Rheumatol, 37 : 587-595, 2018.
26) Mendonca PR, et al : A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images. IEEE transactions on medical imaging, 33 : 99-116, 2014.
27) Hyodo T, et al : Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT : Experimental Validation. Radiology, 282 : 381-389, 2017.
28) Hyodo T, et al : Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT : Clinical Evaluation. Radiology, 283 : 108-118, 2017.
29) Hua CH, et al : Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med Phys, 45 : 2486-2497, 2018.
30) Joshia M, et al, eds : Effective Atomic Number Accuracy for Kidney Stone Characterization using Spectral CT. Medical Imaging 2010, 2010.
31) Tatsugami F, et al : Measurement of electron density and effective atomic number by dual-energy scan using a 320-detector computed tomography scanner with raw data-based analysis : a phantom study. J Comput Assist Tomogr, 38 : 824-827, 2014.
32) Goodsitt MM, et al : Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys, 38 : 2222-2232, 2011.
33) Ju Y, et al : The Value of Nonenhanced Single-Source Dual-Energy CT for Differentiating Metastases From Adenoma in Adrenal Glands. Acad Radiol, 22 : 834-839, 2015.
34) Gonzalez-Perez V, et al : Differentiation of benign and malignant lung lesions : Dual-Energy Computed Tomography findings. Eur J Radiol, 85 : 1765-1772, 2016.
35) Li M, et al : Spectral CT imaging of intranodular hemorrhage in cases with challenging benign thyroid nodules. Radiol Med, 121 : 279-290, 2016.
36) Han D, et al : Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans. Br J Radiol, Epub 2017 Mar 11.
37) Mileto A, et al : Characterization of Incidental Renal Mass With Dual-Energy CT : Diagnostic Accuracy of Effective Atomic Number Maps for Discriminating Nonenhancing Cysts From Enhancing Masses. AJR Am J Roentgenol, 209 : W221-W230, 2017.
38) Nakajima S, et al : Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis, 261 : 138-143, 2017.
39) Yang L, et al : Therapy Effects of Advanced Hypopharyngeal and Laryngeal Squamous Cell Carcinoma : Evaluated using Dual-Energy CT Quantitative Parameters. Sci Rep, 8 : 9064, 2018.
40) Zhang X, et al : Differential diagnosis between benign and malignant pleural effusion with dual-energy spectral CT. PLoS One, Epub 2018 Apr 12.
41) Zhang X, et al : Axillary Sentinel Lymph Nodes in Breast Cancer : Quantitative Evaluation at Dual-Energy CT. Radiology, 289 : 337-346, 2018.
42) Wang N, et al : Differentiation of liver abscess from liver metastasis using dual-energy spectral CT quantitative parameters. Eur J Radiol, 113 : 204-208, 2019.
43) Wu J, et al : The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer. Eur Radiol, Epub 2019 Mar 25.
44) Ohira S, et al : Estimation of electron density, effective atomic number and stopping power ratio using dual-layer computed tomography for radiotherapy treatment planning. Phys Med, 56 : 34-40, 2018.
45) van Elmpt W, et al : Dual energy CT in radiotherapy : Current applications and future outlook. Radiother Oncol, 119 : 137-144, 2016.
46) Kaichi Y, et al : Improved differentiation between high- and lowgrade gliomas by combining dual-energy CT analysis and perfusion CT. Medicine (Baltimore), 97 : e11670, 2018.
P.52 掲載の参考文献
1) Forghani R, et al : Dual-Energy Computed Tomography : Physical Principles, Approaches to Scanning, Usage, and Implementation : Part 1. Neuroimaging Clin N Am, 27 : 371-384, 2017.
2) Xi Y, et al : Grating Oriented Line-Wise Filtration (GOLF) for Dual-Energy X-ray CT. Sens Imaging, Epub 2017 Aug 22.
3) Faby S, et al : Performance of today's dual energy CT and future multi energy CT in virtual non-contrast imagingand in iodine quantification : A simulation study. Med Phys, 42 : 4349-4366, 2015.
