急性白血病診療テキスト エキスパートに学ぶ

出版社: 中外医学社
著者:
発行日: 2020-12-20
分野: 臨床医学:内科  >  血液
ISBN: 9784498225220
電子書籍版: 2020-12-20 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

5,280 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

5,280 円(税込)

商品紹介

抗がん剤治療が奏効しにくく,「不治の病」と見られがちだった急性白血病は近年,新薬などが承認され,その治療法は大きく進歩しつつある.本書では,急性骨髄性白血病・急性リンパ性白血病について,それぞれ前半部分で治療を安全に行うための血液学の基礎医学の知識,後半部分でそれぞれの疾患・病態に対する標準治療をエビデンスに基づき解説.より臨床の現場に即して使いやすいように,レジメンも記載した.

目次

  • I 急性骨髄性白血病

    >A.病態・診断
     1 AML 幹細胞
      A.白血病幹細胞の発見
      B.白血病幹細胞制御と骨髄微小環境
      C.Pre-leukemic stem cells, leukemic stem cells
      D.治療
     2 染色体・遺伝子異常
      A.AML 発症とクローン性進展
      B.AML における染色体異常
      C.AML における遺伝子異常
     3 FAB 分類とWHO 分類
      A.WHO 分類に基づいたAML の病型診断のフローチャート
      B.WHO 分類改訂第4 版における変更点
      C.系統不明の急性白血病
     4 予後分類
      A.急性骨髄性白血病(AML)〔急性前骨髄球性白血病(APL)を除く〕
      B.急性前骨髄球性白血病(APL)

    >B.話題
     1 Predisposition to myeloid neoplasms
      A.分類
      B.臨床像
      C.胚細胞変異の診断および遺伝カウンセリング
      D.臨床的対応
      E.骨髄系腫瘍の発症を相関する代表的な胚細胞変異
     2 クリニカルシークエンスの位置づけ
      A.がん領域におけるクリニカルシークエンスの現状
      B.造血器腫瘍におけるクリニカルシークエンスの実現に向けた動き
      C.造血器腫瘍におけるクリニカルシークエンスの考え方
      D. 遺伝子パネル検査で検出される生殖細胞系列の遺伝子変異への対応
     3 微小残存病変の測定法と意義
      A.微小残存病変の測定法
      B.微小残存病変の臨床意義

    >C.治療
     1 nonAPL の治療(寛解導入療法・地固め療法)
      A.治療戦略
      B.寛解導入療法
      C.シタラビン(Cytarabine: Ara-C)の用量
      D.アントラサイクリン
      E.その他の薬剤の追加
      F.腫瘤形成性AML
      G.2 コース目の寛解導入療法
      H.中枢神経系白血病
      I.地固め療法
     2 急性骨髄性白血病に対する同種造血幹細胞移植の適応
      A.同種HSCT の位置づけ
      B.予後予測因子
      C.第一寛解期の同種HSCT の適応
      D.再発後・非寛解症例への移植の位置づけ
      E.わが国のAML に対する同種HSCT の現状
      F.今後の課題
     3 再発・難治non-APL の治療
      A.急性骨髄性白血病の治療概観
      B.再発・難反応性AML の治療方針
      C.再発・難反応性若年成人AML に対する救援化学療法
     4 高齢者の治療
      A.高齢者acute myeloid leukemia(AML)の特徴
      B.高齢者AML 治療のための層別化
      C.Fit 症例に対する治療
      D.Vulnerable に対する治療
     5 APL の治療(寛解導入療法)
      A.ATRA と化学療法剤の併用(ATRA+化学療法)
      B.ATRA とATO の併用療法(ATRA+ATO)
      C.寛解導入療法の実際
      D.寛解導入療法開始前から開始後の補助療法
      E.副作用と対策
      F.初回耐性
     6 APL の治療(地固め療法)
      A.Ara-C の併用レジメン: JALSG APL204(本邦の標準治療)
      B.ATO とGO の併用レジメン(国内保険適応外): JALSG APL212
      C. ATRA+ATO レジメン(Chemo-free,国内保険適応外):APL0406
     7 APL の治療(維持療法)
      A.ATRA+化学療法型治療における維持療法
      B.ATRA+ATO 型治療
      C.維持療法の治療レジメン
     8 再発APL の治療
      A.治療レジメンと施行上の注意
      B.JALSG APL205R プロトコール
      C.ATO+ATRA 併用プロトコール

    >D.新規薬剤
     1 FLT-3 阻害薬
      A.FLT3 遺伝子変異
      B.治療レジメンと施行上の注意点
     2 AML に対するVenetoclax の有効性
      A.Venetoclax による細胞死誘導のメカニズム
      B.Venetoclax とメチル化阻害薬/シタラビン併用による抗白血病効果の増強
      C.AML に対するvenetoclax based regimen の臨床試験データ
      D.Venetoclax による有害事象の予防・マネジメント
      E.Venetoclax の治療効果を予測するバイオマーカー
      F.Venetoclax に対する耐性機序の解明
     3 ゲムツズマブオゾガマイシン(新規投与法)
      A.初発AML に対するGO 併用化学療法の主な臨床試験成績
      B.初発AML に対するGO 併用化学療法の後方視的解析
      C.初発AML に対するGO 併用療法の反応性の予測

    II 急性リンパ性白血病

    >A.病態・診断
     1 予後分類
      A.従来の予後因子
      B.新しい予後因子
      C.予後因子による同種幹細胞移植の適応

    >B.治療
     1 AYA 世代の治療(寛解導入療法・地固め療法・維持療法)
      A.AYA-ALL におけるリスクの高さ
      B.AYA-ALL の治療
      C.AYA-ALL サバイバーの長期合併症
     2 Over AYA 世代の治療
      A.ALL202-O
      B.Hyper-CVAD/MA 療法
      C.高齢者(65 歳以上)の治療
     3 Ph+ALL の治療
      A.TKI の選択
      B.血液学的効果判定と次の治療開始基準
      C.分子レベルの残存腫瘍量の評価
      D.初回寛解導入療法
      E.強化地固め療法
      F.地固め療法
      G.維持療法
      H.中枢神経系白血病に対する治療
      I.同種移植
      J.移植後治療
      K.分子的再発後の治療
      L.今後の治療法
     4 同種造血幹細胞移植の適応
      A.移植適応決定方法
      B.移植前治療
     5 微小残存病変の測定法と意義
      A.MRD 測定法 (1) 患者特異的免疫グロブリン/T 細胞レセプター
         遺伝子再構成を標的とした定量PCR(IG/TR RQ-PCR)
      B.MRD 測定法 (2) キメラ遺伝子mRNA を対象とした定量RT
        (Reverse Transcriptase)-PCR(qRT-PCR)
      C.微小残存病変測定法 (3) マルチパラメトリックフローサイトメトリー
        (MFC;multi-parametric flow cytometry)
      D.微小残存病変測定検体の採取部位,タイミングについて
      E.成人ALL における微小残存病変測定の意義

    >C.新規薬剤
     1 ブリナツモマブ
      A.ブリナツモマブの構造と作用機序
      B.ブリナツモマブの治療効果
      C.有害事象
      D.今後の課題
     2 イノツズマブオゾガマイシン
      A.イノツズマブオゾガマイシンの構造と作用機序
      B.イノツズマブオゾガマイシンの有効性
      C.イノツズマブオゾガマイシンの有害事象
      D.QOL について
     3 CAR-T 療法
      A.CAR-T 細胞について
      B.CAR-T 療法の工程
      C.B 細胞性腫瘍に対するCAR-T 療法
      D.CD19 CAR-T 療法の副作用
      E.CAR-T 療法の課題

