腸内フローラと健康長寿

出版社: 医薬出版
著者:
発行日: 2020-10-20
分野: 基礎医学  >  医動物(寄生虫)
ISBN: 9784990673987
電子書籍版: 2020-10-20 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

5,280 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

3,696 円(税込)

目次

  • はじめに

    特別講演1 長鎖メタゲノミクスによるヒト腸内微生物叢の
          染色体外可動性遺伝子因子群の探索

    特別講演2 健康長寿を導く腸内細菌

    講演1 幼少期における腸内フローラ

    講演2 腸内細菌と消化器癌

    講演3 がん領域における腸内フローラの免疫増強効果

    講演4 糖尿病性腎症の新たなマーカーであり原因物質であるフェニル硫酸の意義

    講演5 高齢者における発酵乳製品の習慣的な摂取、適度な身体活動の
        定期的な実行と生活習慣病の発症リスクの低下」

    総合討論

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

はじめに

P.5 掲載の参考文献
1) World Population Review 2019, http://worldpopulationreview.com/countries/life-expectancy-by-country/
2) 神谷茂 : 腸内フローラと内科疾患. Jpn J Antibiotics, 70 : 1-13, 2017
3) Kim S & Jazwinski SM : The gut microbiota and healthy aging-A mini-review. Gerontology 64 : 513-520, 2018
4) Yachida S et al., : Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med, 25 : 968-976, 2019
5) Clarke SF et al. : Exercise and associated dietary extremes impact on gut microbiota diversity. Gut 2014 : 63 : 1913-1920.
6) Bressa C et al. : Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 2017 ; 12 : e0171352
7) Cronin O et al. : A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems 3 : e00044-18, 2019
8) Sgritta M et al. : Mechanisms underlying microbial-mediated changes in social behavior in mouse models of Autism Spectrum Disorder. Neuron 101 : 246-259, 2019
9) Vuong HE & Hsiao EY : Microbiota and autism spectrum disorder : Effects of probiotics. Neuron 101 : 196-198, 2019

特別講演1. 長鎖メタゲノミクスによるヒト腸内微生物叢の染色体外可動性遺伝因子群の探索

P.15 掲載の参考文献
1) Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006 ; 312 (5778) : 1355-9.
2) Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007 : 14 (4) : 169-81.
3) Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 ; 464 (7285) : 59-65.
4) Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012 ; 486 (7402) : 207-14.
5) Koonin EV, Wolf YI. Genomics of bacteria and archaea : the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008 ; 36 (21) : 6688-719.
6) Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral : next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012 ; 10 (9) : 607-17.
7) Virgin HW. The virome in mammalian physiology and disease. Cell. 2014 ; 157 (1) : 142-50.
8) Brito IL, Yilmaz S, Huang K, Xu L, Jupiter SD, Jenkins AP, Naisilisili W, Tamminen M, Smillie CS, Wortman JR, et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature. 2016 : 535 (7612) : 435-9.
9) Dib JR, Wagenknecht M, Farias ME, Meinhardt F. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding elements? Front Microbiol. 2015 ; 6 : 463.
10) Jorgensen TS, Kiil AS, Hansen MA, Sorensen SJ, Hansen LH. Current strategies for mobilome research. Front Microbiol. 2014 ; 5 : 750.
11) Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010 ; 466 (7304) : 334-8.
12) Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. The human gut virome : inter-individual variation and dynamic response to diet. Genome Res. 2011 ; 21 (10) : 1616-25.
13) Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD. Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A. 2012 ; 109 (10) : 3962-6.
14) Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A. 2013 ; 110 (30) : 12450-5.
15) Castro-Mejia JL, Muhammed MK, Kot W, Neve H, Franz CM, Hansen LH, Vogensen FK, Nielsen DS. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome. 2015 ; 3 : 64.
16) Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. Healthy human gut phageome. Proc Natl Acad Sci U S A. 2016 ; 113 (37) : 10400-5.
17) Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM, McDonnell SA, Nolan JA, Sutton TDS, Dalmasso M, et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018 ; 6 (1) : 68.
18) Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014 ; 32 (8) : 834-41.
19) Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y, Morita H, Hattori M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016 : 23 (2) : 125-33.
20) Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi M, Thomas BC, Burstein D, Tringe SG, et al. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res. 2015 ; 25 (4) : 534-43.
21) Kuleshov V, Jiang C, Zhou W, Jahanbani F, Batzoglou S, Snyder M. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat Biotechnol. 2016 : 34 (1) : 64-9.
22) Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB. MinION nanopore sequencing of environmental metagenomes : a synthetic approach. Gigascience. 2017 ; 6 (3) : 1-10.
23) Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VG, McHardy AC, Nederbragt AJ, Pope PB. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci Rep. 2016 ; 6 : 25373.
24) Tsai YC, Conlan S, Deming C, Program NCS, Segre JA, Kong HH, Korlach J, Oh J. Resolving the complexity of human skin metagenomes using single-molecule sequencing. MBio. 2016 ; 7 (1) : e01948-15.
25) Bishara A, Moss EL, Kolmogorov M, Parada AE, Weng Z, Sidow A, Dekas AE, Batzoglou S, Bhatt AS. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol. 2018 : 36 : 1067-1075.
26) Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS, Davis-Richardson A, Canepa R, Triplett EW, Faith JJ, Sebra R, et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol. 2018 ; 36 (1) : 61-9.
27) Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K, Hattori M, Morishita S. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. Microbiome 2019 ; 7 (1) : 119.
28) Kristensen DM, Cai X, Mushegian A. Evolutionarily conserved orthologous families in phages are relatively rare in their prokaryotic hosts. J Bacteriol. 2011 ; 193 (8) : 1806-14.
29) Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter : mining viral signal from microbial genomic data. Peer J. 2015 : 3 : e985.
30) Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow : predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018 : 46 (6) : e35.
31) Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Methods. 2013 ; 10 (9) : 881-4.
32) Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, Seguritan V, Aziz RK, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014 : 5 : 4498.
33) Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 2012 ; 22 (10) : 1985-94.
34) Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016 ; 40 (2) : 258-72.