4) Jacobsen MC, et al : Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation : A Phantom Study. Radiology, 287 : 224-234, 2018.
5) Shefer E, et al : State of the Art of CT Detectors and Sources : A Literature Review. Curr Radiol Rep, 1 : 76-91, 2013.
6) Rassouli N, et al : Detector-based spectral CT with a novel duallayer technology : principles and applications. Insights Imaging, 8 : 589-598, 2017.
7) Brown KM, et al : Impact of spectral separation in dual-energy CT with anti-correlated statistical reconstruction. The 13th Int. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 491-495, 2015.
8) Kalender WA, et al : An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging, 7 : 218-224, 1988.
9) Li B, et al : Simultaneous reduction in noise and cross-contamination artifacts for dual-energy X-ray CT. Biomed Res Int, Epub 2013 Jun 19.
P.66 掲載の参考文献
1) Persson M, et al : Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol, 59 : 6709-6727, 2014.
2) Kappler S, et al : A research prototype system for quantum-counting clinical CT. Proceedings of SPIE Medical Imaging : 76221Z-Z-6, 2010.
3) Kappler S, et al : Quantum-counting CT in the regime of count-rate paralysis : introduction of the pile-up trigger method. Proceedings of SPIE Medical Imaging : 79610T-T-11, 2011.
4) Taguchi K, et al : Modeling the performance of a photon counting x-ray detector for CT : Energy response and pulse pileup effects. Med Phys, 38 : 1089-1102, 2011.
5) Kappler S, et al : First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. Proceedings of SPIE Medical Imaging : 83130X-X-11, 2012.
6) Kappler S, et al : Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. Proceedings of SPIE Medical Imaging : 86680O-O-8, 2013.
7) Gutjahr R, et al : Human Imaging With Photon Counting-Based Computed Tomography at Clinical Dose Levels : Contrast-to-Noise Ratio and Cadaver Studies. Invest Radiol, 51 : 421-429, 2016.
8) Yu Z, et al : Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol, 61 : 1572-1595, 2016.
9) Yu Z, et al : Noise performance of low-dose CT : comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging (Bellingham), 3 (4) : 043503, 2016.
10) Yu Z, et al : How Low Can We Go in Radiation Dose for the Data-Completion Scan on a Research Whole-Body Photon-Counting Computed Tomography System. J Comput Assist Tomogr, 40 : 663-670, 2016
11) Li Z, et al : Estimation of signal and noise for a whole-body research photon-counting CT system. J Med Imaging (Bellingham), 4 (2) : 023505, 2017.
12) Pourmorteza A, et al : Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Tomography : First-in-Human Results. Invest Radiol, 53 : 365-372, 2018.
13) Symons R, et al : Low-dose lung cancer screening with photon-counting CT : a feasibility study. Phys Med Biol, 62 : 202-213, 2017.
14) Symons R, et al : Feasibility of Dose-reduced Chest CT with Photon-counting Detectors : Initial Results in Humans. Radiology, 285 : 980-989, 2017.
15) Zhou W, et al : Comparison of a Photon-Counting-Detector CT with an Energy-Integrating-Detector CT for Temporal Bone Imaging : A Cadaveric Study. AJNR Am J Neuroradiol, 39 : 1733-1738, 2018.
16) Roessl E, et al : K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol, 52 : 4679-4696, 2007.
17) Symons R, et al : Dual-contrast agent photon-counting computed tomography of the heart : initial experience. Int J Cardiovasc Imaging, 33 : 1253-1261, 2017.
18) Symons R, et al : Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen : An in vivo study. Med Phys, 44 : 5120-5127, 2017.

臨床編

P.82 掲載の参考文献
P.98 掲載の参考文献
5) Leipsic J, et al : SCCT guidelines for the interpretation and reporting of coronary CT angiography : a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr, 8 : 342-358, 2014.
6) Puchner SB, et al : High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain : results from the ROMICAT-II trial. J Am Coll Cardiol, 64 : 684-692, 2014.
15) Nakajima S, et al : Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis, 261 : 138-143, 2017.