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 急性骨髄性白血病

P.12 掲載の参考文献
1) Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 ; 301 : 527-30.
2) Mccune JM, Namikawa R, Kaneshima H, et al. The SCID-hu mouse : murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 ; 241 : 1632-9.
3) Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994 ; 367 : 645-8.
4) Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995 ; 154 : 180-91.
6) Ito M, Hiramatsu H, Kobayashi K, et al. NOD/SCID/gamma (c) (null) mouse : an excellent recipient mouse model for engraftment of human cells. Blood. 2002 ; 100 : 3175-82.
7) Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005 ; 174 : 6477-89.
8) Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017 ; 129 : 1577-85.
9) Ninomiya M, Abe A, Katsumi A, et al. Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia. 2007 ; 21 : 136-42.
10) Taussig DC, Miraki-moud F, Anjos-afonso F, et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood. 2008 ; 112 : 568-75.
11) Sarry JE, Murphy K, Perry R, et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest. 2011 ; 121 : 384-95.
12) Quek L, Otto GW, Garnett C, et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. J Exp Med. 2016 ; 213 : 1513-35.
13) Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 ; 368 : 2059-74.
15) Kon A, Shih LY, Minamino M, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013 ; 45 : 1232-7.
16) Mazumdar C, Shen Y, Xavy S, et al. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell. 2015 ; 17 : 675-88.
17) Morrison SJ, Spradling AC. Stem cells and niches : mechanisms that promote stem cell maintenance throughout life. Cell. 2008 ; 132 : 598-611.
18) Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003 ; 425 : 841-6.
19) Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006 ; 25 : 977-88.
20) Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012 ; 481 : 457-62.
21) Maryanovich M, Zahalka AH, Pierce H, et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med. 2018 ; 24 : 782-91.
22) Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007 ; 25 : 1315-21.
23) Saito Y, Uchida N, Tanaka S, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol. 2010 ; 28 : 275-80.
24) Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016 ; 22 : 812-21.
25) Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 2014 ; 506 : 240-4.
26) Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell. 2014 ; 15 : 365-75.
27) Kraman M, Bambrough PJ, Arnold JN, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010 ; 330 : 827-30.
28) Costa A, Kieffer Y, Scholer-dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018 ; 33 : 463-79. e10.
29) Yang X, Lin Y, Shi Y, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 2016 ; 76 : 4124-35.
30) Buckanovich RJ, Facciabene A, Kim S, et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med. 2008 ; 14 : 28-36.
31) Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009 ; 113 : 6206-14.
32) Xu C, Gao X, Wei Q, et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun. 2018 ; 9 : 2449.
33) Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019 ; 366.
36) Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014 ; 20 : 1472-8.
37) Saito Y, Mochizuki Y, Ogahara I, et al. Overcoming mutational complexity in acute myeloid leukemia by inhibition of critical pathways. Sci Transl Med. 2017 ; 9.
38) Jaiswal S, Natarajan P, Silver AJ, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017 ; 377 : 111-21.
39) Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene. 2011 ; 30 : 1009-19.
40) Advani R, Flinn I, Popplewell L, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N Engl J Med. 2018 ; 379 : 1711-21.
41) Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014 ; 123 : 2343-54.
42) Kikushige Y, Shima T, Takayanagi S, et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010 ; 7 : 708-17.
43) Irvine DA, Copland M. Targeting hedgehog in hematologic malignancy. Blood. 2012 ; 119 : 2196-204.
44) Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019 ; 33 : 379-89.
P.24 掲載の参考文献
2) Welch JS, Ley TJ, Link DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012 ; 150 : 264-78.
3) Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia : determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010 ; 116 : 354-65.
5) Breems DA, Putten WLJ, Greef GE, et al. Monosomal karyotype in acute myeloid leukemia : a better indicator of poor prognosis than a complex karyotype. J Clinical Oncol Society of Clinical Oncology. 2008 ; 26 : 4791-7.
6) Rucker FG, Schlenk RF, Bullinger L, et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012 ; 119 : 2114-21.
7) Mrozek K, Eisfeld A-K, Kohlschmidt J, et al. Complex karyotype in de novo acute myeloid leukemia : typical and atypical subtypes differ molecularly and clinically. Leukemia. 2019 ; 33 : 1620-34.
8) Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014 ; 28 : 1586-95.
10) Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia : Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020 ; 111 : 312-22.
11) Smith CC, Wang Q, Chin CS, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012 ; 485 : 260-3.
12) McMahon CM, Ferng T, Canaani J, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discovery. 2019 ; 9 : 1050-63.
13) Heath EM, Chan SM, Minden MD, et al. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017 ; 31 : 798-807.
14) Ohlsson E, Schuster MB, Hasemann M, et al. The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia. 2015 ; 30 : 767-75.
15) Gale RE, Lamb K, Allen C, et al. Simpson's paradox and the impact of different DNMT3A mutations on outcome in younger adults with acute myeloid leukemia. J Clin Oncol. 2015 ; 33 : 2072-83.
P.34 掲載の参考文献
1) Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976 ; 33 : 451-8.
2) Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues : report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999 ; 17 : 3835-49.
3) Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia : rationale and important changes. Blood. 2009 ; 114 : 937-51.
5) Swerdlow SH, Campo E, Harris NL, et al. In : Thiele J, et al. Editors. World Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition). Lyon : IARC Press ; 2017.
P.44 掲載の参考文献
1) Kuriyama K, Yoshida S, Imanishi D, et al. [Scoring systems for predicting prognoses of the patients with AML treated according to the Japan Adult Leukemia Study Group (JALSG) protocols]. Rinsho Ketsueki. 1998 ; 39 : 98-102.
2) Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia : a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000 ; 96 : 4075-83.
3) Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML : Analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998 ; 92 : 2322-33.
4) Tallman MS, Wang ES, Altman JK, et al. Acute Myeloid Leukemia, Version 3. 2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019 ; 17 : 721-49.
6) Eisfeld AK, Kohlschmidt J, Mrozek K, et al. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy : an analysis of Alliance studies. Leukemia. 2018 ; 32 : 1338-48.
7) Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 ; 127 : 2391-405. Blood. 2016 ; 128 : 462-3.
8) Sakaguchi M, Yamaguchi H, Najima Y, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018 ; 2 : 2744-54.
9) Kihara R, Nagata Y, Kiyoi H, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014 ; 28 : 1586-95.
11) Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia : recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009 ; 113 : 1875-91.
12) Grimwade D, Biondi A, Mozziconacci MJ, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t (15 ; 17) : results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d'Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". Blood. 2000 ; 96 : 1297-308.
13) Asou N, Adachi K, Tamura J, et al. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. J Clin Oncol. 1998 ; 16 : 78-85.
14) Sanz MA, Lo Coco F, Martin G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia : a joint study of the PETHEMA and GIMEMA cooperative groups. Blood. 2000 ; 96 : 1247-53.
15) Montesinos P, Rayon C, Vellenga E, et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood. 2011 ; 117 : 1799-805.
16) Ades L, Guerci A, Raffoux E, et al. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy : the European APL Group experience. Blood. 2010 ; 115 : 1690-6.
