日本臨牀 78/増刊7 原発性免疫不全症候群

出版社: 日本臨牀社
発行日: 2020-12-31
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: 原発性免疫不全症候群
電子書籍版: 2020-12-31 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

19,800 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

19,800 円(税込)

目次

  • 特集 原発性免疫不全症候群
       ―最新の疾患分類と新規疾患を中心に―

    序文

    I.原発性免疫不全症候群総論
     1.原発性免疫不全症候群:総論

    II.原発性免疫不全症候群:研究の進歩
     1.責任遺伝子探索
     2.保険収載で実施可能な責任遺伝子解析
     3.新生児スクリーニング
     4.胚細胞異常による免疫不全症を素地とする悪性腫瘍

    III.複合免疫不全症(細胞免疫及び液性免疫の異常)
     1.概論およびトピックス
     2.T-B+重症複合免疫不全症(SCID)
     3.T-B-重症複合免疫不全症(SCID)
     4.SCIDよりも軽症な複合免疫不全症

    IV.免疫系以外の症状を呈する、あるいは症候群を呈する複合免疫不全症
     1.概論およびトピックス
     2.Immunodeficiency with Congenital Thrombocytopenia
     3.DNA修復障害(III.複合免疫不全症に記載されたもの以外)
     4.奇形を伴う胸腺欠損症
     5.免疫骨形成異常
     6.免疫不全を伴う無汗性外胚葉形成異常症(EDA-ID)
     7.Other Defects

    V.抗体産生不全を主とする疾患
     1.概論およびトピックス
     2.B細胞欠如あるいは著明な低下を伴い,
       すべての血清免疫グロブリンのアイソタイプの著明な低下を示すもの
     3.B細胞数正常か低下を伴い,
       少なくとも2種類の血清免疫グロブリンのアイソタイプの著明な低下を示すもの

    VI.免疫調節障害
     1.概論及びトピックス
     2.家族性血球貪食性リンパ組織球(FHL)症候群
     3.Regulatory T Cell Defects
      (1)CD122 (インターロイキン-2受容体β鎖)欠損症
     4.Autoimmunity with or without lymphoproliferation
     5.大腸炎を伴う免疫調節不全
     6.Susceptibility to EBV and Lymphoproliferative Conditions

    VII.食細胞(数あるいは機能)異常症
     1.概論およびトピックス
     2.先天性好中球減少症
     3.好中球運動能の障害
     4.Defects of Respiratory Burst
      (1)グルコース-6-リン酸脱水素酵素(G6PD)欠損症 classⅠ

    VIII.内因性あるいは自然免疫の異常
     1.概論およびトピックス
     2.メンデル遺伝型マイコバクテリア易感染疾患
     3.Epidermodysplasia verruciformis (HPV)
     4.重症ウイルス感染症易感染疾患(Predisposition to severe viral infection)
     5.単純ヘルペス脳炎(HSE)
     6.慢性皮膚粘膜カンジダ症易感染疾患(Chronic mucocutaneous candidiasis)
     7.TLR Signaling Pathway Deficiency with Bacterial Susceptibility
     8. Other Inborn Errors of Immunity Related to Non-Hematopoietic Tissues
     9.Other Inborn Errors of Immunity Related to Leukocytes

    IX.自己炎症性疾患
     1.概論およびトピックス
     2.Type 1 Interferonopathies
     3.インフラマソームに影響する異常
     4.インフラマソームに関連しない状態

    X.補体異常症
     1.概論およびトピックス
     2.補体成分の欠損症

    XI.骨髄不全
     1.概論およびトピックス
     2.骨髄不全

    XII.原発性免疫不全症候群を模倣する疾患
     1.概論およびトピックス
     2.後天的な遺伝子変異(体細胞突然変異)による疾患
     3.後天的な自己抗体産生による疾患

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序文

P.8 掲載の参考文献
1) Fischer A, Rausell A : Primary immunodeficiencies suggest redundancy within the human immune system. Sci Immunol 1 : eaah5861, 2016.
2) Picard C, et al : International Union of Immunological Societies : 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38 : 96-128, 2018.
3) Bousfiha A, et al : The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 38 : 129-143, 2018.
4) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
5) Bousfiha A, et al : Human Inborn Errors of Immunity : 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 40 : 66-81, 2020.

I 原発性免疫不全症候群総論

P.18 掲載の参考文献
1) Picard C, et al : International Union of Immunological Societies : 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38 : 96-128, 2018.
2) Bousfiha A, et al : The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 38 : 129-143, 2018.
3) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
4) Bousfiha A, et al : Human Inborn Errors of Immunity : 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 40 : 66-81, 2020.
5) Shearer WT, Fischer A : The last 80 years in primary immunodeficiency : How far have we come, how far need we go? J Allergy Clin Immunol 117 : 748-758, 2006.

II 原発性免疫不全症候群 : 研究の進歩

P.26 掲載の参考文献
1) Meyts I, et al : Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 138 : 957-969, 2016.
2) Tangye SG, et al : Correction to : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 65, 2020.
3) Valerio D, et al : One adenosine deaminase allele in a patient with severe combined immunodeficiency contains a point mutation abolishing enzyme activity. EMBO J 5 : 113-119, 1986.
4) Heimall JR, et al : Use of Genetic Testing for Primary Immunodeficiency Patients. J Clin Immunol 38 : 320-329, 2018.
5) Chinen J, et al : Practical approach to genetic testing for primary immunodeficiencies. Ann Allergy Asthma Immunol 123 : 433-439, 2019.
6) Choi M, et al : Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 106 : 19096-19101, 2009.
8) Kalia SS, et al : Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0) : a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19 : 249-255, 2017.
P.33 掲載の参考文献
2) Casanova JL, Abel L : Primary immunodeficiencies : a field in its infancy. Science 317 : 617-619, 2007.
3) Subbarayan A, et al : Clinical features that identify children with primary immunodeficiency diseases. Pediatrics 127 : 810-816, 2011.
4) Morinishi Y, et al : Identification of severe combined immunodeficiency by T-cell receptor excision circles quantification using neonatal Guthrie cards. J Pediatr 155 : 829-833, 2009.
5) Dorsey MJ, Puck JM : Newborn Screening for Severe Combined Immunodeficiency in the United States : Lessons Learned. Immunol Allergy Clin North Am 39 : 1-11, 2019.
6) Locke BA, et al : Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol 46 : 154-168, 2014.
7) Izawa K, et al : Detection of base substitution-type somatic mosaicism of the NLRP3 gene with > 99.9% statistical confidence by massively parallel sequencing. DNA Res 19 : 143-152, 2012.
8) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
P.40 掲載の参考文献
1) Wilson JM, Jungner G : Principles and practice of screening for disease. Bulletin of the World Health Organization 34 : 26-27, 1968.
2) Pai SY, et al : Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med 371 : 434-446, 2014.
3) Bruton OC : Agammaglobulinemia. Pediatrics 9 : 722-728, 1952.
5) Vetrie D, et al : The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361 : 226-233, 1993.
6) Chan K, Puck JM : Development of population-based newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 115 : 391-398, 2005.
7) Morinishi Y, et al : Identification of severe combined immunodeficiency by T-cell receptor excision circles quantification using neonatal guthrie cards. J Pediatr 155 : 829-833, 2009.
8) Hoshino A, et al : Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 140 : 223-231, 2017.
9) Nakagawa N, et al : Quantification of κ-deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. J Allergy Clin Immunol 128 : 223-225.e2, 2011.
10) Kamae C, et al : Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin κ-deleting recombination excision circles. J Allergy Clin Immunol 131 : 1437-1440.e5, 2013.
11) Nakatani K, et al : Cord blood transplantation is associated with rapid B-cell neogenesis compared with BM transplantation. Bone Marrow Transplant 49 : 1155-1161, 2014.
12) Baker MW, et al : Development of a routine newborn screening protocol for severe combined immunodeficiency. J Allergy Clin Immunol 124 : 522-527, 2009.
13) Kwan A, et al : Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 312 : 729-738, 2014.
14) Dorsey MJ, et al : Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol 139 : 733-742, 2017.
15) Chien YH, et al : Newborn Screening for Severe Combined Immunodeficiency in Taiwan. Int J Neonatal Screen 3 : 16, 2017.
16) Clement MC, et al : Systematic neonatal screening for severe combined immunodeficiency and severe T-cell lymphopenia : Analysis of cost-effectiveness based on French real field data. J Allergy Clin Immunol 135 : 1589-1593, 2015.
17) de Felipe B, et al : Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol 27 : 70-77, 2016.
18) Barbaro M, et al : Newborn Screening for Severe Primary Immunodeficiency Diseases in Sweden-a 2-Year Pilot TREC and KREC Screening Study. J Clin Immunol 37 : 51-60, 2017.
20) Blom M, et al : An evaluation of the TREC assay with regard to the integration of SCID screening into the Dutch newborn screening program. Clin Immunol 180 : 106-110, 2017,
21) Tagliaferri L, et al : Newborn screening for severe combined immunodeficiency using a novel and simplified method to measure T-cell excision circles (TREC). Clin Immunol 175 : 51-55, 2017.
22) Truck J, et al : Swiss newborn screening for severe T and B cell deficiency with a combined TREC/KREC assay-management recommendations. Swiss Med Wkly 150 : w20254, 2020.
23) Strand J, et al : Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front Immunol 11 : 1417, 2020.
24) Korsunskiy I, et al : Expanding TREC and KREC Utility in Primary Immunodeficiency Diseases Diagnosis. Front Immunol 11 : 320, 2020.
25) Mandola AB, et al : Ataxia Telangiectasia Diagnosed on Newborn Screening-Case Cohort of 5 Years' Experience. Front Immunol 10 : 2940, 2019.
26) Somech R, et al : Newborn screening for severe T and B cell immunodeficiency in Israel : a pilot study. Isr Med Assoc J 15 : 404-409, 2013.
27) Nourizadeh M, et al : Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran. Scand J Immunol 88 : e12699, 2018.
28) Al-Mousa H, et al : High Incidence of Severe Combined Immunodeficiency Disease in Saudi Arabia Detected Through Combined T Cell Receptor Excision Circle and Next Generation Sequencing of Newborn Dried Blood Spots. Front Immunol 9 : 782, 2018.
29) Kanegae MP, et al : Neonatal screening for severe combined immunodeficiency in Brazil. J Pediatr (Rio J) 92 : 374-380, 2016.
30) Madkaikar M, et al : Guidelines for Screening, Early Diagnosis and Management of Severe Combined Immunodeficiency (SCID) in India. Indian J Pediatr 83 : 455-462, 2016.
31) Kanegane H, et al : Successful bone marrow transplantation with reduced intensity conditioning in a patient with delayed-onset adenosine deaminase deficiency. Pediatr Transplant 17 : E29-32, 2013.
32) la Marca G, et al : Tandem mass spectrometry, but not T-cell receptor excision circle analysis, identifies newborns with late-onset adenosine deaminase deficiency. J Allergy Clin Immunol 131 : 1604-1610, 2013.
34) Adams SP, et al : Screening of neonatal UK dried blood spots using a duplex TREC screening assay. J Clin Immunol 34 : 323-330, 2014.
35) 小島大英, ほか : TREC定量解析による重症複合免疫不全症に対する新生児マススクリーニング-愛知県におけるオプショナルスクリーニング. 日本マススクリーニング学会誌 29 : 39-50, 2019.
P.47 掲載の参考文献
1) Kiykim A, et al : Malignancy and lymphoid proliferation in primary immune deficiencies ; hard to define, hard to treat. Pediatr Blood Cancer 67 : e28091, 2020.
3) Jonkman-Berk BM, et al : Primary immunodeficiencies in the Netherlands : national patient data demonstrate the increased risk of malignancy. Clin Immunol 156 : 154-162, 2015.
4) Hauck F, et al : Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol 141 : 59-68.e4, 2018.
5) Cotelingam JD, et al : Malignant lymphoma in patients with the Wiskott-Aldrich syndrome. Cancer Invest 3 : 515-522, 1985.
6) Kroft SH, et al : Follicular large cell lymphoma with immunoblastic features in a child with Wiskott-Aldrich syndrome : an unusual immunodeficiency-related neoplasm not associated with Epstein-Barr virus. Am J Clin Pathol 110 : 95-99, 1998.
8) Menotti M, et al : Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med 25 : 130-140, 2019.
10) Taylor AM, et al : Leukemia and lymphoma in ataxia telangiectasia. Blood 87 : 423-438, 1996.
11) Sandoval C, Swift M : Hodgkin disease in ataxia-telangiectasia patients with poor outcomes. Med Pediatr Oncol 40 : 162-166, 2003.
12) Morrell D, et al : Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 77 : 89-92, 1986.
13) Swift M, et al : Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316 : 1289-1294, 1987.
14) Nijmegen breakage syndrome. The International Nijmegen Breakage Syndrome Study Group. Arch Dis Child 82 : 400-406, 2000.
15) Wolska-Kusnierz B, et al : Nijmegen Breakage Syndrome : Clinical and Immunological Features, Long-Term Outcome and Treatment Options-a Retrospective Analysis. J Clin Immunol 35 : 538-549, 2015.
16) Coulter TI, et al : Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome : A large patient cohort study. J Allergy Clin Immunol 139 : 597-606.e4, 2017.
17) Elkaim E, et al : Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2 : A cohort study. J Allergy Clin Immunol 138 : 210-218.e9, 2016.
21) Wlodarski MW, et al : Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 127 : 1387-1397 ; quiz 1518, 2016.
22) Narumi S, et al : SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48 : 792-797, 2016.
25) Schwartz JR, et al : The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun 8 : 1557, 2017.
26) Hoshino A, et al : Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 140 : 223-231, 2017.
27) Boutboul D, et al : Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 128 : 3071-3087, 2018.
29) Alter BP : Cancer in Fanconi anemia, 1927-2001. Cancer 97 : 425-440, 2003.
30) Rosenberg PS, et al : Cancer incidence in persons with Fanconi anemia. Blood 101 : 822-826, 2003.
33) Bellanne-Chantelot C, et al : Mutations in the ELA2 gene correlate with more severe expression of neutropenia : a study of 81 patients from the French Neutropenia Register. Blood 103 : 4119-4125, 2004.
34) Rosenberg PS, et al : The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107 : 4628-4635, 2006.