特別講演2. 健康長寿を導く腸内細菌

P.22 掲載の参考文献
1) He, Y., et al. (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532-1535.
2) Giuliani, C., et al. (2018) Genetics of human longevity within an eco-evolutionary nature-nurture framework. Circ. Res. 123, 745-747.
3) Franceschi, C., et al. (2018) Inflammaging : a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576-590.
4) Biagi, E., et al. (2012) Aging of the human metaorganism : the microbial counterpart. Age 34, 247-267.
5) Claesson, MJ., et al. (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178-184.
6) Santoro, A., et al. (2018) Gut microbiota changes in the extreme decades of human life : a focus on centenarians. Cell. Mol. Life Sci. 75, 129-148.
7) Nicoletti, C. (2015) Age-associated changes of the intestinal epithelial barrier : local and systemic implications. Expert Rev. Gastroenterol. Hepatol. 9, 1467-1469,
8) Villa, C. R., et al. (2017) Gut microbiota-bone axis. Crit. Rev. Food Sci. Nutr. 57, 1664-1672.
9) Biagi, E., et al. (2010) Through ageing, and beyond : gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667.
10) Everard, A., et al. (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066-9071.
11) Biagi, E., et al. (2016) Gut microbiota and extreme longevity. Curr. Biol. 26, 1480-1485.
12) Kong, F., et al. (2016) Gut microbiota signatures of longevity. Curr. Biol. 26, R832-R833.
13) Rampelli, S., et al. (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5, 902-912.
14) Collino, S., et al. (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8, e56564.
15) Moco, S., et al. (2014) Systems biology approaches for inflammatory bowel disease : wwemphasis on gut microbial metabolism. Inflam. Bow. Dis., 20, 2104-2114.