17) Ono T, Takeshita A, Kishimoto Y, et al. Long-term outcome and prognostic factors of elderly patients with acute promyelocytic leukemia. Cancer Sci. 2012 ; 103 : 1974-8.
18) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 ; 110 : 59-66.
19) Kiguchi T. [State-of-the-art treatment of acute promyelocytic leukemia]. Rinsho Ketsueki. 2018 ; 59 : 2007-18.
P.54 掲載の参考文献
1) Peterson LC BCD, Niemeyer CM, Dohner H, et al. Myeloid neoplasms with germline predisposition. WHO Classificaton of Tumors of Haematopoietic and Lymphoid Tissues. Lyon : WHO ; 2017.
2) 南谷泰仁, 著. 胚細胞系列の素因を有する骨髄性腫瘍. In : 木崎昌弘, 田丸淳一, 編. WHO分類改訂第4版による白血病・リンパ腫の病態学. 東京 : 中外医学社 ; 2019. p.133.
3) Churpek JE, Lorenz R, Nedumgottil S, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia & Lymphoma. 2013 ; 54 : 28-35.
7) Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia--a review. Br J Haematol. 2008 ; 140 : 123-32.
8) Godley LA. Inherited predisposition to acute myeloid leukemia. Seminars in hematology. 2014 ; 51 : 306-21.
10) Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nature Genetics. 2015 ; 47 : 535-8.
12) Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nature Genetics. 2016 ; 48 : 792-7.
P.62 掲載の参考文献
1) 厚生労働省. がんゲノム医療推進コンソーシアム懇談会報告書. updated 2017/6/27. Available from : https://www.mhlw.go.jp/stf/shingi2/0000169238.html
2) 厚生労働省. がん対策推進基本計画. updated 2018/3/9. Available from : https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000183313.html
3) 日本血液学会. 造血器腫瘍ゲノム検査ガイドライン 2020年版. Available from : http://www.jshem.or.jp/genomgl/
4) Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0) : a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017 ; 19 : 249-55.
5) 日本医療研究開発機構. 医療現場でのゲノム情報の適切な開示のための体制整備に関する研究 (研究代表者 : 京都大学 小杉眞司) ゲノム医療における情報伝達プロセスに関する提言-その1 : がん遺伝子パネル検査を中心に (改定第2版). updated 2020/1/21. Available from : https://www.amed.go.jp/news/seika/kenkyu/20200121.html
P.71 掲載の参考文献
1) Ossenkoppele G, Schuurhuis GJ. MRD in AML : does it already guide therapy decision-making? Hematol Am Soc Hematol Educ. Progr. 2016 ; 2016 : 356-65.
2) Zeijlemaker W, Kelder A, Cloos J, et al. Immunophenotypic detection of measurable residual (Stem Cell) disease using LAIP approach in acute myeloid leukemia. Curr Protoc Cytom. 2019 ; 91 : e66.
3) Kayser S, Walter RB, Stock W, et al. Minimal residual disease in acute myeloid leukemia--current status and future perspectives. Curr Hematol Malig Rep. 2015 ; 10 : 132-44.
4) Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia : which platforms are ready for "prime time"? Blood. 2014 ; 124 : 3345-55.
5) Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 ; 368 : 2059-74.
6) Grimwade D, Jovanovic JV, Hills RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009 ; 27 : 3650-8.
7) Rucker FG, Agrawal M, Corbacioglu A, et al. Measurable residual disease monitoring in acute myeloid leukemia with t (8 ; 21) (q22 ; q22.1) : results from the AML Study Group. Blood. 2019 ; 134 : 1608-18.
9) Yin JAL, O'Brien MA, Hills RK, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse : results of the United Kingdom MRC AML-15 trial. Blood. 2012 ; 120 : 2826-35.
10) Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia : a European LeukemiaNet study. J Clin Oncol. 2009 ; 27 : 5195-201.
11) Hosen N, Sonoda Y, Oji Y, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms' tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002 ; 116 : 409-20.
12) Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML : a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018 ; 131 : 1275-91.
13) Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N Engl J Med. 2018 ; 378 : 1189-99.
16) Kronke J, Schlenk RF, Jensen K-O, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia : a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011 ; 29 : 2709-16.
17) Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016 ; 374 : 422-33.
18) Forghieri F, Comoli P, Marasca R, et al. Minimal/measurable residual disease monitoring in NPM1-mutated acute myeloid leukemia : a clinical viewpoint and perspectives. Int J Mol Sci. 2018 ; 19 : 3492.
19) Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018 ; 2 : 1356-66.
20) Levis MJ, Perl AE, Altman JK, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018 ; 2 : 825-31.
21) Blatte TJ, Schmalbrock LK, Skambraks S, et al. getITD for FLT3-ITD-based MRD monitoring in AML. Leukemia. 2019 ; 1-5.
22) McMahon CM, Canaani J, Rea B, et al. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 2019 ; 3 : 1581-5.
P.84 掲載の参考文献
1) 日本血液学会. 造血器腫瘍診療ガイドライン 2018年版追補版. 2018. www.jshem.or.jp/gui-hemali/index.html
3) Dillman RO, Davis RB, Green MR, et al. A comparative study of two different doses of cytarabine for acute myeloid leukemia : a phase III trial of Cancer and Leukemia Group B. Blood. 1991 ; 78 : 2520-6.
5) AML Collaborative Group. A systematic collaborative overview of randomized trials comparing idarubicin with daunorubicin (or other anthracyclines) as induction therapy for acute myeloid leukaemia. Br J Haematol. 1998 ; 103 : 100-9.
6) Lee JH, Kim H, Joo YD, et al. Prospective Randomized Comparison of Idarubicin and High-Dose Daunorubicin in Induction Chemotherapy for Newly Diagnosed Acute Myeloid Leukemia. J Clin Oncol. 2017 ; 35 : 2754-63.
7) Weick JK, Kopecky KJ, Appelbaum FR, et al. A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia : a Southwest Oncology Group Study. Blood. 1996 ; 88 : 2841-51.
9) Lee JH, Joo YD, Kim H, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011 ; 118 : 3832-41.
11) Li X, Xu S, Tan Y, et al. The effects of idarubicin versus other anthracyclines for induction therapy of patients with newly diagnosed leukaemia. Cochrane Database Syst Rev. 2015 : Cd010432.
12) Bishop JF, Lowenthal RM, Joshua D, et al. Etoposide in acute nonlymphocytic leukemia. Australian Leukemia Study Group. Blood. 1990 ; 75 : 27-32.
13) Miyawaki S, Tanimoto M, Kobayashi T, et al. No beneficial effect from addition of etoposide to daunorubicin, cytarabine, and 6-mercaptopurine in individualized induction therapy of adult acute myeloid leukemia : the JALSG-AML92 study. Japan Adult Leukemia Study Group. Int J Hematol. 1999 ; 70 : 97-104.
14) Bishop JF, Matthews JP, Young GA, et al. A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood. 1996 ; 87 : 1710-7.
15) Gandhi V, Estey E, Keating MJ, et al. Biochemical modulation of arabinosylcytosine for therapy of leukemias. Leuk Lymphoma. 1993 ; 10 Suppl : 109-14.
16) Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993 ; 11 : 116-24.
17) Gandhi V, Estey E, Du M, et al. Modulation of the cellular metabolism of cytarabine and fludarabine by granulocyte-colony-stimulating factor during therapy of acute myelogenous leukemia. Clin Cancer Res. 1995 ; 1 : 169-78.
19) Holowiecki J, Grosicki S, Giebel S, et al. Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia : a multicenter, randomized phase III study. J Clin Oncol. 2012 ; 30 : 2441-8.
20) Yamauchi K, Yasuda M. Comparison in treatments of nonleukemic granulocytic sarcoma : report of two cases and a review of 72 cases in the literature. Cancer. 2002 ; 94 : 1739-46.
21) Ohtake S, Miyawaki S, Kiyoi H, et al. Randomized trial of response-oriented individualized versus fixed-schedule induction chemotherapy with idarubicin and cytarabine in adult acute myeloid leukemia : the JALSG AML95 study. Int J Hematol. 2010 ; 91 : 276-83.
22) Castagnola C, Nozza A, Corso A, et al. The value of combination therapy in adult acute myeloid leukemia with central nervous system involvement. Haematologica. 1997 ; 82 : 577-80.
23) Rees JK, Gray RG, Swirsky D, et al. Principal results of the Medical Research Council's 8th acute myeloid leukaemia trial. Lancet. 1986 ; 2 : 1236-41.
24) Morrison FS, Kopecky KJ, Head DR, et al. Late intensification with POMP chemotherapy prolongs survival in acute myelogenous leukemia--results of a Southwest Oncology Group study of rubidazone versus adriamycin for remission induction, prophylactic intrathecal therapy, late intensification, and levamisole maintenance. Leukemia. 1992 ; 6 : 708-14.
26) Mayer RJ, Davis RB, Schiffer CA, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med. 1994 ; 331 : 896-903.
27) Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998 ; 58 : 4173-9.
28) Byrd JC, Dodge RK, Carroll A, et al. Patients with t (8 ; 21) (q22 ; q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999 ; 17 : 3767-75.
P.91 掲載の参考文献
1) 栗山一孝, 吉田真一郎, 今西大介, 他. JALSGにおけるAMLの化学療法-スコアリングシステムを用いた予後判定-. 臨床血液. 1998 ; 39 ; 98-102.