III 複合免疫不全症 ( 細胞免疫および液性免疫の異常 )

P.55 掲載の参考文献
1) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
2) Bousfiha A, et al : Human Inborn Errors of Immunity : 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 40 : 66-81, 2020.
3) Puck JM : Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. Immunol Rev 287 : 241-252, 2019.
5) Cirillo E, et al : Severe combined immunodeficiency-an update. Ann N Y Acad Sci 1356 : 90-106, 2015.
6) Walter JE, et al : Autoimmunity as a continuum in primary immunodeficiency. Curr Opin Pediatr 31 : 851-862, 2019.
7) Lougaris V, et al : A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143 : 1649-1653.e3, 2019.
8) Roussel L, et al : Loss of human ICOSL results in combined immunodeficiency. J Exp Med 215 : 3151-3164, 2018.
9) Hoshino A, et al : Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 140 : 223-231, 2017.
10) Boutboul D, et al : Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 128 : 3071-3087, 2018.
11) Conde CD, et al : Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. J Clin Invest 129 : 4194-4206, 2019.
12) Badran YR, et al : Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 214 : 1937-1947, 2017.
13) Comrie WA, et al : RELA haploinsufficiency in CD4 lymphoproliferative disease with autoimmune cytopenias. J Allergy Clin Immunol 141 : 1507-1510. e8, 2018.
14) Beaussant-Cohen S, et al : Combined immunodeficiency in a patient with c-Rel deficiency. J Allergy Clin Immunol 144 : 606-608.e4, 2019.
15) Calzoni E, et al : F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. J Allergy Clin Immunol 143 : 2317-2321.e12, 2019.
P.59 掲載の参考文献
1) Bacchelli C, et al : Mutations in linker for activation of T cells (LAT) lead to a novel form of severe combined immunodeficiency. J Allergy Clin Immunol 139 : 634-642.e5, 2017.
2) Keller B, et al : Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med 213 : 1185-1199, 2016.
3) Windpassinger C, et al : Chromosomal localization and genomic organization of the human Linker for Activation of T cells (LAT) gene. Cytogenet Genome Res 97 : 155-157, 2002.
4) Facchetti F, et al : Linker for activation of T cells (LAT), a novel immunohistochemical marker for T cells, NK cells, mast cells, and megakaryocytes : evaluation in normal and pathological conditions. Am J Pathol 154 : 1037-1046, 1999.
6) Ou-Yang CW, et al : Role of LAT in the granule-mediated cytotoxicity of CD8 T cells. Mol Cell Biol 32 : 2674-2684, 2012.
7) Roncagalli R, et al : LAT signaling pathology : an "autoimmune" condition without T cell self-reactivity. Trends Immunol 31 : 253-259, 2010.
8) Malissen B, et al : Integrative biology of T cell activation. Nat Immunol 15 : 790-797, 2014.
P.63 掲載の参考文献
1) Lougaris V, et al : A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143 : 1649-1653.e3, 2019.
2) Hsu AP, et al : Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133 : 1977-1988, 2019.
3) Sharapova SO, et al : Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205 : 1-5, 2019.
4) Lagresle-Peyrou C, et al : A gain-of-function RAC2 mutation is associated with bone-marrow hypoplasia and an autosomal dominant form of severe combined immunodeficiency. Haematologica, 2020. (DOI : 10.3324/haematol.2019.230250)
6) Williams DA, et al : Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96 : 1646-1654, 2000.
8) Accetta D, et al : Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol 127 : 535-538.e1-2, 2011.
9) Alkhairy OK, et al : RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol 135 : 1380-1384.e1-5, 2015.
10) Olson MF : Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 9 : 203-215, 2018.
11) Mulloy JC, et al : Rho GTPases in hematopoiesis and hemopathies. Blood 115 : 936-947, 2010.
12) Nayak RC, et al : Rho GTPases control specific cytoskeleton-dependent functions of hematopoietic stem cells. Immunol Rev 256 : 255-268, 2013.
P.66 掲載の参考文献
1) Nurieva RI, et al : B7h is required for T cell activation, differentiation, and effector function. Proc Natl Acad Sci USA 100 : 14163-14168, 2003.
2) Roussel L, et al : Loss of human ICOSL results in combined immunodeficiency. J Exp Med 215 : 3151-3164, 2018.
3) Grimbacher B, et al : Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4 : 261-268, 2003.
4) Schepp J, et al : 14 Years after Discovery : Clinical Follow-up on 15 Patients with Inducible Co-Stimulator Deficiency. Front Immunol 8 : 9M, 2017.
5) Willmann KL, et al : Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun 5 : 5360, 2014.
6) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
P.69 掲載の参考文献
1) Johnson RE, et al : A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands. Mol Cell 59 : 163-175, 2015.
2) Prindle MJ, Loeb LA : DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53 : 666-682, 2012.
4) Weedon MN, et al : An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 45 : 947-950, 2013.
5) Conde CD, et al : Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress, J Clin Invest 129 : 4194-4206, 2019.
6) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
7) Cui Y, et al : Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta 1. J Allergy Clin Immunol 145 : 391-401.e8, 2020.
8) Uchimura A, et al : DNA polymerase delta is required for early mammalian embryogenesis. PLoS ONE 4 : e4184, 2009.
9) Thiffault I, et al : A patient with polymerase E1 deficiency (POLE1) : clinical features and overlap with DNA breakage/instability syndromes. BMC Med Genet 16 : 31, 2015.
P.72 掲載の参考文献
1) Hayden MS, Ghosh S : NF-κB, the first quarter-century : remarkable progress and outstanding questions. Genes Dev 26 : 203-234, 2012.
2) Merico D, et al : RelB deficiency causes combined Immunodeficiency. LymphoSign J 2 : 147-155, 2015.
3) Sharfe N, et al : The effects of RelB deficiency on lymphocyte development and function. J Autoimmun 65 : 90-100, 2015.
4) Haynes A, et al : Heterozygous mutations in RelB can be associated with immune dysregulation and lymphoma. LymphoSign J 3 : 55-60, 2016.
5) Zhang Q, et al : 30 Years of NF-κB : A Blossoming of Relevance to Human Pathobiology. Cell 168 : 37-57, 2017.
6) Weih F, et al : Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J Immunol 157 : 3974-3979, 1996.
7) Marienfeld R, et al : Signal-specific and phosphorylation-dependent RelB degradation : a potential mechanism of NF-kappaB control. Oncogene 20 : 8142-8147, 2001.
8) Ovadia A, et al : Hematopoietic stem cell transplantation for RelB deficiency. J Allergy Clin Immunol 140 : 1199-1201. e3, 2017.
P.75 掲載の参考文献
1) Hayden MS, Ghosh S : NF-κB, the first quarter-century : remarkable progress and outstanding questions. Genes Dev 26 : 203-234, 2012.
2) Badran YR, et al : Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 214 : 1937-1947, 2017.
3) Comrie WA, et al : RELA haploinsufficiency in CD4 lymphoproliferative disease with autoimmune cytopenias. J Allergy Clin Immunol 141 : 1507-1510.e8, 2018.
4) Lorenzini T, et al : Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. J Allergy Clin Immunol, 2020. (DOI : 10.1016/j.jaci.2019.11.051)
5) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
6) Brenner D, et al : Regulation of tumour necrosis factor signalling : live or let die. Nat Rev Immunol 15 : 362-374, 2015.
7) Gerondakis S, et al : Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function : transgenics and knockouts. Oncogene 18 : 6888-6895, 1999.
P.78 掲載の参考文献
1) Bretscher A, et al : ERM proteins and merlin : integrators at the cell cortex. Nat Rev Mol Cell Biol 3 : 586-599, 2002.
2) Shcherbina A, et al : Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Lett 443 : 31-36, 1999.
3) Lagresle-Peyrou C, et al : X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. J Allergy Clin Immunol 138 : 1681-1689.e8, 2016.
4) Janssen E, et al : Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 287 : 121-134, 2019.
5) Delmonte OM, et al : First Case of X-Linked Moesin Deficiency Identified After Newborn Screening for SCID. J Clin Immunol 37 : 336-338, 2017.
6) Bradshaw G, et al : Exome Sequencing Diagnoses X-Linked Moesin-Associated Immunodeficiency in a Primary Immunodeficiency Case. Front Immunol 9 : 420, 2018.
7) Hirata T, et al : Moesin-deficient mice reveal a non-redundant role for moesin in lymphocyte homeostasis. Int Immunol 24 : 705-717, 2012.
P.81 掲載の参考文献
1) Hayden MS, Ghosh S : NF-κB, the first quarter-century : remarkable progress and outstanding questions. Genes Dev 26 : 203-234, 2012.
2) Gilmore TD, et al : The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2 : 695-711, 2011.
3) Fullard N, et al : Roles of c-Rel signalling in inflammation and disease. Int J Biochem Cell Biol 44 : 851-860, 2012.
4) Beaussant-Cohen S, et al : Combined immunodeficiency in a patient with c-Rel deficiency. J Allergy Clin Immunol 144 : 606-608.e4, 2019.
5) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
6) Kontgen F, et al : Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9 : 1965-1977, 1995.
7) Liou HC, et al : c-Rel is crucial for lymphocyte proliferation but dispensable for T cell effector function. Int Immunol 11 : 361-371, 1999.
P.84 掲載の参考文献
1) Calzoni E, et al : F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. J Allergy Clin Immunol 143 : 2317-2321.e12, 2019.
2) Lyszkiewicz M, et al : Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nat Commun 11 : 1031, 2020.
3) Henne WM, et al : FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328 : 1281-1284, 2010.
4) Kaksonen M, et al : Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19 : 313-326, 2018.
5) Taylor MJ, et al : A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9 : e1000604, 2011.