P.106 掲載の参考文献
4) Anderson DR, et al : Computed tomographic pulmonary angiography vs ventilation-perfusion lung scanning in patients with suspected pulmonary embolism : a randomized controlled trial. JAMA, 298 : 2743-2753, 2007.
13) Okada M, et al : Volumetric evaluation of dual-energy perfusion CT for the assessment of intrapulmonary clot burden. Clin Radiol, 68 : e669-675, 2013.
P.116 掲載の参考文献
9) Sakabe D, et al : Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT : Comparison with conventional tube-voltage images. Phys Med, 49 : 5-10, 2018.
13) Nagayama Y, et al : Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load : a matched-pair comparison with a 120 kVp protocol. Eur Radiol, 28 : 1719-1730, 2018.
27) De Santis D, et al : Contrast media injection protocol optimization for dual-energy coronary CT angiography : results from a circulation phantom. Eur Radiol, 28 : 3473-3481, 2018.
P.130 掲載の参考文献
3) 日本肝臓学会 : 学的根拠に基づく肝癌診療ガイドライン, 2017年版. 金原出版, 東京, 2017.
28) Shuman WP, et al : Dual-energy liver CT : effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol, 203 : 601-606, 2014.
34) Husarik DB, et al : Advanced virtual monoenergetic computed tomography of hyperattenuating and hypoattenuating liver lesions : ex-vivo and patient experience in various body sizes. Invest Radiol, 50 : 695-702, 2015.
36) Mileto A, et al : Dual-energy MDCT in hypervascular liver tumors : effect of body size on selection of the optimal monochromatic energy level. AJR Am J Roentgenol, 203 : 1257-1264, 2014.
37) Bayasgalan E, et al : Improved Detectability of Hyper-Dense Nodules Using Dual-Energy Computed Tomography Scanning : Phantom Study Using Simulated Liver Harboring Nodules. Hiroshima Journal of Medical Sciences, 67 : 63-69, 2018.
38) Nagayama Y, et al : Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load : a matched-pair comparison with a 120 kVp protocol. Eur Radiol, 28 : 1719-1730, 2018.
49) Cavallari A, et al : Liver metastases from colorectal cancer : present surgical approach. Hepatogastroenterology, 50 : 2067-2071, 2003.
55) ESUR : ESUR Guidelines 10.0 contrast media guidelines. 2018.
60) Lenga L, et al : Dual-energy CT in patients with colorectal cancer : Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging. Eur J Radiol, 106 : 184-191, 2018.
72) Wang N, et al : Differentiation of liver abscess from liver metastasis using dual-energy spectral CT quantitative parameters. Eur J Radiol, 113 : 204-208, 2019.
P.139 掲載の参考文献
2) Schaffner F, et al : Nonalcoholic fatty liver disease. Prog Liver Dis, 8 : 283-298, 1986.
3) 日本肝臓学会 編 : NASH・NAFLDの診療ガイド. 文光堂, 東京, 2010.
4) Ludwig J, et al : Nonalcoholic steatohepatitis : Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc, 55 : 434-438, 1980.
6) 岡上武ほか : 日本のNASH・NAFLDの現状と将来展望. 肝臓, 47 : 529-549, 2006.
25) Collins AJ, et al : Can computed tomography identify patients with anaemia? Ulster Med J, 70 : 116-118, 2001.
30) Hyodo T, et al : Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT : Experimental Validation. Radiology, 282 : 381-389, 2017.
37) Hyodo T, et al : Multimaterial Decomposition Algorithm for the Quantification of Liver Fat Content by Using Fast-Kilovolt-Peak Switching Dual-Energy CT : Clinical Evaluation. Radiology, 283 : 108-118, 2017.
P.149 掲載の参考文献
3) 日本医学放射線学会 編 : 画像診断ガイドライン, 2016年版. 金原出版, 東京, 2016.
5) Yoon SH, et al : Small (≦20mm) pancreatic adenocarcinomas : analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology, 259 : 442-452, 2011.
19) Shuman WP, et al : Dual-energy liver CT : effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol, 203 : 601-606, 2014.