2) Sakamaki H, Miyawaki S, Ohtake S, et al. Allogeneic stem cell transplantation versus chemotherapy as post-remission therapy for intermediate or poor risk adult acute myeloid leukemia : results of the JALSG AML97 study. Int J Hematol. 2010 ; 91 : 284-92.
3) Yanada M, Matsuo K, Emi N, et al. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission : a metaanalysis. Cancer. 2005 ; 103 : 1652-8.
5) Kanda J, Saji H, Fukuda T, et al. Related transplantation with HLA-1 Ag mismatch in the GVH direction and HLA-8/8 allele-matched unrelated transplantation : a nationwide retrospective study. Blood. 2012 ; 119 : 2409-16.
6) Gupta V, Tallman MS, He W, et al. Comparable survival after HLA-well- matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010 ; 116 : 1839-48.
7) 日本造血細胞移植学会. 造血細胞移植ガイドライン : 急性骨髄性白血病 (第3版). 2019. https://www.jshct.com/uploads/files/guideline/03_01_aml03.pdf
8) Atsuta Y, Suzuki R, Nagamura-Inoue T, et al. Japan Cord Blood Bank Network. Disease-specific analyses of unrelated cord blood transplantation compared with unrelated bone marrow transplantation in adult patients with acute leukemia. Blood. 2009 ; 113 : 1631-8.
9) Kurosawa S, Yakushijin K, Yamaguchi T, et al. Changes in incidence and causes of non-relapse mortality after allogeneic hematopoietic cell transplantation in patients with acute leukemia/myelodysplastic syndrome : an analysis of the Japan Transplant Outcome Registry. Bone Marrow Transplant. 2013 ; 48 : 529-36.
10) Tachibana T, Kanda J, Ishizaki T, et al. Kanto Study ; Group for Cell Therapy (KSGCT). Prognostic index for patients with relapsed or refractory acute myeloid leukemia who underwent hematopoietic cell transplantation : a KSGCT multicenter analysis. Leukemia. 2019 ; 33 : 2610-8.
11) 日本造血細胞移植データセンター. 日本における造血細胞移植 : 平成30年度全国調査報告書. http://www.jdchct.or.jp/data/report/2018/
P.102 掲載の参考文献
4) NCCN Guidelines. Acute Myeloid Leukemia. version 2, 2020
5) Sarkozy C, Gardin C, Gachard N, et al. Outcome of older patients with acute myeloid leukemia in first relapse. Am J Hematol. 2013 ; 88 : 758-64.
6) Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010 ; 28 : 3730-38.
7) Jabbour E, Daver N, Champlin R, et al. Allogeneic stem cell transplantation as initial salvage for patients with acute myeloid leukemia refractory to high-dose cytarabine-based induction chemotherapy. Am J Hematol. 2014 ; 89 : 395-8.
8) 日本造血細胞移植学会ガイドライン編集委員会, 編. 造血細胞移植学会ガイドライン急性骨髄性白血病 第3版. 2019. p.3. https://www.jshct.com/uploads/files/guideline/03_01_aml03.pdf
9) Roboz GJ, Rosenblat T, Arellano M, et al. International randomized phase III study of elacytarabine versus investigator choice in patients with relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2014 ; 32 : 1919-26.
10) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib significantly prolongs overall survival in patients with FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML) : Results from the Phase III ADMIRAL trial. Proceedings : AACR Annual Meeting 2019 ; Atlanta, GA, USA.
11) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
12) Giles F, Verstovsek S, Garcia-Manero G, et al. Validation of the European Prognostic Index for younger adult patients with acute myeloid leukaemia in first relapse. Br J Haematol. 2006 ; 134 : 58-60.
13) Herzig RH, Lazarus HM, Wolff SN, et al. High-dose cytosine arabinoside therapy with and without anthracycline antibiotics for remission reinduction of acute nonlymphoblastic leukemia. J Clin Oncol. 1985 ; 3 : 992-7.
14) Amadori S, Arcese W, Isacchi G, et al. Mitoxantrone, etoposide, and intermediate-dose cytarabine : an effective and tolerable regimen for the treatment of refractory acute myeloid leukemia. J Clin Oncol. 1991 ; 9 : 1210-4.
15) 森田 (藤田) 真梨, 薮下知宏, 下村良充, 他. 初回寛解導入療法にて完全寛解に至らなかった急性骨髄性白血病に対するMEC療法の治療成績. 臨床血液. 2018 ; 59 : 858-64.
16) Yamamoto C, Ito S, Mashima K, et al. Dose-reduced combination of mitoxantrone, etoposide, and cytarabine (miniMEC) for relapsed and refractory acute leukemia. Leuk Lymphoma. 2016 ; 57 : 2541-7.
17) Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993 ; 11 : 116-24.
18) Yamamoto S, Yamauchi T, Kawai Y, et al. Fludarabine-mediated circumvention of cytarabine resistance is associated with fludarabine triphosphate accumulation in cytarabine-resistant leukemic cells. Int J Hematol. 2007 ; 85 : 108-15.
19) Montillo M, Mirto S, Petti MC, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998 ; 58 : 105-9.
20) Jackson G, Taylor P, Smith GM, et al. A multicentre, open, non-comparative phase II study of a combination of fludarabine phosphate, cytarabine and granulocyte colony-stimulating factor in relapsed and refractory acute myeloid leukaemia and de novo refractory anaemia with excess of blasts in transformation. Br J Haematol. 2001 ; 112 : 127-37.
21) Hatsumi N, Miyawaki S, Yamauchi T, et al. Japan Adult Leukemia Study Group (JALSG). Phase II study of FLAGM (fludarabine+high-dose cytarabine+granulocyte colony-stimulating factor+mitoxantrone) for relapsed or refractory acute myeloid leukemia. Int J Hematol. 2019 ; 109 : 418-25.
P.116 掲載の参考文献
2) Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults : 2017 ELN recommendations from an international expert panel. Blood. 2017 ; 129 : 424-7.
3) Klepin HD. Geriatric perspective : how to assess fitness for chemotherapy in acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2014 ; 2014 : 8-13.
4) Charlson M, Szatrowski TP, Peterson J, et al. Validation of a combined comorbidity index. J Clin Epidemiol. 1994 ; 47 : 1245-51.
6) Wakita A, Ohtake S, Takada S, et al. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia : the JALSG GML200 Study. Int J Hematol. 2012 ; 96 : 84-93.
7) Rowe JM, Neuberg D, Friedenberg W, et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia : a trial by the Eastern Cooperative Oncology Group. Blood. 2004 ; 103 : 479-85.
8) Latagliata R, Breccia M, Fazi P, et al. Liposomal daunorubicin versus standard daunorubicin : long term follow-up of the GIMEMA GSI 103 AMLE randomized trial in patients older than 60 years with acute myelogenous leukaemia. Br J Haematol. 2008 ; 143 : 681-9.
9) Kobayashi T, Miyawaki S, Tanimoto M, et al. Randomized trials between behenoyl cytarabine and cytarabine in combination induction and consolidation therapy, and with or without ubenimex after maintenance/intensification therapy in adult acute myeloid leukemia. The Japan Leukemia Study Group. J Clin Oncol. 1996 ; 14 : 204-13.
10) Cheson BD, Jasperse DM, Simon R, et al. A critical appraisal of low-dose cytosine arabinoside in patients with acute non-lymphocytic leukemia and myelodysplastic syndromes. J Clin Oncol. 1986 ; 4 : 1857-64.
P.124 掲載の参考文献
1) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood 2009 ; 110 : 59-66.
2) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017 ; 35 : 605-12.
3) Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia : recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2019 ; 133 : 1630-43.
4) Takeshita A, Asou N, Atsuta Y, et al. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia : a final result of prospective, randomized, JALSG-APL204 study. Leukemia. 2019 ; 33 : 358-70.
P.140 掲載の参考文献
1) Ades L, Guerci A, Raffoux E, et al. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy : the European APL Group experience. Blood. 2010 ; 115 : 1690-6.
2) Avvisati G, Lo-Coco F, Paoloni FP, et al. AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia : very long-term results and role of maintenance. Blood. 2011 ; 117 : 4716-25.
4) Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia : long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 2002 ; 100 : 4298-302.
5) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 ; 110 : 59-66.
7) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : final results of the Randomized Italian-German APL0406 Trial. J Clin Oncol. 2017 ; 35 : 605-12.
P.153 掲載の参考文献
1) Ono T, Takeshita A, Kishimoto Y, et al. Long-term outcome and prognostic factors of elderly patients with acute promyelocytic leukemia. Cancer Sci. 2012 ; 103 : 1974-8.
2) Takeshita A, Asou N, Atsuta Y, et al. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia : a final result of prospective, randomized, JALSG-APL204 study. Leukemia. 2019 ; 33 : 358-70.
3) Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia : updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019 ; 133 : 1630-43.
4) Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol. 2013 ; 97 : 717-25.
7) Sanford D, Lo-Coco F, Sanz MA, et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol. 2015 ; 171 : 471-7.
8) Wadleigh M, Richardson PG, Zahrieh D, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood. 2003 ; 102 : 1578-82.
9) Chevallier P, Prebet T, Turlure P, et al. Prior treatment with gemtuzumab ozogamicin and the risk of veno-occlusive disease after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2010 ; 45 : 165-70.
10) Battipaglia G, Labopin M, Candoni A, et al. Risk of sinusoidal obstruction syndrome in allogeneic stem cell transplantation after prior gemtuzumab ozogamicin treatment : a retrospective study from the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant. 2017 ; 52 : 592-9.
11) Kernan NA, Grupp S, Smith AR, et al. Final results from a defibrotide treatment-IND study for patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome. Br J Haematol. 2018 ; 181 : 816-27.
12) Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemiawith arsenic trioxide. N Engl J Med. 1998 ; 339 : 1341-8.
14) Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood. 2006 ; 107 : 3469-73.
15) National Comprehensive Cancer Network. Acute Myeloid Leukemia (version 2. 2020). https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf
16) Raffoux E, Rousselot P, Poupon J, et al. Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol. 2003 ; 21 : 2326-34.
17) Breccia M, Cicconi L, Minotti C, et al. Efficacy of prolonged therapy with combined arsenic trioxide and ATRA for relapse of acute promyelocytic leukemia. Haematologica. 2011 ; 96 : 1390-1.
P.159 掲載の参考文献
1) Perl AE, Altman JK, Cortes JE, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia : a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol. 2017 ; 18 : 1061-75.
2) Perl AE, Martinelli G, Cortes JE et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
3) Cortes JE, Khaled S, Martinelli G et al. Quizartinib versus salvage chemotherapy in relapsed or FLT3-ITD acute myeloid leukemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
P.168 掲載の参考文献
1) Miyawaki S. Clinical studies of acute myeloid leukemia in the Japan Adult Leukemia Study Group. Int J Hematol. 2012 ; 96 : 171-7.
2) Leibowitz B, Yu J. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol. Ther. 2010 ; 9 : 417-22.
3) Roberts AW, Huang D. Targeting BCL2 with BH3 mimetics : Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin Pharmacol Ther. 2017 ; 101 : 89-98.
4) Croce CM, Reed JC. Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res. 2016 ; 76 : 5914-20.
5) Thandapani P, Aifantis I. Apoptosis, up the ante. Cancer Cell. 2017 ; 32 : 402-3.
6) Pollyea DA, Stevens BM, Jones CL, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nature Medicine. 2018 ; 24 : 1859-66.
7) DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019 ; 133 : 7-17.
8) Wei AH, Strickland SA Jr, Hou J-Z, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia : Results from a phase Ib/II study. J Clin Oncol. 2019 ; 37 : 1277-84.
9) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
10) Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy : a phase 3 randomized placebo-controlled trial. Blood. 2020 ; 135 : 2137-45.
11) Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016 ; 6 : 1106-17.
12) DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2017 ; 93 : 401-7.
14) Jonas BA, Pollyea DA. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia. 2019 ; 33 : 2795-2804.
15) Chan SM, Thomas D, Corces-Zimmerman MR, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015 ; 21 : 178-84.
16) Pallis M, Burrows F, Ryan J, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017 ; 8 : 16220-32.
17) Dousset C, Maiga S, Gomez-Bougie P, et al. BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma. Br J Haematol. 2016 ; 179 : 684-8.
18) Teh T-C, Nguyen N-Y, Moujalled DM, et al. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia. 2018 ; 32 : 303-12.
19) Guieze R, Liu VM, Rosebrock D, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell. 2019 ; 36 : 369-84. e13.
20) Blombery P, Anderson MA, Gong J-N, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019 ; 9 : 342-53.
21) Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica. 2019 ; 104 : e434-7.
22) Chyla B, Daver N, Doyle K, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. Am J Hematol. 2018 ; 93 : E202-5.
23) Ma J, Zhao S, Qiao X, et al. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia. Clin Cancer Res. 2019 ; 25 : 6815-26.
24) Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018 ; 9 : 5341.
25) Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018 ; 8 : 1582-97.
P.179 掲載の参考文献
1) Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001 ; 19 : 3244-54.
2) Hamann PR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002 ; 13 : 47-58.
3) Naito K, Takeshita A, Shigeno K, et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab ozogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia. 2000 ; 14 : 1436-43.
4) Dowell JA, Korth-Bradley J, Liu H, King SP, et al. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol. 2001 ; 41 : 1206-14.
5) Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005 ; 104 : 1442-52.
6) Kobayashi Y, Tobinai K, Takeshita A, et al. Phase I/II study of humanized anti-CD33 antibody conjugated with calicheamicin, gemtuzumab ozogamicin, in relapsed or refractory acute myeloid leukemia : final results of Japanese multicenter cooperative study. Int J Hematol. 2009 ; 89 : 460-9.
7) Alvarado Y, Tsimberidou A, Kantarjian H, et al. Pilot study of mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother Pharmacol. 2003 ; 51 : 87-90.
8) Stone RM, Moser B, Sanford B, et al ; Cancer and Leukemia Group B. High dose cytarabine plus gemtuzumab ozogamicin for patients with relapsed or refractory acute myeloid leukemia : Cancer and Leukemia Group B study 19902. Leuk Res. 2011 ; 35 : 329-33.
9) Apostolidou E, Cortes J, Tsimberidou A, et al. Pilot study of gemtuzumab ozogamicin, liposomal daunorubicin, cytarabine and cyclosporine regimen in patients with refractory acute myelogenous leukemia. Leuk Res. 2003 ; 27 : 887-91.
10) Tsimberidou A, Estey E, Cortes J, et al. Gemtuzumab, fludarabine, cytarabine, and cyclosporine in patients with newly diagnosed acute myelogenous leukemia or high-risk myelodysplastic syndromes. Cancer. 2003 ; 97 : 1481-7.
11) Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013 ; 121 : 4854-60.
12) Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017 ; 31 : 1855-68.
13) Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin : results of the MRC AML15 trial. J Clin Oncol. 2011 ; 29 : 369-77.
14) Castaigne S, Pautas C, Terre C, et al ; Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701) : a randomised, open-label, phase 3 study. Lancet. 2012 ; 379 : 1508-16.
15) Lambert J, Pautas C, Terre C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia : final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019 ; 104 : 113-9.
16) Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012 ; 30 : 3924-31.
17) Burnett A, Cavenagh J, Russell N, et al. ; UK NCRI AML Study Group. Defining the dose of gemtuzumab ozogamicin in combination with induction chemotherapy in acute myeloid leukemia : a comparison of 3 mg/m2 with 6 mg/m2 in the NCRI AML17 Trial. Haematologica. 2016 ; 101 : 724-31.
19) Delaunay J, Recher C, Pigneux A, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of AML patients with intermediate cytogenetics not eligible for allogeneic transplantation : results of the GOELAMS AML 2006 IR study. Blood. 2011 ; 118 : 37-8.
20) Olombel G, Guerin E, Guy J, et al. The level of blast CD33 expression positively impacts the effect of gemtuzumab ozogamicin in patients with acute myeloid leukemia. Blood. 2016 ; 127 : 2157-60.
21) Khan N, Hills RK, Virgo P, et al. Expression of CD33 is a predictive factor for effect of gemtuzumab ozogamicin at different doses in adult acute myeloid leukaemia. Leukemia. 2017 ; 31 : 1059-68.
22) Lamba JK, Chauhan L, Shin M, et al. CD33 Splicing Polymorphism Determines Gemtuzumab Ozogamicin Response in De Novo Acute Myeloid Leukemia : Report From Randomized Phase III Children's Oncology Group Trial AAML0531. J Clin Oncol. 2017 ; 35 : 2674-82.
23) Gale RE, Popa T, Wright M, et al. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood. 2018 ; 131 : 468-71.