IV 免疫系以外の症状を呈する, あるいは症候群を呈する複合免疫不全症

P.91 掲載の参考文献
1) Thrasher AJ : WASp in immune-system organization and function. Nat Rev Immunol 2 : 635-646, 2002.
2) Lutskiy MI, et al : Wiskott-Aldrich syndrome in a female. Blood 100 : 2763-2768, 2002.
3) Ouchi-Uchiyama M, et al : Analyses of Genetic and Clinical Parameters for Screening Patients With Inherited Thrombocytopenia with Small or Normal-Sized Platelets. Pediatr Blood Cancer 62 : 2082-2088, 2015.
4) Sereni L, et al : Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 144 : 825-838, 2019.
5) Sasahara Y, et al : Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol Cell 10 : 1269-1281, 2002.
6) de la Fuente MA, et al : WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). Proc Natl Acad Sci USA 104 : 926-931, 2007.
7) Sasahara Y : WASP-WIP complex in the molecular pathogenesis of Wiskott-Aldrich syndrome. Pediatr Int 58 : 4-7, 2016.
9) Schwinger W, et al : The phenotype and treatment of WIP deficiency : literature synopsis and review of a patient with pre-transplant serial donor lymphocyte infusions to eliminate CMV. Front Immunol 9 : 2554, 2018.
10) Watanabe Y, et al : T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol 132 : 648-655.e1, 2013.
16) Massaad MJ, et al : DOCK8 and STAT3 dependent inhibition of IgE isotype switching by TLR9 ligation in human B cells. Clin Immunol 183 : 263-265, 2017.
17) Janssen E, et al : ADOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 126 : 3837-3851, 2016.
18) Petersheim D, et al : Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J Allergy Clin Immunol 141 : 1060-1073.e3, 2018.
19) Moriya K, et al : IKBA S32 Mutations Underlie Ectodermal Dysplasia with Immunodeficiency and Severe Noninfectious Systemic Inflammation. J Clin Immunol 38 : 543-545, 2018.
P.95 掲載の参考文献
1) Kahr WH, et al : Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun 8 : 14816, 2017.
2) Somech R et al : Disruption of Thrombocyte and T Lymphocyte Development by a Mutation in ARPC1B. J Immunol 199 : 4036-4045, 2017.
3) Kuijpers TW, et al : Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol 140 : 273-277.e10, 2017.
4) Brigida I, et al : T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood 132 : 2362-2374, 2018.
5) Volpi S, et al : A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol 143 : 2296-2299, 2019.
6) Kopitar AN, et al : Flow Cytometric Determination of Actin Polymerization in Peripheral Blood Leukocytes Effectively Discriminate Patients With Homozygous Mutation in ARPC1B From Asymptomatic Carriers and Normal Controls. Front Immunol 10 : 1632, 2019.
7) Randzavola LO, et al : Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. J Clin Invest 129 : 5600-5614, 2019.
P.97 掲載の参考文献
2) de Greef JC, et al : Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88 : 796-804, 2011.
3) Thijssen PE, et al : Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun 6 : 7870, 2015.
4) Sterlin D, et al : Genetic, Cellular and Clinical Features of ICF Syndrome : a French National Survey. J Clin Immunol 36 : 149-159, 2016.
5) Blanco-Betancourt CE, et al : Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 103 : 2683-2690, 2004.
6) Kamae C, et al : Clinical and Immunological Characterization of ICF Syndrome in Japan. J Clin Immunol 38 : 927-937, 2018.
7) Hagleitner MM, et al : Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet 45 : 93-99, 2008.
8) Weemaes CM, et al : Heterogeneous clinical presentation in ICF syndrome : correlation with underlying gene defects. Eur J Hum Genet 21 : 1219-1225, 2013.
9) van den Boogaard ML, et al : Expanding the mutation spectrum in ICF syndrome : Evidence for a gender bias in ICF2. Clin Genet 92 : 380-387, 2017.
10) Unoki M, et al : CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. J Clin Invest 129 : 78-92, 2019.
11) Alghamdi HA, et al : Three Types of Immunodeficiency, Centromeric Instability, and Facial Anomalies (ICF) Syndrome Identified by Whole-Exome Sequencing in Saudi Hypogammaglobulinemia Patients : Clinical, Molecular, and Cytogenetic Features. J Clin Immunol 38 : 847-853, 2018.
12) Gennery AR, et al : Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics 120 : e1341-1344, 2007.
13) Burk CM, et al : Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract 8 : 1103-1106. e3, 2020.
14) Harnisch E, et al : Hematopoietic Stem Cell Transplantation in a Patient With ICF2 Syndrome Presenting With EBV-Induced Hemophagocytic Lymphohystiocytosis. Transplantation 100 : e35-36, 2016.
P.100 掲載の参考文献
2) de Greef JC, et al : Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88 : 796-804, 2011.
3) Thijssen PE, et al : Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun 6 : 7870, 2015.
4) Sterlin D, et al : Genetic, Cellular and Clinical Features of ICF Syndrome : a French National Survey. J Clin Immunol 36 : 149-159, 2016.
5) Blanco-Betancourt CE, et al : Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 103 : 2683-2690, 2004.
6) Kamae C, et al : Clinical and Immunological Characterization of ICF Syndrome in Japan. J Clin Immunol 38 : 927-937, 2018.
7) Hagleitner MM, et al : Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet 45 : 93-99, 2008.
8) Weemaes CM, et al : Heterogeneous clinical presentation in ICF syndrome : correlation with underlying gene defects. Eur J Hum Genet 21 : 1219-1225, 2013.
9) van den Boogaard ML, et al : Expanding the mutation spectrum in ICF syndrome : Evidence for a gender bias in ICF2. Clin Genet 92 : 380-387, 2017.
10) Alghamdi HA, et al : Three Types of Immunodeficiency, Centromeric Instability, and Facial Anomalies (ICF) Syndrome Identified by Whole-Exome Sequencing in Saudi Hypogammaglobulinemia Patients : Clinical, Molecular, and Cytogenetic Features. J Clin Immunol 38 : 847-853, 2018.
11) Unoki M, et al : CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. J Clin Invest 129 : 78-92, 2019.
12) Gennery AR, et al : Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics 120 : e1341-1344, 2007.
13) Burk CM, et al : Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract 8 : 1103-1106.e3, 2020.
14) Harnisch E, et al : Hematopoietic Stem Cell Transplantation in a Patient With ICF2 Syndrome Presenting With EBV-Induced Hemophagocytic Lymphohystiocytosis. Transplantation 100 : e35-36, 2016.
P.103 掲載の参考文献
1) Frugoni F, et al : A novel mutation in the POLE2 gene causing combined immunodeficiency. J Allergy Clin Immunol 137 : 635-638.e1, 2016.
2) Callen E, et al : Breaking down cell cycle checkpoints and DNA repair during antigen receptor gene assembly. Oncogene 26 : 7759-7764, 2007.
3) Kunkel TA : Balancing eukaryotic replication asymmetry with replication fidelity. Curr Opin Chem Biol 15 : 620-626, 2011.
4) Loeb LA, Monnat RJ : DNA polymerases and human disease. Nat Rev Genet 9 : 594-604, 2008.
5) Pachlopnik Schmid J, et al : Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature ("FILS syndrome"). J Exp Med 209 : 2323-2330, 2012.
P.105 掲載の参考文献
1) van der Crabben SN, et al : Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest 126 : 2881-2892, 2016.
2) Taylor EM, et al : Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol Cell Biol 28 : 1197-1206, 2008.
P.107 掲載の参考文献
1) Tummala H, et al : ERCC6L2 mutations link a distinct bone-marrow-failure syndrome to DNA repair and mitochondrial function. Am J Hum Genet 94 : 246-256, 2014.
2) Zhang S, et al : A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly. J Exp Med 213 : 1011-1028, 2016.
3) Tummala H, et al : Genome instability is a consequence of transcription deficiency in patients with bone marrow failure harboring biallelic ERCC6L2 variants. Proc Natl Acad Sci USA 115 : 7777-7782, 2018.
4) Shabanova I, et al : ERCC6L2-associated inherited bone marrow failure syndrome. Mol Genet Genomic Med 6 : 463-468, 2018.
5) Jarviaho T, et al : Bone marrow failure syndrome caused by homozygous frameshift mutation in the ERCC6L2 gene. Clin Genet 93 : 392-395, 2018.
P.109 掲載の参考文献
1) Bernard F, et al : A novel developmental and immunodeficiency syndrome associated with intrauterine growth retardation and a lack of natural killer cells. Pediatrics 113 : 136-141, 2004.
4) Cottineau J, et al : Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 127 : 1991-2006, 2017.
5) Jouanguy E, et al : Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol 13 : 589-595, 2013.