講演1. 幼少期における腸内フローラ

P.28 掲載の参考文献
1) Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol 5, 1556-73 (2007).
2) Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854-9 (1958).
3) Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome : Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys. Res. Commun. 469, 967-977 (2016).
4) Rodriguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).
5) Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4, 67 (2016).
6) Stewart, C. J. et al. Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome 5, 75 (2017).
7) Kalliomaki, M. et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107, 129-134 (2001).
8) Kalliomaki, M., Collado, M. C., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534-8 (2008).
9) de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329-334 (2019).
10) Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65 (2014).
11) Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).
12) Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583-588 (2018).
13) Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589-594 (2018).
14) Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107, 11971-5 (2010).
15) Wampach, L. et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat. Commun. 9, 5091 (2018).
16) Embleton, N. D. et al. Mechanisms affecting the gut of preterm infants in enteral feeding trials. Front. Nutr. 4, (2017).
17) The neonatal bowel microbiome in health and infection. Curr, Opin, Infect, Dis. (2014).
18) Shane, A. L., Sanchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770-1780 (2017).
19) Camacho-Gonzalez, A., Spearman, P. W. & Stoll, B. J. Neonatal infectious diseases : evaluation of neonatal sepsis. Pediatric Clinics of North America 60, 367-389 (2013).
20) Berrington, J., Stewart, C., Embleton, N. & Cummings, S. Gut microbiota in preterm infants : assessment and relevance to health and disease. Arch Dis Child Fetal Neonatal Ed 98, F286-90 (2013).
21) Sharma, D., Farahbakhsh, N., Shastri, S. & Sharma, P. Biomarkers for diagnosis of neonatal sepsis : a literature review. J. Matern. Neonatal Med. 31, 1646-1659 (2018).
22) Shaw, A. G. et al. Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants. PLoS One 10, e0132923 (2015).
23) Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis : a systematic review and meta-analysis. Microbiome 5, 31 (2017).
24) Neu, J. & Walker, W. A. Necrotizing enterocolitis. NEJM 364, 255-264 (2011).
25) The preterm gut microbiota : changes associated with necrotizing enterocolitis and infection. Acta Paediatr. (2012).
26) Bacterial and fungal viability in the preterm gut : NEC and sepsis. Arch. Dis. Childhood-Fetal Neonatal Ed. (2013).
27) Sim, K. et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin. Infect. Dis. 60, 389-397 (2015).
28) Stool bacterial load in preterm infants with necrotising enterocolitis. Early Hum. Dev. (2016).
29) Wang, Y. et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 3, 944-54 (2009).
30) Warner, B. B. et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants : A prospective case-control study. Lancet 387, 1928-1936 (2016).
31) Stewart, C. J. et al. Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiol. 19, 52 (2019).
32) Taft, D. H. et al. Center variation in intestinal microbiota prior to late-onset sepsis in preterm infants. PLoS One 10, e0130604 (2015).
33) Mai, V. et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS One 8, e52876 (2013).
34) Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates : The experience of the NICHD neonatal research network. Pediatrics 110, 285-291 (2002).
35) Hourigan, S. K. et al. The microbiome in necrotizing enterocolitis : A case report in twins and minireview. Clin. Ther. 38, 747-753 (2016).
36) Maier, E., Anderson, R. C. & Roy, N. C. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients 7, 45-73 (2015).
37) Ling, X., Linglong, P., Weixia, D. & Hong, W. Protective effects of Bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 11, e0161635 (2016).

講演2. 腸内細菌と消化器癌

P.36 掲載の参考文献
1) Liu Y, Baba Y, Ishimoto T, et al. Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol. 2019 ; 54 : 33-41.
2) Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015 ; 1 : 653-661.
3) Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016 ; 65 : 1973-1980.
4) Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 2016 ; 7 : e200.
5) Yamamura K, Baba Y, Nakagawa S, et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res. 2016 ; 22 : 5574-5581.
6) Yamamura K, Izumi D, Kandimalla R, et al. Intratumoral Fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res. 2019 ; 25 : 6170-6179.
7) Baba Y, Iwatsuki M, Yoshida N, Watanabe M, Baba H. Review of the gut microbiome and esophageal cancer : Pathogenesis and potential clinical implications. Ann Gastroenterol Surg. 2017 ; 1 : 99-104.
8) Mima K, Nakagawa S, Sawayama H, et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017 ; 402 : 9-15.

講演3. がん領域における腸内フローラの免疫増強効果

P.40 掲載の参考文献
1) Routy B, Le Chatelier E, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B. Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L : Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359 (6371) : 91-97, 2018
2) Elkrief A, Derosa L, Kroemer G, Zitvogel L, Routy B : The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy : a new independent prognostic factor? Ann Oncol 3 (10) : 1572-1579, 2019
3) Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, Rouche JA, Zitvogel L, Zalcman G, Albiges L, Escudier B, Routy B : Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol, 29 (6) : 1437-1444, 2018
4) Routy B, Gopalakrishnan V, Daillere R, Zitvogel L, Wargo JA, Kroemer G : The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15 (6) : 382-396, 2018