II 急性リンパ性白血病

P.191 掲載の参考文献
1) 日本造血細胞移植学会. 造血幹細胞移植の適応のガイドライン. 2002.
3) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : a phase II study by the Japan Adult Leukemia Study Group. Blood cancer J. 2014 ; 4 : e252.
4) Sakura T, Hayakawa F, Sugiura I, et al. High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia : a phase III study by JALSG. Leukemia. 2017.
5) Nachman JB, La MK, Hunger SP, et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment : a report from the children's oncology group. J Clin Oncol. 2009 ; 27 : 5189-94.
6) Rytting ME, Thomas DA, O'Brien SM, et al. Augmented Berlin-Frankfurt- Munster therapy in adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL). Cancer. 2014. 2014 ; 120 : 3660.
8) Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012 ; 26 : 123-35.
9) Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nature Genetics. 2016 ; 48 : 569-74.
10) Yasuda T, Nishijima D, Kojima S, et al. Genomic and clinical characterization of adult Ph-negative B-cell acute lymphoblastic leukemia. ASH Annual Meeting Abstracts. 2018.
11) Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature Genetics. 2019 ; 51 : 296-307.
12) Hirabayashi S, Ohki K, Nakabayashi K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017 ; 102 : 118-29.
13) Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature Communications. 2016 ; 7 : 13331.
P.205 掲載の参考文献
1) Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015 ; 373 : 1541-52.
2) Stock W, Johnson JL, Stone RM, et al. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia : Results of Cancer and Leukemia Group B Study 19802. Cancer. 2013 ; 119 : 90-8.
3) Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980 s to the early 21st century. Blood. 2009 ; 113 : 1408-11.
4) Trama A, Botta L, Foschi R, et al. Survival of European adolescents and young adults diagnosed with cancer in 2000-07 : population-based data from EUROCARE-5. Lancet Oncol. 2016 ; 17 : 896-906.
5) Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol. 2009 ; 144 : 147-56.
6) Roberts KG. Genetics and prognosis of ALL in children vs adults. Hematol Am Soc Hematol Educ Progr. 2018 ; 2018 : 137-45.
7) Moorman AV, Chilton L, Wilkinson J, et al. A population-based cytogenetic study of adults with acute lymphoblastic leukemia (Blood (2010), 115, 2, (206-214)). Blood. 2010 ; 116 : 1017.
8) Burmeister T, Gokbuget N, Schwartz S, et al. Clinical features and prognostic implications of TCF3-PBX1 and ETV6-RUNX1 in adult acute lymphoblastic leukemia. Haematologica. 2010 ; 95 : 241-6.
9) Charles G. Mullighan, Xiaoping Su, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009 ; 360 : 470-80.
10) Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2015 ; 371 : 1005-15.
11) Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL : A study from the Children's Oncology Group. Blood. 2017 ; 129 : 3352-61.
12) Boer JM, Koenders JE, Van Der Holt B, et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015 ; 100 : e261-4.
13) Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. ASH Educ Progr B. 2016 ; 2016 : 561-6.
14) Suzuki K, Okuno Y, Kawashima N, et al. MEF2D-BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblastic leukemia in adolescents. J Clin Oncol. 2016 ; 34 : 3451-9.
15) Hirabayashi S, Ohki K, Nakabayashi K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017 ; 102 : 118-29.
17) Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005 : A report from the children's oncology group. J Clin Oncol. 2012 ; 30 : 1663-9.
19) Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acutelymphoblastic leukemia treated on cooperative group protocols? A comparison of Children's Cancer Group and Cancer and Leukemia Group B studies. Blood. 2008 ; 112 : 1646-54.
20) Testi AM, Valsecchi MG, Conter V, et al. Difference in outcome of adolescents with acute lymphoblastic leukemia (ALL) enrolled in pediatric (AIEOP) and adult (GIMEMA) protocols. Blood. 2004 ; 104 : 1954.
22) Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia : The GRAALL-2003 study. J Clin Oncol. 2009 ; 27 : 911-8.
24) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : A phase II study by the Japan Adult Leukemia Study Group. Blood Cancer J. 2014 ; 4 : e252-9.
25) Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia : results of CALGB 10403. Blood. 2019 ; 133 : blood-2018-10-881961.
26) Tai E, Buchanan N, Townsend J, et al. Health status of adolescent and young adult cancer survivors. Cancer. 2012 ; 118 : 4884-91.
27) Salvador C, Meister B, Crazzolara R, et al. Management of hypertriglyceridemia in children with acute lymphoblastic leukemia under persistent therapy with glucocorticoids and l-asparaginase during induction chemotherapy. Pediatr Blood Cancer. 2012 ; 59 : 771-1.
28) Vora A. Management of osteonecrosis in children and young adults with acute lymphoblastic leukaemia. Br J Haematol. 2011 ; 155 : 549-60.
29) Smith AW, Keegan T, Hamilton A, et al. Understanding care and outcomes in adolescents and young adult with cancer : A review of the AYA HOPE study. Pediatr Blood Cancer. 2019 ; 66 : 1-7.
30) Zhang Y, Goddard K, Spinelli JJ, et al. Risk of late mortality and second malignant neoplasms among 5-year survivors of young adult cancer : A Report of the Childhood, Adolescent, and Young Adult Cancer Survivors Research Program. J Cancer Epidemiol. 2012 ; 2012 : 1-11.
P.218 掲載の参考文献
1) Kantarjian H, Thomas D, O'Brien, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004 ; 101 : 2788-801.
2) Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and clinical radiotherapy : results of trial ALL-BFM90. Blood. 2000 ; 95 : 3310-22.
3) Alacacioglu I, Medeni SS, Ozsan GH, et al. Is the BFM regimen feasible for the treatment of adult acute lymphoblastic leukemia? A retrospective analysis of the outcomes of BFM and hyper-CVAD chemotherapy in two centers. Chemotherapy. 2014 ; 60 : 219-23.
4) Sancho JM Ribera JM, Oriol A, et al. Central nervous system recurrence in adult patients with acute lymphoblastic leukemia : frequency and prognosis in 467 patients without cranial irradiation for prophylaxis. Cancer. 2006 ; 106 : 2540-6.
5) Shewach DS, Mitchell BS. Differential metabolism of 9-beta-D-arabinofuranosylguanine in human leukemic cells. Cancer Res. 1989 ; 49 : 6498-502.
6) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : a phase II study by the Japan Adult Leukemia Study Group. Blood Cancer J. 2014 ; 4 : e252. (3iiDii)
8) 日本血液学会. 造血器腫瘍診療ガイドライン 2018年版. 東京 : 金原出版 ; 2018.
9) Gokbuget N, Arnold R, Hoelzer D, et al. Treatment of adult ALL according to protocols of the German multicenter study group for adult ALL (GMALL). Hematol Oncol Clin North Am. 2000 ; 14 : 1307-25.
10) Linker C, Damon L, Ries C, Intensified and shortened cyclical chemotherapy for adult acute lymphoblastic leukemia. J Clin Oncol. 2002 ; 20 : 2464-71.
11) Hallbook H, Simonsson B, Ahlgren T, et al. High-dose cytarabine in upfront therapy for adult patients with acute lymphoblastic leukaemia. Br J Haematol. 2002 ; 118 : 748-54.
13) Rowe JM, Buck G, Burnett AK, et al. Induction therapy for adults with acute lymphoblastic leukemia : results of more than 1500 patients from the international ALL trial : MRC UKALL XII/ECOG E2993. Blood. 2005 ; 106 : 3760-7.
14) Gokbuget N, Gokbuget N, MD Arnold R, et al. Improved outcome in high risk and very high risk ALL by risk adapted SCT and in standard risk ALL by intensive chemotherapy in 713 adult ALL patients treated according to the Prospective GMALL Study 07/2003. Blood. 2007 ; 110 : 12.
15) Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia : results of Southwest Oncology Group 9400 study. Blood. 2008 ; 111 : 2563-72.
P.229 掲載の参考文献
1) 杉浦勇. Ph染色体陽性急性リンパ性白血病. In : 日本血液学会, 編. 血液専門医テキスト 改訂第3版. 東京 : 南江堂. 2019. p.310-2.
2) Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAAD for the front-line treatment of adult patients with Philadelphia chromosome positive acuter lymphoblastic leukemia. Haematologica. 2015 ; 100 : 653-6.
4) Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy of patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : a single-center, phase 2 study. Lancet Oncol. 2015 ; 16 : 1547-55.
5) Short NJ, Kantarjian HM, Ravandi F, et al. Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2019 ; 134 (suppl 1), 134.
6) Ravandi F, Othus M, O'Brien SM, et al. US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Advances. 2016 ; 1 : 250-9.
7) Hatta Y, Mizuta S, Matsuo K et al. Final analysis of the JALSG Ph+ALL202 study : tyrosine kinase inhibitor-combined chemotherapy for Ph+ALL. Ann Hematol. 2018 ; 97 : 1535-45.
8) Fujisawa S, Mizuta S, Akiyama H, et al. Phase II study of imatinib-based chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Am J Hematol. 2017 ; 92 : 367-74.
9) 杉浦勇, 土岐典子, 波多智子, 他. 初発Ph+ALLに対するダサチニブ併用二段化学療法の臨床第II相試験JALSG Ph+ALL213. 日本血液学会第81回一般口演 1-12D. 2019.
10) Sugiura I, Doki N, Hata T, et al. Dasatinib-based two-step induction prior to allogeneic hematopoietic cell transplantation for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia : Results of the JALSG Ph+ALL213 Study Blood 2019 ; 134 (suppl 1) : 743.
11) Vignetti M, Fazi P, Cimino G. et al. Blood. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive acute lymphoblastic leukemia patients without additional chemotherapy : results of the GIMEMA LAL0201-B protocol. Blood. 2007 ; 109 : 3676-8.
12) Foa R, Vitale A, Vignetti M. et al. Blood Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011 ; 118 : 6521-8.