P.112 掲載の参考文献
1) DiGeorge AM : Discussion on a new concept of the cellular basis of immunology. J Pediatr 67 : 907-908, 1965.
2) de la Chapelle A, et al : A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 57 : 253-256, 1981.
3) Kelley RI, et al : The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J Pediatr 101 : 197-200, 1982.
4) Wilson DI, et al : DiGeorge syndrome with isolated aortic coarctation and isolated ventricular septal defect in three sibs with a 22q11 deletion of maternal origin. Br Heart J 66 : 308-312, 1991.
6) 大久保直, 高田慎治 : 咽頭弓からの胸腺形成と先天性異常の発症機構. 生化学 84 : 168-176, 2012.
7) 小児慢性特定疾病情報センター : 診断の手引き 胸腺低形成 (ディ・ジョージ (DiGeorge) 症候群/22q11.2欠失症候群). [https://www.shouman.jp/disease/instructions/10_02_019/ (2020年7月閲覧)
8) Primary Immunodeficiency Diseases : Definition, Diagnosis, and Management (ed by Rezaei N, et al), Springer-Verlag, Berlin, 2008.
9) European Society for Immunodeficiencies : Clinical Working Party Diagnostic criteria for PID : DiGeorge Syndrome diagnostic criteria. [http://esid.org/Working-Parties/Clinical/Resources/Diagnostic-criteria-for-PID2#Q50] (2020年7月閲覧)
12) Bowers DC, et al : Immune constitution of complete DiGeorge anomaly by transplantation of ummobilized blood mononuclear cells. Lancet 352 : 1983-1984, 1998.
P.115 掲載の参考文献
1) Yagi H, et al : Role of TBX1 in human del22q11. 2 syndrome. Lancet 362 : 1366-1373, 2003.
2) Packham EA, Brook JD : T-box genes in human disorders. Hum Mol Genet 12 (Spec No 1) : R37-44, 2003.
4) Zhang M, et al : TBX1 loss-of-function mutation contributes to congenital conotruncal defects. Exp Ther Med 15 : 447-453, 2018.
5) 大久保直, 高田慎治 : 咽頭弓からの胸腺形成と先天性異常の発症機構. 生化学 84 : 168-176, 2012.
6) Papangeli I, Scambler P : The 22q11 deletion : DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2 : 393-403, 2013.
7) Paylor R, et al : Tbxl haploinsufficiency is linked to behavioral disorders in mice and humans : implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103 : 7729-7734, 2006.
P.119 掲載の参考文献
1) Angelman H : Syndrome of coloboma with multiple congenital abnormalities in infancy. Br Med J 1 : 1212-1214, 1961.
4) Writzl K, et al : Immunological abnormalities in CHARGE syndrome. Eur J Med Genet 50 : 338-345, 2007.
5) Theodoropoulos DS : Immune deficiency in CHARGE association. Clin Med Res 1 : 43-48, 2003.
6) Wong MT, et al : CHARGE syndrome : a review of the immunological aspects. Eur J Hum Genet 23 : 1451-1459, 2015.
7) 難病情報センター : チャージ症候群. [https://www.nanbyou.or.jp/entry/4139] (2020年7月閲覧)
9) Bergman JE, et al : CHD7 mutations and CHARGE syndrome : the clinical implications of an expanding phenotype. J Med Genet 48 : 334-342, 2011.
10) Layman WS, et al : Chromodomain proteins in development : lessons from CHARGE syndrome. Clin Genet 78 : 11-20, 2010.
11) Bajpai R, et al : CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463 : 958-962, 2010.
13) Verloes A : Updated diagnostic criteria for CHARGE syndrome : a proposal. Am J Med Genet A 133A : 306-308, 2005.
P.121 掲載の参考文献
1) Isaacson JH, Cattanach BM : Report. Mouse News Lett 27 : 31, 1962.
3) Pignata C, et al : Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs. Am J Med Genet 65 : 167-170, 1996.
4) Frank J, et al : Exposing the human nude phenotype. Nature 398 : 473-474, 1999.
5) Auricchio L, et al : Nail dystrophy associated with a heterozygous mutation of the nude/SCID human FOXN1 (WHN) gene. Arch Dermatol 141 : 647-648, 2005.
6) Bosticardo M, et al : Heterozygous FOXN1 Variants Cause Low TRECs and Severe T Cell Lymphopenia, Revealing a Crucial Role of FOXN1 in Supporting Early Thymopoiesis. Am J Hum Genet 105 : 549-561, 2019.
7) Adriani M, et al : Ancestral founder mutation of the nude (FOXN1) gene in congenital severe combined immunodeficiency associated with alopecia in southern Italy population. Ann Hum Genet 68 : 265-268, 2004.
8) Vigliano I, et al : FOXN1 mutation abrogates prenatal T-cell development in humans. J Med Genet 48 : 413-416, 2011.
9) Pignata C, et al : Human equivalent of the mouse Nude/SCID phenotype : long-term evaluation of immunologic reconstitution after bone marrow transplantation. Blood 97 : 880-885, 2001.
P.123 掲載の参考文献
1) Daw SC, et al : A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat Genet 13 : 458-460, 1996.
2) Schuffenhauer S, et al : Deletion mapping on chromosome 10p and definition of a critical region for the second DiGeorge syndrome locus (DGS2). Eur J Hum Genet 6 : 213-225, 1998.
3) Voigt R, et al : Chromosome 10p13-14 and 22q11 deletion screening in 100 patients with isolated and syndromic conotruncal heart defects. J Med Genet 39 : e16, 2002.
4) Berend SA, et al : Dual-probe fluorescence in situ hybridization assay for detecting deletions associated with VCFS/DiGeorge syndrome I and DiGeorge syndrome II loci. Am J Med Genet 91 : 313-317, 2000.
P.125 掲載の参考文献
1) Jacobsen P, et al : An (11 ; 21) translocation in four generations with chromosome 11 abnormalities in the offspring. A clinical, cytogenetical, and gene marker study. Hum Hered 23 : 568-585, 1973.
2) Grossfeld PD, et al : The 11q terminal deletion disorder : a prospective study of 110 cases. Am J Med Genet A 129A : 51-61, 2004.
3) Online Mendelian Inheritance in Man : An Online Catalog of Human Genes and Genetic Disorders. [https://www.omim.org/entry/147791] (2020年7月閲覧)
4) Genetics Home Reference : Jacobsen syndrome. [https://ghr.nlm.nih.gov/condition/jacobsen-syndrome] (2020年7月閲覧)
5) Glessner JT, et al : Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 115 : 884-896, 2014.
6) Morel-Kopp MC, et al : First report of a new homozygous FLI1 mutation unraveled by increased MYH10 expression in an inherited platelet disorder. J Thromb Haemost 13 : 93, 2015.
7) Dalm VA, et al : The 11q Terminal Deletion Disorder Jacobsen Syndrome is a Syndromic Primary Immunodeficiency. J Clin Immunol 35 : 761-768, 2015.
P.129 掲載の参考文献
1) OMIM Entry-#618116-Bone marrow failure syndrome 4 ; BMFS4. [Internet] Omim. Org, 2020. [https://omim.org/entry/618116] (2020年8月閲覧)
2) OMIM Entry-*612176-Myb-like, SWIRM, and MPN domains-containing protein 1 ; MYSM1. [Internet] Omim. Org, 2020. [https://omim.org/entry/612176] (2020年8月閲覧)
3) Bahrami E, et al : Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency : Genotoxic stress-associated bone marrow failure and developmental aberrations. J Allergy Clin Immunol 140 : 1112-1119, 2017.
4) Alsultan A, et al : MYSM1 is mutated in a family with transient transfusion-dependent anemia, mild thrombocytopenia, and low NK- and B-cell counts. Blood 122 : 3844-3845, 2013.
5) Le Guen T, et al : An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. J Allergy Clin Immunol 136 : 1619-1626.e5, 2015.
6) 岩井一宏 : 直鎖状ポリユビキチン鎖の発見とその機能. 生化学 84 : 920-930, 2012.
7) 田中啓二 : ユビキチンubiquitin : A variety of functions on protein ubiquitination. 医学のあゆみ 249 : 374, 2014.
8) Kroeger C, et al : Interaction of deubiquitinase 2A-DUB/MYSM1 with DNA repair and replication factors. Int J Mol Sci 21 : 3762, 2020.
9) Li P, et al : Deubiquitinase MYSM1 Is Essential for Normal Bone Formation and Mesenchymal stem Cell Differentiation. Sci Rep 6 : 22211, 2016.
10) OMIM Entry-#614675-Bone marrow failure syndrome 1 ; BMFS1. [Internet] Omim. Org, 2020. [https://omim.org/entry/614675] (2020年8月閲覧)
P.132 掲載の参考文献
1) He H, et al : Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332 : 238-240, 2011.
2) Dinur Schejter Y, et al : A homozygous mutation in the stem II domain of RNU4ATAC causes typical Roifman syndrome. NPJ Genom Med 2 : 23, 2017.
3) Farach LS, et al : The expanding phenotype of RNU4ATAC pathogenic variants to Lowry Wood syndrome. Am J Med Genet A 176 : 465-469, 2018.
4) Merico D, et al : Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing. Nat Commun 6 : 8718, 2015.
5) Tom Strachan, Andrew Read : ヒトの分子遺伝学 [第4版] (村松正實, 木南凌監), p319, メディカル・サイエンス・インターナショナル, 2011.
6) OMIM Entry-#210720-Microcephalic osteodysplastic primordial dwarfism, type II ; MOPD2 [internet]. Omim. Org, 2020. [https://omim.org/entry/210720] (2020年8月閲覧)
P.134 掲載の参考文献
1) Oud MM, et al : Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome. Am J Hum Genet 100 : 281-296, 2017.
2) Guo L, et al : Identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. J Hum Genet 62 : 797-801, 2017.
3) Volpi S, et al : EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay. J Exp Med 214 : 623-637, 2017.