講演4. 糖尿病性腎症の新たなマーカーであり原因物質であるフェニル硫酸の意義

P.48 掲載の参考文献
1) Vaziri, N. D., et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83, 308-315, 2013
2) Knauf F., et al. Immunity, microbiota and kidney disease. Nat. Rev. Nephrol. 15, 263-274, 2019
3) Nigam SK., et al. Uraemic symdrome of chronic kidney disease : altered remotesensing and signaling. Nat. Rev. Nephirol. 15, 301-316, 2019
4) Yang T., et al. The gut microbiota and brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14, 442-456, 2018
5) Toyohara T., et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertension Res. 33, 944-952, 2010
6) Mishima E., et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am. J. Renal Physiol. 315, F824-F833, 2018
7) Sumida K. et al. Constipation and Incident CKD J Am Soc Nephrol. 28 : 1248-125, 2017
8) Mishima, E, et al. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD. J. Am. Soc. Nephrol. 26, 1787-1794, 2015
9) Kikuchi K., et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat. Commun. 10 : 1835, 2019
10) Fiaccadori E., Cosola C., Sabatino A. Targeting the gut for early diagnosis, prevention, and cure of diabetic kidney disease : Is the phenyl sulfate story another step forward? Am J Kidney Dis. 75 : 144-147, 2020

講演5. 高齢者における発酵乳製品の習慣的な摂取, 適度な身体活動の定期的な実行と生活習慣病の発症リスクの低下

P.55 掲載の参考文献
1) Aoyagi, Y., & Shephard, R. J. (2009). Steps per day : the road to senior health? Sports Medicine, 39, 423-438.
2) Aoyagi, Y., & Shephard, R. J. (2010). Habitual physical activity and health in the elderly : the Nakanojo Study. Geriatrics and Gerontology International, 10, S236-S243.
3) Ayagi, Y., & Shephard, R. J. (2011). A model to estimate the potential for a physical activity-induced reduction in healthcare costs for the elderly, based on pedometer/accelerometer data from the Nakanojo Study. Sports Medicine, 41, 695-708.
4) Aoyagi, Y., & Shephard, R. J. (2013). Sex differences in relationships between habitual physical activity and health in the elderly : practical implications for epidemiologists based on pedometer/accelerometer data from the Nakanojo Study. Archives of Gerontology and Geriatrics, 56, 327-338.
5) Aoyagi, Y., & Shephard, R. J. (2014). Health-related quality of life and habitual physical activity among older Japanese. In A. C. Michalos (Ed.), Encyclopedia of Quality of Life Research. Heidelberg : Springer.
6) Shephard, R. J., & Aoyagi, Y. (2009). Seasonal variations in physical activity and implications for human health. European Journal of Applied Physiology, 107, 251-271.
7) Shephard, R. J., & Aoyagi, Y. (2010). Objective monitoring of physical activity in older adults : clinical and practical implications. Physical Therapy Reviews, 15, 170-182.
8) Shephard, R. J., & Aoyagi, Y. (2012). Measurement of human energy expenditure, with particular reference to field studies : an historical perspective. European Journal of Applied Physiology, 112, 2785-2815.
9) Shephard, R. J., & Aoyagi, Y. (2013). Sex differences in habitual physical activity of the elderly : issues of measurement, activity patterns, barriers and health response. Health and Fitness Journal of Canada, 6, 3-71.
10) Shephard, R. J., & Aoyagi, Y. (2014). Physical activity and the risk of cardio-metabolic disease in the elderly : dose recommendations as seen in the Nakanojo Study. Current Cardiovascular Risk Reports, 8, 387 (1-8).
11) Aoyagi, Y., Park, S., Matsubara, S., Honda, Y., Amamoto, R., Kushiro, A., Miyazaki, K., & Shephard, R. J. (2017). Habitual intake of fermented milk products containing Lactobacillus casei strain Shirota and a reduced risk of hypertension in older people. Beneficial Microbes, 8, 23-29.
12) Furushiro, M., Hashimoto, S., Hamura, M., & Yokokura, T. (1993). Mechanism for the antihypertensive effect of a polysaccharide-glycopeptide complex from Lactobacillus casei in spontaneously hypertensive rats (SHR). Bioscience, Biotechnology, and Biochemistry, 57, 978-981.
13) Aoyagi, Y., Amamoto, R., Park, S., Honda, Y., Shimamoto, K., Kushiro, A., Tsuji, H., Matsumoto, H., Shimizu, K., Miyazaki, K., Matsubara, S., & Shephard, R. J. (2019). Independent and interactive effects of habitually ingesting fermented milk products containing Lactobacillus casei strain Shirota and of engaging in moderate habitual daily physical activity on the intestinal health of older people. Frontiers in Microbiology, 8, 1477 (1-16).

最近チェックした商品履歴

Loading...