13) Martinelli G, Piciocchi A, Papayannidis C, et al. First report of the GIMMEMA LAL1811 phase II prospective study of combination of steroids with ponatinib as frontline therapy of elderly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2017 ; 130 (suppl 1) : 99.
14) Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016 ; 128 : 774-82.
15) Chiaretti S, Bassan R, Vitale A, et al. Dasatinib-blinatumomab combination for the front-line treatment of adult Ph+ALL patients. Updated results of the GIMEMA LAL2116 D-Alba Trial. Blood. 2019 ; 134 suppl 1 : 740.
16) Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to imatinib : interim results of a phase 2 study. Blood. 2007 ; 110 : 2309-15.
18) Kantarjian HM, O'Brien S, Smith TL, et al. Results of treatment with hyper-CVAD, a dose-intensive regime, in adult acute lymphocytic leukemia. J Clin Oncol. 2000 ; 18 : 547-61.
19) Thomas DA, Faderi S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004 ; 103 : 4396-407.
P.239 掲載の参考文献
1) Leonard JT, Hayes-Lattin B. Reduced Intensity Conditioning Allogeneic Hematopoietic Stem Cell Transplantation for Acute Lymphoblastic Leukemia ; Current Evidence, and Improving Outcomes Going Forward. Curr Hematol Malig Rep. 2018 ; 13 : 329-40.
2) Sebban C, Lepage E, Vernant JP, et al. Allogeneic bone marrow transplantation in adult acute lymphoblastic leukemia in first complete remission : a comparative study. French Group of therapy of adult acute lymphoblastic leukemia. J Clin Oncol. 1994 ; 12 : 2580-7.
4) Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients : final results of the International ALL Trial (MRC UKALL ?/ECOG E2993). Blood. 2008 ; 111 : 1827-33.
5) Holowiecki J, Krawczyk-Kulis M, Giebel S, et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br J Haematol. 2008 ; 142 : 227-37.
6) Bruggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006 ; 107 : 1116-23.
7) Gokbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012 ; 120 : 1868-76.
8) Bassan R, Spinelli O, Oldani E, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009 ; 113 : 4153-62.
9) Ribera JM, Oriol A, Morgades M, et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry : final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol. 2014 ; 32 : 1595-604.
11) Nagafuji K, Miyamoto T, Eto T, et al. Prospective evaluation of minimal residual disease monitoring to predict prognosis of adult patients with Ph-negative acute lymphoblastic leukemia. Eur J Haematol. 2019 ; 103 : 164-71.
12) Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome : a genome-wide classification study. Lancet Oncol. 2009 ; 10 : 125-34.
13) Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia : a high-risk subtype in adults. Blood. 2017 ; 129 : 572-81.
14) Beldjord K, Chevret S, Asnafi V, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014 ; 123 : 3739-49.
15) Marks DI, Rowntree C. Management of adults with T-cell lymphoblastic leukemia. Blood. 2017 ; 129 : 1134-42.
16) Secker-Walker LM, Craig JM, Hawkins JM, et al. Philadelphia positive acute lymphoblastic leukemia in adults : age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991 ; 5 : 196-9.
17) Dombret H, Gabert J, Boiron JM, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia--results of the prospective multicenter LALA-94 trial. Blood. 2002 ; 100 : 2357-66.
18) Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era : results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009 ; 113 : 4489-96.
19) Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : a single-centre, phase 2 study. Lancet Oncol. 2015 ; 16 : 1547-55.
20) Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018 ; 5 : e618-27.
21) Tekgunduz E, Kaynar L, Goker H, et al. Retrospective analysis of adult patients with acute lymphoblastic leukemia undergoing allogeneic hematopoietic cell transplantation : A multicenter experience of daily practice. Transfus Apher Sci. 2016 ; 54 : 41-7.
22) Pavlu J, Labopin M, Zoellner AK, et al. Allogeneic hematopoietic cell transplantation for primary refractory acute lymphoblastic leukemia : A report from the Acute Leukemia Working Party of the EBMT. Cancer. 2017 ; 123 : 1965-70.
23) D'Souza A, Fretham C. Current Uses and Outcomes of Hematopoietic Cell Transplantation (HCT) : CIBMTR Summary Slides, 2018. https://www.cibmtr.org
24) 日本造血細胞移植データセンター. 2018年度日本における造血幹細胞移植の実績.
25) Terwey TH, Massenkeil G, Tamm I, et al. Allogeneic SCT in refractory or relapsed adult ALL is effective without prior reinduction chemotherapy. Bone Marrow Transplant. 2008 ; 42 : 791-8.
26) Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR Therapy in acute lymphoblastic leukemia. N Engl J Med. 2018 ; 378 : 449-59.
27) Cornelissen JJ, van der Holt B, Verhoef GE, et al. Myeloablative allogeneic versus autologous stem cell transplantation in adult patients with acute lymphoblastic leukemia in first remission : a prospective sibling donor versus no-donor comparison. Blood. 2009 ; 113 : 1375-82.
28) Marks DI, Wang T, Perez WS, et al. The outcome of full-intensity and reduced-intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood. 2010 ; 116 : 366-74.
29) Tanaka J, Kanamori H, Nishiwaki S, et al. Reduced-intensity vs myeloablative conditioning allogeneic hematopoietic SCT for patients aged over 45 years with ALL in remission : a study from the Adult ALL Working Group of the Japan Society for Hematopoietic Cell Transplantation (JSHCT). Bone Marrow Transplant. 2013 ; 48 : 1389-94.
30) Mohty M, Labopin M, Volin L, et al. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia : a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010 ; 116 : 4439-43.
31) Eom KS, Shin SH, Yoon JH, et al. Comparable long-term outcomes after reduced-intensity conditioning versus myeloablative conditioning allogeneic stem cell transplantation for adult high-risk acute lymphoblastic leukemia in complete remission. Am J Hematol. 2013 ; 88 : 634-41.
32) Ram R, Storb R, Sandmaier BM, et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica. 2011 ; 96 : 1113-20.
33) Pavlu J, Labopin M, Niittyvuopio R, et al. Measurable residual disease at myeloablative allogeneic transplantation in adults with acute lymphoblastic leukemia : a retrospective registry study on 2780 patients from the acute leukemia working party of the EBMT. J Hematol Oncol. 2019 ; 12 : 108.
34) Mitsuhashi K, Kako S, Shigematsu A, et al. Comparison of cyclophosphamide combined with total body irradiation, Oral busulfan, or intravenous busulfan for allogeneic hematopoietic cell transplantation in adults with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2016 ; 22 : 2194-200.
35) Kebriaei P, Anasetti C, Zhang MJ, et al. Intravenous busulfan compared with total body irradiation pretransplant conditioning for adults with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018 ; 24 : 726-33.
P.253 掲載の参考文献
1) Van Dongen JJM, Van Der Velden VHJ, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia : Need for sensitive, fast, and standardized technologies. Blood. 2015 ; 125 : 3996-4009.
2) van Dongen JJM, van der Velden VHJ, Bruggemann M, et al. Minimal Residual Disease (MRD) Diagnostics : Methodology and Prognostic Significance. In : Childhood Acute Lymphoblastic Leukemia [Internet]. Cham : Springer International Publishing ; 2017 [cited 2020 Jan 14]. p.139-62. Available from : http://link.springer.com/10.1007/978-3-319-39708-5_6
3) Szczepa?ski T, Beishuizen A, Pongers-Willemse MJ, et al. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias : Alternative PCR targets for detection of minimal residual disease. Leukemia. 1999 ; 13 : 196-205.
4) Szczepa?ski T, Pongers-Willemse MJ, Langerak AW, et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor αβ lineage. Blood. 1999 ; 93 : 4079-85.
5) van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements : Guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007 ; 21 : 604-11.
6) Bruggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006 ; 107 : 1116-23.
7) Szczepanski T, Szczepa?ski S, Willemse MJ, et al. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease [Internet]. 2002 [cited 2020 Jan 13]. Available from : http://www.mrc-cpe.cam.ac.uk/imt-doc/
8) Szczepanski T, van der Velden VHJ, Raff T, et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurence of second T-ALL. Vol. 17, Leukemia. Nature Publishing Group ; 2003. p.2149-56.
9) Gabert J, Beillard E, van der Velden VHJ, et al. Standardization and quality control studies of"real time"quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-A Europe Against Cancer Program. Vol. 17, Leukemia. Nature Publishing Group ; 2003. p.2318-57.
10) Della Starza I, Chiaretti S, De Propris MS, et al. Minimal residual disease in acute lymphoblastic leukemia : Technical and clinical advances. Front Oncol. 2019 ; 9 : 726.
11) Burmeister T, Marschalek R, Schneider B, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006 ; 20 : 451-7.
12) Pfeifer H, Cazzaniga G, van der Velden VHJ, Cayuela JM, Schafer B, Spinelli O, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019 ; 33 : 1910-22.
13) Denys B, Van Der Sluijs-Gelling AJ, Homburg C, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia. 2013 ; 27 : 635-41.
14) Theunissen P, Mejstrikova E, Sedek L, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017 ; 129 : 347-57.
15) Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Vol. 17, The Lancet Oncology. Lancet Publishing Group ; 2016. p. e328-46.