4) Notarangelo LD : Expanding the spectrum of skeletal dysplasia with immunodeficiency : a commentary on identification of biallelic EXTL3 mutations in a novel type of spondylo-epi-metaphyseal dysplasia. J Hum Genet 62 : 737-738, 2017.
5) Miraoui H, et al : Fibroblast growth factor receptor signaling crosstalk in skeletogenesis. Sci Signal 3 : re9, 2010.
6) Picard C, et al : Primary Immunodeficiency Diseases : an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol 35 : 696-726, 2015.
7) Bonafe L, et al : Nosology and classification of genetic skeletal disorders : 2015 revision. Am J Med Genet A 167 : 2869-2892, 2015.
P.138 掲載の参考文献
1) Cardinez C, et al : Gain-of-function IKBKB mutation causes human combined immune deficiency. J Exp Med 215 : 2715-2724, 2018.
2) Zhang Q, et al : 30 Years of NF-κB : ABIossoming of Relevance to Human Pathobiology. Cell 168 : 37-57, 2017.
3) Pannicke U, et al : Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med 369 : 2504-2514, 2013.
4) Petersheim D, et al : Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J Allergy Clin Immunol 141 : 1060-1073.e3, 2018.
P.142 掲載の参考文献
1) Courtois G, et al : A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112 : 1108-1115, 2003.
2) Boisson B, et al : Human IκBα Gain of Function : a Severe and Syndromic Immunodeficiency. J Clin Immunol 37 : 397-412, 2017.
3) Petersheim D, et al : Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J Allergy Clin Immunol 141 : 1060-1073.e3, 2018.
4) Moriya K, et al : IKBA S32 Mutations Underlie Ectodermal Dysplasia with Immunodeficiency and Severe Noninfectious Systemic Inflammation. J Clin Immunol 38 : 543-545, 2018.
P.144 掲載の参考文献
1) 本間仁, ほか : Crohn病様所見を呈したTricohepatoenteric syndromeの1例. 日本小児栄養消化器肝臓学会雑誌 33 : 42, 2019.
2) Hiejima E, et al : Tricho-hepato-enteric syndrome with novel SKIV2 L gene mutations : A case report. Medicine (Baltimore) 96 : e8601, 2017.
3) Fabre A, et al : Syndromic (phenotypic) diarrhoea of infancy/tricho-hepato-enteric syndrome. Arch Dis Child 99 : 35-38, 2014.
4) Eckard SC, et al : The SKIV2 L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol 15 : 839-845, 2014.
5) Vely F, et al : Combined immunodeficiency in patients with trichohepatoenteric syndrome. Front Immunol 9 : 1036, 2018.
6) Bourgeois P, et al : Tricho-Hepato-Enteric Syndrome mutation update : Mutations spectrum of TTC37 and SKIV2L, clinical analysis and future prospects. Hum Mutat 39 : 774-789, 2018.
7) Fabre A, et al : Management of syndromic diarrhea/tricho-hepato-enteric syndrome : A review of the literature. Intractable Rare Dis Res 6 : 152-157, 2017.
8) Fabre A, et al : Trichohepatoenteric Syndrome. In : GeneReviews(R) [Internet], University of Washington, Seattle ; 1993-2020, Initial Posting : January 11, 2018.
P.148 掲載の参考文献
1) Punwani D, et al : Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B. N Engl J Med 375 : 2165-2176, 2016.
2) Lessel D, et al : BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 141 : 2299-2311, 2018.
3) Yan S, et al : [A case report of BCL11B mutation induced neurodevelopmental disorder and literature review]. Zhonghua Er Ke Za Zhi 58 : 223-227, 2020.
4) Avram D, Califano D : The multifaceted roles of Bcl11b in thymic and peripheral T cells : impact on immune diseases, J Immunol 193 : 2059-2065, 2014.
5) Wakabayashi Y, et al : Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4 : 533-539, 2003.
6) Vanvalkenburgh J, et al : Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J Exp Med 208 : 2069-2081, 2011.
P.150 掲載の参考文献
1) Alders M, et al : Evaluation of Clinical Manifestations in Patients with Severe Lymphedema with and without CCBE1 Mutations. Mol Syndromol 4 : 107-113, 2013.
2) Alders M, et al : Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum Genet 133 : 1161-1167, 2014.
3) Brouillard P, et al : Loss of ADAMTS3 activity causes Hennekam lymphangiectasia-lymphedema syndrome 3. Hum Mol Genet 26 : 4095-4104, 2017.
4) Scheuerle AE, et al : An additional case of Hennekam lymphangiectasia-lymphedema syndrome caused by loss-of-function mutation in ADAMTS3. Am J Med Genet A 176 : 2858-2861, 2018.
6) 野坂瞳, ほか : 鼻涙管嚢胞を合併したHennekam症候群の一例. 日本鼻科学会会誌 55 : 457, 2016.
7) 小野方正, ほか : Hennekam症候群の妊娠症例. 日本産科婦人科学会雑誌 66 : 535, 2014.
8) 小関道夫, ほか : リンパ管腫症・ゴーハム病症例の全国調査報告. 日本小児外科学会雑誌 50 : 516, 2014.
9) Jeltsch M, et al : CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129 : 1962-1971, 2014.
10) Al Sinani S, et al : Octreotide in Hennekam syndrome-associated intestinal lymphangiectasia. World J Gastroenterol 18 : 6333-6337, 2012.
P.154 掲載の参考文献
1) Itoh K, et al : An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236 : 313-322, 1997.
2) Suzuki T, Yamamoto M : Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem 292 : 16817-16824, 2017.
3) Itoh K, et al : Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13 : 76-86, 1999.
4) Tong KI, et al : Keap1 recruits Neh2 through binding to ETGE and DLG motifs : characterization of the two-site molecular recognition model. Mol Cell Biol 26 : 2887-2900, 2006.
5) Fukutomi T, et al : Kinetic, thermodynamic, and structural characterizations of the association between Nrf2-DLGex degron and Keap1. Mol Cell Biol 34 : 832-846, 2014.
6) Kitamura H, Motohashi H : NRF2 addiction in cancer cells. Cancer Sci 109 : 900-911, 2018.
7) Huppke P, et al : Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nat Commun 8 : 818, 2017.
8) Wakabayashi N, et al : Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35 : 238-245, 2003.
9) Suzuki T, et al : Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus. Nat Commun 8 : 14577, 2017.
P.157 掲載の参考文献
2) Kuroki Y, et al : A new malformation syndrome of long palpebral fissures, large ears, depressed nasal tip, and skeletal anomalies associated with postnatal dwarfism and mental retardation. J Pediatr 99 : 570-573, 1981.
4) Adam MP, et al : Kabuki syndrome : international consensus diagnostic criteria. J Med Genet 56 : 89-95, 2019.
5) 黒澤健司 : Kabuki症候群 (Niikawa-Kuroki症候群). 小児内科 50 (増刊) : 142-143, 2018.
6) Jones KL, et al : Kabuki syndrome. In : Smith's Recognizable Patterns of Human Malformation, 7th ed, p156-157, Elsevier Saunders, Philadelphia, 2013.
7) Kawame H, et al : Phenotypic spectrum and management issues in Kabuki syndrome. J Pediatr 134 : 480-485, 1999.
8) Margot H, et al : Immunopathological manifestations in Kabuki syndrome : a registry study of 177 individuals. Genet Med 22 : 181-188, 2020.
P.160 掲載の参考文献
1) Wiedemann HR, et al : A syndrome of abnormal facies, short stature, and psychomotor retardation. In : Atlas of Clinical Syndromes : A Visual Aid to Diagnosis for Clinicians and Practicing Physicians, p198-199, Mosby, St. Louis, 1989.
2) Steiner CE, Marques AP : Growth deficiency, mental retardation and unusual facies. Clin Dysmorphol 9 : 155-156, 2000.
3) Jones WD, et al : De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am J Hum Genet 91 : 358-364, 2012.
4) Ansari KI, et al : MLL histone methylases in gene expression, hormone signaling and cell cycle. Front Biosci (Landmark Ed) 14 : 3483-3495, 2009.
5) Milne TA, et al : MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10 : 1107-1117, 2002.
6) Bogaert DJ, et al : Early-onset primary antibody deficiency resembling common variable immunodeficiency challenges the diagnosis of Wiedeman-Steiner and Roifman syndromes. Sci Rep 7 : 3702, 2017.
7) Hsieh JJ, et al : Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 23 : 186-194, 2003.
8) Stellacci E, et al : Congenital immunodeficiency in an individual with Wiedemann-Steiner syndrome due to a novel missense mutation in KMT2A. Am J Med Genet A 170 : 2389-2393, 2016.
9) Baer S, et al : Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability : A study of 33 French cases. Clin Genet 94 : 141-152, 2018.
10) Miyake N, et al : Delineation of clinical features in Wiedemann-Steiner syndrome caused by KMT2A mutations. Clin Genet 89 : 115-119, 2016.
11) Strom SP, et al : De Novo variants in the KMT2A (MLL) gene causing atypical Wiedemann-Steiner syndrome in two unrelated individuals identified by clinical exome sequencing. BMC Med Genet 15 : 49, 2014.
12) Mendelsohn BA, et al : Advanced bone age in a girl with Wiedemann-Steiner syndrome and an exonic deletion in KMT2A (MLL). Am J Med Genet A 164A : 2079-2083, 2014.