P.158 掲載の参考文献
10) Saito H, et al : Usefulness and limitations of dual-layer spectral detector computed tomography for diagnosing biliary stones not detected by conventional computed tomography : a report of three cases. Clin J Gastroenterol, 11 : 172-177, 2018.
11) Yang CB, et al : Clinical application of dual-energy spectral computed tomography in detecting cholesterol gallstones from surrounding bile. Acad Radiol, 24 : 478-482, 2017.
17) Li H, et al : Clinical value of spectral CT in diagnosis of negative gallstones and common bile duct stones. Abdom Imaging, 40 : 1587-1594, 2015.
21) Kim JE, et al : Initial assessment of dual-energy CT in patients with gallstones or bile duct stones : can virtual nonenhanced images replace true nonenhanced images? AJR Am J Roentgenol, 198 : 817-824, 2012.
P.172 掲載の参考文献
P.180 掲載の参考文献
P.196 掲載の参考文献
1) 高橋哲 : 腎・上部尿路疾患のCT・MRI : 腎結石・尿路結石. 臨床画像, 32 : 1240-1250, 2016.
2) 日本泌尿器科学会, 日本泌尿器内視鏡学会, 日本尿路結石症学会編 : 尿路結石症診療ガイドライン 2013年版. 金原出版, 東京, 2013.
8) Preminger GM, et al : 2007 guideline for the management of ureteral calculi. J Urol, 178 : 2418-2434, 2007.
9) Coll DM, et al : Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. AJR Am J Roentgenol, 178 : 101-103, 2002.
12) 高橋哲ほか : 腹部感染症の画像診断update : 腎感染症 画像診断では何に注目すべきか? 画像診断, 38 : 46-60, 2017.
13) 医療放射線防護連絡協議会ほか : 最新の国内実態調査結果に基づく診断参考レベルの設定. In, 2015.
15) Kluner C, et al : Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr, 30 : 44-50, 2006.
22) 高橋哲 : 救急画像診断のすべて : 内因性疾患 泌尿生殖器 泌尿器尿路結石症. 臨床放射線, 60 : 1802-1808, 2015.
23) Hwang E, et al : Factors that predict spontaneous passage of a small distal ureteral stone <5 mm. J Endourol, 24 : 1681-1685, 2010.
24) Van Der Molen AJ, et al : CT urography : definition, indications and techniques. A guideline for clinical practice. Eur Radiol, 18 : 4-17, 2008.
27) Schwartz BF, et al : Imaging characteristics of indinavir calculi. J Urol, 161 : 1085-1087, 1999.
28) Graser A, et al : Dual energy CT characterization of urinary calculi : initial in vitro and clinical experience. Invest Radiol, 43 : 112-119, 2008.
33) Duan X, et al : Characterization of Urinary Stone Composition by Use of Third-Generation Dual-Source Dual-Energy CT With Increased Spectral Separation. AJR Am J Roentgenol, 205 : 1203-1207, 2015.
34) Jepperson MA, et al : Dual-energy CT for the evaluation of urinary calculi : image interpretation, pitfalls and stone mimics. Clin Radiol, 68 : e707-714, 2013.
P.207 掲載の参考文献
6) 一城貴政ほか : 本邦における5年間の継続的副腎腫疫学調査-最終報告-厚生労働省研究補助金難治性疾患克服研究事業副腎ホルモン産生異常に関する調査研究, 平成16年度研究報告書. 厚生労働省, 2005, p121-129.
P.220 掲載の参考文献

Appendix 文献の集計方法

P.222 掲載の参考文献
1) NCBI PubMed. https://www.ncbi.nlm.nih.gov/pubmed
2) Kovalchik S. RISmed : Download Content from NCBI Databases. 2017. https://CRAN.R-project.org/package=RISmed. access date : 2019/06/30
3) 樋口耕一 : 社会調査のための計量テキスト分析?内容分析の継承と発展を目指して. ナカニシヤ出版, 京都, 2014.

最近チェックした商品履歴

Loading...