16) van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia. 2002 ; 16 : 1432-6.
17) Coustan-Smith E, Sancho J, Hancock ML, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood. 2002 ; 100 : 2399-402.
18) Bruggemann M, Gokbuget N, Kneba M. Acute lymphoblastic leukemia : Monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012 ; 39 : 47-57.
19) Bruggemann M, Kotrova M. Minimal residual disease in adult ALL : technical aspects and implications for correct clinical interpretation. Blood Adv. 2017 ; 1 : 2456-66.
20) Gokbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012 ; 120 : 1868-76.
21) Dhedin N, Huynh A, Maury S, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015 ; 125 : 2486-96.
22) Ravandi F, Jorgensen JL, O'Brien SM, et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol [Internet]. 2016 Feb [cited 2020 Jan 25] ; 172 (3) : 392-400. Available from : http://doi.wiley.com/10.1111/bjh.13834
23) Lee S, Kim DW, Cho BS, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012 ; 26 : 2367-74.
24) Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018 ; 5 : e618-27.
25) Short N. Long-Term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. ASH ; 2019.
26) Hovorkova L, Zaliova M, Venn NC, et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood. 2017 ; 129 : 2771-81.
27) Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018 ; 131 : 1522-31.
28) Goekbuget N, Dombret H, Zugmaier G, et al. Blinatumomab for minimal residual disease (mrd) in adults with bcell precursor acute lymphoblastic leukemia (bcpall) : median overall survival (os) not reached at 5 years for complete mrd responders. Hema Sphere. 2019 ; 3 : 747-8.
P.267 掲載の参考文献
1) Pui CH, Mullighan CG, Evans WE, et al. Pediatric acute lymphoblastic leukemia : Where are we going and how do we get there? Blood. 2012 ; 120 : 1165-74.
2) Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011 ; 29 : 532-43.
3) Hoelzer D. Novel antibody-based therapies for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2011 ; 2011 : 243-9.
4) Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016 ; 13 : 25-40.
5) Bargou R, Leo E, Zugmaier G, et al. Tumor Regression in Cancer of a T Cell-Engaging Antibody. Science. 2008 ; 3 : 974-8.
6) Nagorsen D, Kufer P, Baeuerle PA, et al. Blinatumomab : A historical perspective. Pharmacol Ther. 2012 ; 136 : 334-42.
7) Topp MS, Gokbuget N, Zugmaier G, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014 ; 32 : 4134-40.
8) Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015 ; 126 : 2578-84.
9) Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia : A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015 ; 16 : 57-66.
11) Fielding AK. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults : a broader range of options, improved outcomes, and more therapeutic dilemmas. Am Soc Clin Oncol Educ B. 2015 ; e352-9.
12) Zabriskie MS, Eide CA, Tantravahi SK, et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014 ; 26 : 428-42.
13) Martinelli G, Boissel N, Chevallier P, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab : Results from a phase II, Single-Arm, Multicenter Study. J Clin Oncol. 2017 ; 35 : 1795-802.
14) Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011 ; 29 : 2493-8.
15) Topp MS, Gokbuget N, Zugmaier G, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012 ; 120 : 5185-7.
16) Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018 ; 131 : 1522-31.
18) Zugmaier G, Topp MS, Alekar S, et al. Long-term follow-up of serum immunoglobulin levels in blinatumomab-treated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014 ; 4 : 4-7.
19) Duell J, Dittrich M, Bedke T, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017 ; 31 : 2181-90.
20) Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017 ; 129 : 100-4.
21) Kohnke T, Krupka C, Tischer J, et al. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015 ; 8 : 111.
22) Feucht J, Kayser S, Gorodezki D, et al. T-cell responses against CD19+pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016 ; 7 : 76902-19.
23) Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012 ; 119 : 6226-33.
24) Moore PA, Zhang W, Rainey GJ, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011 ; 117 : 4542-51.
25) Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015 ; 125 : 4024-31.
P.277 掲載の参考文献
1) Jabbour E, O'Brien S, Konopleva M, et al. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. 2015 ; 121 : 2517-28.
2) Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era : results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009 ; 113 : 4489-96.
4) Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012 ; 120 : 2032-41.
6) O'Brien S, Thomas D, Ravandi F, et al. Outcome of adults with acute lymphocytic leukemia after second salvage therapy. Cancer. 2008 ; 113 : 3186-91.
7) Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017 ; 376 : 836-47.
9) Tedder TF, Tuscano J, Sato S, et al. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997 ; 15 : 481-504.
10) George B, Kantarjian H, Jabbour E, et al. Role of inotuzumab ozogamicin in the treatment of relapsed/refractory acute lymphoblastic leukemia. Immunotherapy. 2016 ; 8 : 135-43.
11) Shah NN, Stevenson MS, Yuan CM, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015 ; 62 : 964-9.
12) Thota S, Advani A. Inotuzumab ozogamicin in relapsed B-cell acute lymphoblastic leukemia. Eur J Haematol. 2017 ; 98 : 425-34.
15) Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia : Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019 ; 125 : 2474-87.
16) Jabbour E, O'Brien S, Huang X, et al. Prognostic factors for outcome in patients with refractory and relapsed acute lymphocytic leukemia treated with inotuzumab ozogamicin, a CD22 monoclonal antibody. Am J Hematol. 2015 ; 90 : 193-6.
17) McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation : a cohort study of 355 patients. Ann Int Med. 1993 ; 118 : 255-67.
18) Coppell JA, Richardson PG, Soiffer R, et al. Hepatic veno-occlusive disease following stem cell transplantation : incidence, clinical course, and outcome. Biol Blood Marrow Transplant. 2010 ; 16 : 157-68.
19) Faioni EM, Mannucci PM. Venocclusive disease of the liver after bone marrow transplantation : the role of hemostasis. Leukemia & Lymphoma. 1997 ; 25 : 233-45.
20) Jones RJ, Lee KS, Beschorner WE, et al. Venoocclusive disease of the liver following bone marrow transplantation. Transplantation. 1987 ; 44 : 778-83.
21) Mohty M, Malard F, Abecassis M, et al. Sinusoidal obstruction syndrome/veno-occlusive disease : current situation and perspectives-a position statement from the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2015 ; 50 : 781-9.
22) Kantarjian HM, DeAngelo DJ, Advani AS, et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia : results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol. 2017 ; 4 : e387-e398.
23) Rajvanshi P, Shulman HM, Sievers EL, et al. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood. 2002 ; 99 : 2310-4.
25) Kantarjian HM, Su Y, Jabbour EJ, et al. Patient-reported outcomes from a phase 3 randomized controlled trial of inotuzumab ozogamicin versus standard therapy for relapsed/refractory acute lymphoblastic leukemia. Cancer. 2018 ; 124 : 2151-60.
P.289 掲載の参考文献
1) June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018 ; 379 : 64-73.
2) Boyiadzis MM, Dhodapkar MV, Brentjens RJ, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies : clinical perspective and significance. J Immunother Cancer. 2018 ; 6 : 137.
3) Klebanoff CA, Yamamoto TN, Restifo NP. Immunotherapy : Treatment of aggressive lymphomas with anti-CD19 CAR T cells. Nat Rev Clin Oncol. 2014 ; 11 : 685-6.
4) Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018 ; 378 : 439-48.
5) Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017 ; 377 : 2531-44.
6) Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1) : a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019 ; 20 : 31-42.
7) Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017 ; 377 : 2545-54.
8) Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity : Mechanisms, manifestations and management. Blood Rev. 2019 ; 34 : 45-55.
9) Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018 ; 24 : 739-48.
10) Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019 ; 25 : 625-38.
11) Barrett DM, Singh N, Liu X, et al. Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy. 2014 ; 16 : 619-30.
12) Gattinoni L, Lugli E, Ji Y, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011 ; 17 : 1290-7.
13) Kagoya Y, Tanaka S, Guo T, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 2018 ; 24 : 352-9.
14) Ying Z, Huang XF, Xiang X, et al. A safe and potent anti-CD19 CAR T cell therapy Nat Med. 2019 ; 25 : 947-53.
15) Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018 ; 24 : 563-71.
16) Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018 ; 558 : 307-12.
17) Chen J, Lopez-Moyado IF, Seo H, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019 ; 567 : 530-4.
18) Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016 ; 354 : 1160-5.
19) Ghoneim HE, Fan Y, Moustaki A, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017 ; 170 : 142-57.
20) Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018 ; 24 : 20-8.
21) Shah NN, Maatman T, Hari P. Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol. 2019 ; 9 : 146.

最近チェックした商品履歴

Loading...