V 抗体産生不全を主とする疾患

P.169 掲載の参考文献
1) Smith T, et al : Primary B-cell immunodeficiencies. Hum Immunol 80 : 351-362, 2019.
2) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
3) Bruton OC : Agammaglobulinemia. Pediatrics 9 : 722-728, 1952.
5) Vetrie D, et al : The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361 : 226-233, 1993.
7) Minegishi Y, et al : Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 187 : 71-77, 1998.
8) Minegishi Y, et al : Mutations in Igalpha (CD79a) result in a complete block in B-cell development. J Clin Invest 104 : 1115-1121, 1999.
9) Wang Y, et al : Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia. Am J Med Genet 108 : 333-336, 2002.
10) Dobbs AK et al : Cutting edge : a hypomorphic mutation in Igbeta (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J Immunol 179 : 2055-2059, 2007.
11) Ferrari S, et al : Mutations of the Igbeta gene cause agammaglobulinemia in man. J Exp Med 204 : 2047-2051, 2007.
12) Conley ME, et al : Primary B cell immunodeficiencies : comparisons and contrasts. Annu Rev Immunol 27 : 199-227, 2009.
13) Minegishi Y, et al : An essential role for BLNK in human B cell development. Science 286 : 1954-1957, 1999.
14) Conley ME, et al : Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med 209 : 463-470, 2012.
15) Sogkas G, et al : Primary immunodeficiency disorder caused by phosphoinositide 3-kinase δ deficiency. J Allergy Clin Immunol 142 : 1650-1653.e2, 2018.
16) Sharfe N, et al : Dual loss of p110δ PI3-kinase and SKAP (KNSTRN) expression leads to combined immunodeficiency and multisystem syndromic features. J Allergy Clin Immunol 142 : 618-629, 2018.
17) Cohen SB, et al : Human primary immunodeficiency caused by expression of a kinase-dead p110δ mutant. J Allergy Clin Immunol 143 : 797-799.e2, 2019.
18) Zhang K, et al : Identification of a phosphoinositide 3-kinase (PI-3K) P110delta (PIK3CD) deficient individual. J Clin Immunol 33 : 673-674, 2013.
19) Boisson B, et al : A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR (-) B cells. J Clin Invest 123 : 4781-4785, 2013.
20) Ben-Ali M, et al : Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol 140 : 1191-1194.e4, 2017.
21) Qureshi S, et al : Autosomal Recessive Agammaglobulinemia-first case with a novel TCF3 mutation from Pakistan. Clin Immunol 198 : 100-101, 2019.
22) Anzilotti C, et al : An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat Immunol 20 : 350-361, 2019.
23) Broderick L, et al : Mutations in topoisomerase IIβ result in a B cell immunodeficiency. Nat Commun 10 : 3644, 2019.
24) Papapietro O, et al : Topoisomerase 2β mutation impairs early B-cell development. Blood 135 : 1497-1501, 2020.
25) Grimbacher B, et al : Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4 : 261-268, 2003.
26) Roussel L, et al : Loss of human ICOSL results in combined immunodeficiency. J Exp Med 215 : 3151-3164, 2018.
27) Pan-Hammarstrom Q, et al : Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 39 : 429-430, 2007.
29) Wang HY, et al : Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci USA 110 : 5127-5132, 2013.
30) Yeh TW, et al : APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol, 2020. (DOI : 10.1016/j.jaci.2020.03.025)
31) van Zelm MC, et al : An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 354 : 1901-1912, 2006.
33) van Zelm MC, et al : CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 120 : 1265-1274, 2010.
34) Thiel J, et al : Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol 129 : 801-810.e6, 2012.
35) Kuijpers TW, et al : CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest 120 : 214-222, 2010.
36) van Montfrans JM, et al : CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 129 : 787-793.e6, 2012.
37) Angulo I, et al : Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342 : 866-871, 2013.
38) Lucas CL, et al : Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15 : 88-97, 2014.
39) Lucas CL, et al : Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med 211 : 2537-2547, 2014.
40) Deau MC, et al : A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 124 : 3923-3928, 2014.
41) Tsujita Y, et al : Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 138 : 1672-1680. e10, 2016.
42) Fliegauf M, et al : Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. Am J Hum Genet 97 : 389-403, 2015.
43) Chen K, et al : Germline mutations in NFKB2 implicate the noncanonical NF-κB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet 93 : 812-824, 2013.
44) Lee CE, et al : Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood 124 : 2964-2972, 2014.
45) Wiseman DH, et al : A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122 : 112-123, 2013.
47) Kumaki E, et al : Atypical SIFD with novel TRNT1 mutations : a case study on the pathogenesis of B-cell deficiency. Int J Hematol 109 : 382-389, 2019.
48) Yang L, et al : Novel biallelic TRNT1 mutations lead to atypical SIFD and multiple immune defects. Genes Dis 7 : 128-137, 2020.
51) Hoshino A, et al : Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 140 : 223-231, 2017.
52) Boutboul D, et al : Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 128 : 3071-3087, 2018.
53) Keller MD, et al : Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. J Allergy Clin Immunol 138 : 544-550. e4, 2016.
54) Jansen EJ, et al : ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7 : 11600, 2016.
55) Bouafia A, et al : Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest 129 : 1047-1060, 2019.
56) Keller B, et al : Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med 215 : 1327-1336, 2018.
57) Schubert D, et al : Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 141 : 1427-1438, 2018.
59) Alkhairy OK, et al : RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol 135 : 1380-1384.e1-5, 2015.
60) Hsu AP, et al : Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133 : 1977-1988, 2019.
61) Lougaris V, et al : A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143 : 1649-1653.e3, 2019.
62) Sharapova SO, et al : Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205 : 1-5, 2019.
63) Smits BM, et al : A dominant activating RAC2 variant associated with immunodeficiency and pulmonary disease. Clin Immunol 212 : 108248, 2020.
66) DiSanto JP, et al : CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 361 : 541-543, 1993.
67) Ferrari S, et al : Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 98 : 12614-12619, 2001.
68) Revy P, et al : Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102 : 565-575, 2000.
69) Imai K, et al : Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4 : 1023-1028, 2003.
70) Jain A, et al : Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2 : 223-228, 2001.
71) Kracker S, et al : An inherited immunoglobulin class-switch recombination deficiency associated with adefect in the INO80 chromatin remodeling complex. J Allergy Clin Immunol 135 : 998-1007. e6, 2015.
72) Gardes P, et al : Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol 188 : 2023-2029, 2012.
73) Kasahara Y, et al : Hyper-IgM syndrome with putative dominant negative mutation in activation-induced cytidine deaminase. J Allergy Clin Immunol 112 : 755-760, 2003.
74) Imai K, et al : Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol 115 : 277-285, 2005.
75) Snow AL, et al : Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med 209 : 2247-2261, 2012.
76) Stepensky P, et al : Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol 131 : 477-485.e1, 2013.
77) Greil J, et al : Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol 131 : 1376-1383. e3, 2013.
78) Dorjbal B, et al : Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol 143 : 1482-1495, 2019.
79) Dadi H, et al : Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol 141 : 1818-1830.e2, 2018.
80) Bogaert DJ, et al : Genes associated with common variable immunodeficiency : one diagnosis to rule them all? J Med Genet 53 : 575-590, 2016.
P.175 掲載の参考文献
1) Nunes-Santos CJ, et al : PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 143 : 1676-1687, 2019.
2) Sogkas G, et al : Primary immunodeficiency disorder caused by phosphoinositide 3-kinase δ deficiency. J Allergy Clin Immunol 142 : 1650-1653. e2, 2018.
3) Sharfe N, et al : Dual loss of p110δ PI3-kinase and SKAP (KNSTRN) expression leads to combined immunodeficiency and multisystem syndromic features. J Allergy Clin Immunol 142 : 618-629, 2018.
4) Cohen SB, et al : Human primary immunodeficiency caused by expression of a kinase-dead p110δ mutant. J Allergy Clin Immunol 143 : 797-799.e2, 2019.
5) Zhang K, et al : Identification of a phosphoinositide 3-kinase delta (PI-3K) P110delta (PI3KCD) deficient individual. J Clin Immunol 33 : 673-674, 2013.
P.179 掲載の参考文献
1) Deau MC, et al : A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 124 : 3923-3928, 2014.
2) Lucas CL, et al : Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med 211 : 2537-2547, 2014.
3) Nunes-Santos CJ, et al : PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 143 : 1676-1687, 2019.
4) de la Morena M, et al : Predominance of sterile immunoglobulin transcripts in a female phenotypically resembling Bruton's agammaglobulinemia. Eur J Immunol 25 : 809-815, 1995.
5) Conley ME, et al : Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med 209 : 463-470, 2012.
P.182 掲載の参考文献
1) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
2) Ben-Ali M, et al : Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol 140 : 1191-1194.e4, 2017.
3) Qureshi S, et al : Autosomal Recessive Agammaglobulinemia-first case with a novel TCF3 mutation from Pakistan. Clin Immunol 198 : 100-101, 2019.
4) Boisson B, et al : A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR-B cells. J Clin Invest 123 : 4781-4785, 2013.
5) Murre C : Helix-loop-helix proteins and lymphocyte development. Nat Immunol 6 : 1079-1086, 2005.
6) Miyazaki K, et al : The establishment of B versus T cell identity. Trends Immunol 35 : 205-210, 2014.
7) Bain G, et al : E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79 : 885-892, 1994.
8) Bain G, et al : Both E12 and E47 allow commitment to the B cell lineage. Immunity 6 : 145-154, 1997.
9) Beck K, et al : Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci. J Exp Med 206 : 2271-2284, 2009.
P.186 掲載の参考文献
1) Anzilotti C, et al : An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat Immunol 20 : 350-361, 2019.
2) Kambe T : [Overview of and update on the physiological functions of mammalian zinc transporter.] Nihon Eiseigaku Zasshi 68 : 92-102, 2013.
3) Huang L, et al : The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280 : 15456-15463, 2005.
4) Kambe T, et al : The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 95 : 749-784, 2015.
5) Bin BH, et al : Biochemical characterization of human ZIPI3 protein : a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 286 : 40255-40265, 2011.
6) Bin BH, et al : Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. J Invest Dermatol 137 : 1682-1691, 2017.
7) Hogstrand C, et al : Zinc transporters and cancer : a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15 : 101-111, 2009.
8) Taylor KM, et al : Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5 : ra11, 2012.
P.190 掲載の参考文献
1) Hoffman HM, et al : Humoral immunodeficiency with facial dysmorphology and limb anomalies : a new syndrome. Clin Dysmorphol 10 : 1-8, 2001.
2) Hugle B, et al : Hoffman syndrome : New patients, new insights. Am J Med Genet A 155A : 149-153, 2011.
3) Broderick L, et al : Mutations in topoisomerase IIβ result in a B cell immunodeficiency. Nat Commun 10 : 3644, 2019.
4) Ju BG, et al : A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312 : 1798-1802, 2006.
5) Perillo B, et al : DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319 : 202-206, 2008.
6) King IF, et al : Topoisomerases facilitate transcription of long genes linked to autism. Nature 501 : 58-62, 2013.
7) Austin CA, Marsh KL : Eukaryotic DNA Topoisomerase IIβ. Bioessays 20 : 215-226, 1998.
8) Joshi RS, et al : Topoisomerase II is required for the production of long Pol II gene transcripts in yeast, Nucleic Acids Res 40 : 7907-7915, 2012.
9) Kallish S, et al : Ablepharon-Macrostomia syndrome-extension of the phenotype. Am J Med Genet A 155A : 3060-3062, 2011.
10) Chung TD, et al : Characterization and immunological identification of cDNA clons encoding two human DNA topoisomerase II isozymes. Proc Natl Acad Sci USA 86 : 9431-9435, 1989.
11) Tan KB, et al : Topoisomerase II alpha and topoisomerase II beta genes : characterization and mapping to human chromosomes 17 and 3, respectively. Cancer Res 52 : 231-234, 1992.
12) Wu CC, et al : Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333 : 459-462, 2011.
13) Edery P, et al : B cell immunodeficiency, distal limb abnormalities, and urogenital malformations in a three generation family : a novel autosomal dominant syndrome? J Med Genet 38 : 488-493, 2001,
14) Tischkowitz M, et al : Autosomal dominant B-cell immunodeficiency, distal limb anomalies and urogenital malformations (BILU syndrome) -report of a second family. Clin Genet 66 : 550-555, 2004.
15) Papapietro O, et al : Topoisomerase 2β mutation impairs early B-cell development. Blood 135 : 1497-1501, 2020.
P.194 掲載の参考文献
1) Okkenhaug K, Vanhaesebroeck B : PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3 : 317-330, 2003.
2) Angulo I, et al : Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342 : 866-871, 2013.
3) Lucas CL, et al : Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15 : 88-97, 2014.
4) Deau MC, et al : A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest 124 : 3923-3928, 2014.
5) Lucas CL, et al : Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med 211 : 2537-2547, 2014.
6) Tsujita Y, et al : Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 138 : 1672-1680. e10, 2016.
7) Driessen GJ, et al : Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency. J Allergy Clin Immunol 138 : 1744-1747.e5, 2016.
8) Browning MJ, et al : Cowden's syndrome with immunodeficiency. J Med Genet 52 : 856-859, 2015.
9) Eng C : PTEN : one gene, many syndromes. Hum Mutat 22 : 183-198, 2003.
10) Mester J, Charis E : PTEN hamartoma tumor syndrome. Handb Clin Neurol 132 : 129-137, 2015.
11) Charis Eng : PTEN Hamartoma Tumor Syndrome. Synonym : PHTS. In : GeneReviews(R) [Internet], University of Washington, Seattle ; 1993-2020, Initial Posting : November 29, 2001 ; Last Update : June 2, 2016. [日本語訳者 櫻井晃洋 (札幌医科大学附属病院遺伝子診療室) : PTEN過誤腫症候群, 2017. 2. 19. http://grj.umin.jp/grj/pten.htm] (2020年7月閲覧)
12) Ruschak PJ, et al : Cowden's disease associated with immunodeficiency. Arch Dermatol 117 : 573-575, 1981.
13) Riley HD, Smith WR : Macrocephaly, pseudopapilledema and multiple hemangiomata. A previously undescribed heredofamilial syndrome. Pediatrics 26 : 293-300, 1960.
14) Halevy S, et al : Cowden's disease in three siblings : electron-microscope and immunological studies. Acta Derm Venereol 65 : 126-131, 1985.
15) Amer M, et al : Cowden's syndrome : a clinical, immunological, and histopathological study. Int J Dermatol 50 : 516-521, 2011.
16) Hodge D, et al : Proteus syndrome and immunodeficiency. Arch Dis Child 82 : 234-235, 2000.
17) Heindl M, et al : Autoimmunity, intestinal lymphoid hyperplasia, and defects in mucosal B-cell homeostasis in patients with PTEN hamartoma tumor syndrome. Gastroenterology 142 : 1093-1096.e6, 2012.
18) Chen HH, et al : Immune dysregulation in patients with PTEN hamartoma tumor syndrome : Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol 139 : 607-620.e15, 2017.
19) Eissing M, et al : PTEN Hamartoma Tumor Syndrome and Immune Dysregulation. Transl Oncol 12 : 361-367, 2019.
20) Schmid GL, et al : Sirolimus treatment of severe PTEN hamartoma tumor syndrome : case report and in vitro studies. Pediatr Res 75 : 527-534, 2014.
P.199 掲載の参考文献
1) Fliegauf M, et al : Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. Am J Hum Genet 97 : 389-403, 2015.
2) Tuijnenburg P, et al : Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 142 : 1285-1296, 2018.
3) Schroder C, et al : Late-Onset Antibody Deficiency Due to Monoallelic Alterations in NFKB1. Front Immunol 10 : 2618, 2019.
4) Fliegauf M, et al : Nuclear factor κB mutations in human subjects : The devil is in the details. J Allergy Clin Immunol 142 : 1062-1065, 2018.
5) Dieli-Crimi R, et al : Th1-skewed profile and excessive production of proinflammatory cytokines in a NFKB1-deficient patient with CVID and severe gastrointestinal manifestations. Clin Immunol 195 : 49-58, 2018.
6) Gonzalez-Granado LI, et al : Acquired and Innate Immunity Impairment and Severe Disseminated Mycobacterium genavense Infection in a Patient With a NF-κB1 Deficiency. Front Immunol 9 : 3148, 2019.
7) Schipp C, et al : Specific antibody deficiency and autoinflammatory disease extend the clinical and immunological spectrum of heterozygous NFKB1 loss-of-function mutations in humans. Haematologica 101 : e392-e396, 2016.
8) Kaustio M, et al : Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 140 : 782-796, 2017.
9) Hoeger B, et al : Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences. Front Immunol 8 : 1978, 2018.
10) Maffucci P, et al : Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency. Front Immunol 7 : 220, 2016.
P.202 掲載の参考文献
1) Goldman FD, et al : Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer 58 : 591-597, 2012.
3) Hoshino A, et al : Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 140 : 223-231, 2017.
4) Boutboul D, et al : Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest 128 : 3071-3087, 2018.
5) Fan Y, Lu D : The Ikaros family of zinc-finger proteins. Acta Pharm Sin B 6 : 513-521, 2016.
6) Kellner ES, et al : Allogeneic hematopoietic stem cell transplant outcomes for patients with dominant negative IKZF1/IKAROS mutations. J Allergy Clin Immunol 144 : 339-342, 2019.
P.205 掲載の参考文献
1) Keller MD, et al : Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. J Allergy Clin Immunol 138 : 544-550.e4, 2016.
2) Teng AC, et al : Identification of a phosphorylation-dependent nuclear localization motif in interferon regulatory factor 2 binding protein 2. PLoS ONE 6 : e24100, 2011.
3) Childs KS, Goodbourn S : Identification of novel co-repressor molecules for Interferon Regulatory Factor-2. Nucleic Acids Res 31 : 3016-3026, 2003.
4) Matsuyama T, et al : Targeted disruption of IRF-2 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75 : 83-97, 1993.
5) Teng AC, et al : IRF2BP2 is a skeletal and cardiac muscle-enriched ischemia-inducible activator of VEGFA expression. FASEB J 24 : 4825-4834, 2010.
6) Wu A, et al : Loss of VGLL4 suppresses tumor PD-L1 expression and immune evasion. EMBO J 38 : e99506, 2019.
7) Carneiro FR, et al : Interferon regulatory factor 2 binding protein 2 is a new NFAT1 partner and represses its transcriptional activity. Mol Cell Biol 31 : 2889-2901, 2011.
8) Secca C, et al : IRF2BP2 transcriptional repressor restrains naive CD4 T cell activation and clonal expansion induced by TCR triggering. J Leukoc Biol 100 : 1081-1091, 2016.
9) Chen HH, et al : IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circ Res 117 : 671-683, 2015.
10) Stadhouders R, et al : Control of developmentally primed erythroid genes by combinatorial corepressor actions. Nat Commun 6 : 8893, 2015.
P.209 掲載の参考文献
1) Jansen EJ, et al : ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7 : 11600, 2016.
2) Witters P, et al : Expanding the phenotype of metabolic cutis laxa with an additional disorder of N-linked protein glycosylation. Eur J Hum Genet 26 : 618-621, 2018.
3) Dimitrov B, et al : Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG. Mol Genet Metab 123 : 364-374, 2018.
4) Ondruskova N, et al : Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 43 : 694-700, 2020.
5) Lou Z, et al : Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs : Role in the Antibody Response. Front Immunol 6 : 537, 2015.
P.212 掲載の参考文献
1) Bouafia A, et al : Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest 129 : 1047-1060, 2019.
2) Girkontaite I, et al : Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol 2 : 855-862, 2001.
3) Glaven JA, et al : Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem 271 : 27374-27381, 1996.
4) Chen Z, et al : Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain. J Biol Chem 287 : 25490-25500, 2012.
5) Rubtsov A, et al : Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity 23 : 527-538, 2005.
7) Lanzi G, et al : A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med 209 : 29-34, 2012.
8) Su HC : Combined immunodeficiency associated with DOCK8 mutations and related immunodeficiencies. Dis Markers 29 : 121-122, 2010.
9) Heurtier L, et al : Mutations in the adaptor-binding domain and associated linker region of p110δ cause Activated PI3K-δ Syndrome 1 (APDS1). Haematologica 102 : e278-e281, 2017.
P.215 掲載の参考文献
1) Keller B, et al : Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med 215 : 1327-1336, 2018.
2) Mensink EJ, et al : Mapping of a gene for X-linked agammaglobulinemia and evidence for genetic heterogeneity. Hum Genet 73 : 327-332, 1986.
3) Take H, et al : Cloning and characterization of a novel adaptor protein, CIN85, that interacts with c-Cbl. Biochem Biophys Res Commun 268 : 321-328, 2000.
4) Kometani K, et al : CIN85 drives B cell responses by linking BCR signals to the canonical NF-kappaB pathway. J Exp Med 208 : 1447-1457, 2011.
5) Kong MS, et al : Inhibition of T cell activation and function by the adaptor protein CIN85. Sci Signal 12 : eaav4373, 2019.
6) Shimokawa N, et al : CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. EMBO J 29 : 2421-2432, 2010.
P.219 掲載の参考文献
1) Schubert D, et al : Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 141 : 1427-1438, 2018.
2) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
3) Grootjans J, et al : The unfolded protein response in immunity and inflammation. Nat Rev Immunol 16 : 469-484, 2016.
4) Bettigole SE, Glimcher LH : Endoplasmic reticulum stress in immunity. Annu Rev Immunol 33 : 107-138, 2015.
5) Iwakoshi NN, et al : Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4 : 321-329, 2003.
6) Iwakoshi NN, et al : The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev 194 : 29-38, 2003.
7) Zimmermann R : Components and Mechanisms of Import, Modification, Folding, and Assembly of Immunoglobulins in the Endoplasmic Reticulum. J Clin Immunol 36 (Suppl 1) : 5-11, 2016.
8) Lang S, et al : An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Front Physiol 8 : 887, 2017,
9) Bolar NA, et al : Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia. Am J Hum Genet 99 : 174-187, 2016.
10) Van Nieuwenhove E, et al : Defective Sec61 α1 underlies a novel cause of autosomal dominant severe congenital neutropenia. J Allergy Clin Immunol, 2020. (DOI : 10.1016/j.jaci.2020.03.034)
11) Yong PF, et al : "A rose is a rose is a rose," but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol 111 : 47-107, 2011.
P.222 掲載の参考文献
2) Accetta D, et al : Human Phagocyte Defect Caused by a Rac2 Mutation Detected by Means of Neonatal Screening for T-cell Lymphopenia. J Allergy Clin Immunol 127 : 535-538.e1-2, 2011.
3) Alkhairy OK, et al : RAC2 Loss-of-function Mutation in 2 Siblings with Characteristics of Common Variable Immunodeficiency. J Allergy Clin Immunol 135 : 1380-1384.e1-5, 2015.
4) Lougaris V, et al : A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143 : 1649-1653.e3, 2019.
5) Hsu AP, et al : Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133 : 1977-1988, 2019.
6) Sharapova SO, et al : Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205 : 1-5, 2019.
7) Lagresle-Peyrou C, et al : A gain-of-function RAC2 mutation is associated with bone-marrow hypoplasia and an autosomal dominant form of severe combined immunodeficiency. Haematologica, 2020. (DOI : 10.3324/haematol.2019230250)
8) Smits BM, et al : A dominant activating RAC2 variant associated with immunodeficiency and pulmonary disease. Clin Immunol 212 : 108248, 2020.
9) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
10) Roberts AW, et al : Deficiency of the hematopoietic cell-specific Rho farnily GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10 : 183-196, 1999.
11) Walmsley MJ, et al : Critical roles for Racl and Rac2 GTPases in B cell development and signaling. Science 302 : 459-462, 2003.
12) Lougaris V, et al : RAC2 and primary human immune deficiencies. J Leukoc Biol 108 : 687-696, 2020.
13) かずさDNA研究所 : かずさ遺伝子検査室. 遺伝学的検査リスト. 原発性免疫不全症候群. [https://www.kazusa.or.jp/genetest/documents/tests/insured/K010-04_v9.pdf] (参照 2020-7-26)

VI 免疫調節障害

P.229 掲載の参考文献
1) Sepulveda FE, de Saint Basile G : Hemophagocytic syndrome : primary forms and predisposing conditions. Curr Opin Immunol 49 : 20-26, 2017.
2) Cepika AM, et al : Tregopathies : Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol 142 : 1679-1695, 2018.
3) Kelsen JR, Baldassano RN : The role of monogenic disease in children with very early onset inflammatory bowel disease. Curr Opin Pediatr 29 : 566-571, 2017.
4) Matson DR, Yang DT : Autoimmune Lymphoproliferative Syndrome : An Overview. Arch Pathol Lab Med 144 : 245-251, 2020.
5) Latour S, Fischer A : Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus : Lessons from genetic diseases. Immunol Rev 291 : 174-189, 2019.
P.232 掲載の参考文献
1) Schuster V, et al : Epstein-Barr virus infection rapidly progressing to monoclonal lymphoproliferative disease in a child with selective immunodeficiency. Eur J Pediatr 150 : 48-53, 1990.
2) Daschkey S, et al : Fatal Lymphoproliferative Disease in Two Siblings Lacking Functional FAAP24. J Clin Immunol 36 : 684-692, 2016.
3) Picard C, et al : International Union of Immunological Societies : 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38 : 96-128, 2018.
4) dbSNP : rs148106526. [https://www.ncbi.nlm.nih.gov/snp/rs148106526] (2020年8月閲覧)
5) Collis SJ, et al : FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell 32 : 313-324, 2008.
6) Schuster V, et al : Detection of a nuclear antigen 2 (EBNA2) -variant Epstein-Barr virus strain in two siblings with fatal lymphoproliferative disease. J Med Virol 48 : 114-120, 1996.
7) Tangye SG, Latour S : Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135 : 644-655, 2020.
P.235 掲載の参考文献
1) Nunes V, Niinikoski H : Lysinuric Protein Intolerance. In : GeneReviews(R) [Internet], University of Washington, Seattle, 1993-2020, 2006 Dec 21 [updated 2018 Apr 12].
2) Barilli A, et al : Impaired phagocytosis in macrophages from patients affected by lysinuric protein intolerance. Mol Genet Metab 105 : 585-589, 2012.
3) Barilli A, et al : In Lysinuric Protein Intolerance system y+L activity is defective in monocytes and in GM-CSF-differentiated macrophages. Orphanet J Rare Dis 5 : 32, 2010.
4) Tringham M, et al : Exploring the transcriptomic variation caused by the Finnish founder mutation of lysinuric protein intolerance (LPI). Mol Genet Metab 105 : 408-415, 2012.
5) Rotoli BM, et al : Downregulation of SLC7A7 Triggers an Inflammatory Phenotype in Human Macrophages and Airway Epithelial Cells. Front Immunol 9 : 508, 2018.
6) Kurko J, et al : Dysfunction in macrophage toll-like receptor signaling caused by an inborn error of cationic amino acid transport. Mol Immunol 67 : 416-425, 2015.
7) Ko JM, et al : Hyperammonemia in a case of herpes simplex and anti-N-methyl-d-aspartate receptor encephalitis. Brain Dev 41 : 634-637, 2019.
8) Lukkarinen M, et al : Band T cell immunity in patients with lysinuric protein intolerance. Clin Exp Immunol 116 : 430-434, 1999.
10) Lukkarinen M, et al : Varicella and varicella immunity in patients with lysinuric protein intolerance. J Inherit Metab Dis 21 : 103-111, 1998.
11) Duval M, et al : Intermittent hemophagocytic lymphohistiocytosis is a regular feature of lysinuric protein intolerance. J Pediatr 134 : 236-239, 1999.
12) 北澤克彦, ほか : Hemophagocytic lymphohistiocytosis (HLH) 発症を契機に診断されたリジン尿性蛋白不耐症の1例. 日本小児血液学会雑誌 14 : 125-129, 2000.
13) Gordon WC, et al : Haemophagocytosis by myeloid precursors in lysinuric protein intolerance. Br J Haematol 138 : 1, 2007.
14) Bader-Meunier B, et al : Treatment of hemophagocytic lymphohistiocytosis with cyclosporin A and steroids in a boy with lysinuric protein intolerance. J Pediatr 136 : 134, 2000.
P.238 掲載の参考文献
1) Sharon M, et al : Novel interleukin-2 receptor subunit detected by cross-linking under high-affinity conditions. Science 234 : 859-863, 1986.
2) Teshigawara K, et al : Interleukin 2 high-affinity receptor expression requires two distinct binding proteins. J Exp Med 165 : 223-238, 1987.
3) Tsudo M, et al : Demonstration of a non-Tac peptide that binds interleukin 2 : a potential participant in a multichain interleukin 2 receptor complex. Proc Natl Acad Sci USA 83 : 9694-9698, 1986.
4) Suzuki H, et al : Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268 : 1472-1476, 1995.
5) Zhang Z, et al : Human interleukin-2 receptor β mutations associated with defects in immunity and peripheral tolerance. J Exp Med 216 : 1311-1327, 2019.
6) Fernandez IZ, et al : A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med 216 : 1255-1267, 2019.
7) Liao W, et al : Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38 : 13-25, 2013.
8) Gilrnour KC, et al : Defective expression of the interleukin-2/interleukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98 : 877-879, 2001.
P.241 掲載の参考文献
1) Serwas NK, et al : Human DEF6 deficiency underlies an immunodeficiency syndrome with systemic autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun 10 : 3106, 2019.
2) Becart S, Altman A : SWAP-70-like adapter of T cells : a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+ signaling in T cells. Immunol Rev 232 : 319-333, 2009.
3) 小林一郎 : Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) 変異 ; 原発性免疫不全症候群. 免疫調節障害. Tregulatory cells genetic defects. 別冊日本臨牀新領域別症候群シリーズ No. 36 免疫症候群 (第2版) III, p488-491, 日本臨牀社, 2016.
4) 大川哲平, 森尾友宏 : Lipopolysaccharide-responsive, beige-like anchor protein (LRBA) 欠損症 ; 原発性免疫不全症候群. 複合免疫不全症. SCIDよりも軽症な複合免疫不全症. 別冊日本臨牀新領域別症候群シリーズ No. 36 免疫症候群 (第2版) III, p158-160, 日本臨牀社, 2016.
5) Takahashi S, et al : Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci 125 : 4049-4057, 2012.
6) Bourgeois P, et al : Tricho-Hepato-Enteric Syndrome mutation update : Mutations spectrum of TTC37 and SKIV2 L, clinical analysis and future prospects. Hum Mutat 39 : 774-789, 2018.
7) Fabre A, et al : Management of syndromic diarrhea/tricho-hepato-enteric syndrome : A review of the literature. Intractable Rare Dis Res 6 : 152-157, 2017.
P.244 掲載の参考文献
1) Afzali B, et al : BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 18 : 813-823, 2017.
2) Igarashi K, et al : Orchestration of plasma cell differentiation by Bach2 and its gene regulatory network. Immunol Rev 261 : 116-125, 2014.
3) Ochiai K, et al : Plasmacytic transcription factor Blimp-1 is repressed by Bach2 in B cells. J Biol Chem 281 : 38226-38234, 2006.
5) Shinnakasu R, et al : Regulated selection of germinal-center cells into the memory B cell compartment. Nat Immunol 17 : 861-869, 2016.
6) Tsukumo S, et al : Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc Natl Acad Sci USA 110 : 10735-10740, 2013.
7) Kuwahara M, et al : Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop. Nat Commun 7 : 12596, 2016.
8) Roychoudhuri R, et al : BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498 : 506-510, 2013.
9) Kim EH, et al : Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol 192 : 985-995, 2014.
10) Sidwell T, et al : Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat Commun 11 : 252, 2020.
11) Grant FM, et al : BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J Exp Med 217 : e20190711, 2020.
P.247 掲載の参考文献
1) Kindler T : Congenital poikiloderma with traumatic bulla formation and progressive cutaneous atrophy. Br J Dermatol 66 : 104-111, 1954.
2) Siegel DH, et al : Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am J Hum Genet 73 : 174-187, 2003.
3) Rognoni E, et al : The kindlin family : functions, signaling properties and implications for human disease. J Cell Sci 129 : 17-27, 2016.
4) Has C, et al : Kindler syndrome : extension of FERMT1 mutational spectrum and natural history. Hum Mutat 32 : 1204-1212, 2011.
5) Roda A, et al : Kindler syndrome in a patient with colitis and primary sclerosing cholangitis : coincidence or association? Dermatol Online J 24 : 13030/qt4k08r7x4, 2018.
6) Pazmandi J, et al : Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 287 : 162-185, 2019.
7) Ashton JJ, et al : Identification of Variants in Genes Associated with Single-gene Inflammatory Bowel Disease by Whole-exome Sequencing. Inflamm Bowel Dis 22 : 2317-2327, 2016.
8) Kern JS, et al : Chronic colitis due to an epithelial barrier defect : the role of kindlin-1 isoforms, J Pathol 213 : 462-470, 2007.
9) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
P.251 掲載の参考文献
1) Del Bel KL, et al : JAK1 gain-of-function causes an autosomal dominant immune dysregulatory and hypereosinophilic syndrome. J Allergy Clin Immunol 139 : 2016-2020.e5, 2017.
2) Yasuda T, et al : Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis. J Clin Invest 126 : 2064-2076, 2016.
3) 天野宏一 : JAKとリウマチ性疾患. 臨床リウマチ 26 : 330-332, 2014.
P.253 掲載の参考文献
1) 野上玲子, 前川嘉洋 : プロリダーゼ欠損症の1例-15年の経過報告と植皮術の有用性について-. 医療 48 : 970-973. 1994.
2) Ferreira C, Wang H : Prolidase Deficiency. In : GeneReviews(R) [Internet], University of Washington, Seattle, 1993-2020, 2015 Jun 25.
3) 清佳浩 : プロリダーゼ欠損症. 皮膚 30 : 734-740, 1988.
4) 福村敦 : 高IgE血症, 多発性肺嚢胞など多彩な所見を呈したプロリダーゼ欠損症の1例. 日本内科学会雑誌 98 : 150-152, 2009.
P.256 掲載の参考文献
1) Kotlarz D, et al : Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet 50 : 344-348, 2018.
P.260 掲載の参考文献
1) Newton K : Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 12 : a036368, 2020.
2) Zhang T, et al : Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell 180 : 1115-1129.e13, 2020.
3) Cuchet-Lourenco D, et al : Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361 : 810-813, 2018.
4) Li Y, et al : Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc Natl Acad Sci USA 116 : 970-975, 2019.
5) Uchiyama Y, et al : Primary immunodeficiency with chronic enteropathy and developmental delay in aboy arising from a novel homozygous RIPK1 variant. J Hum Genet 64 : 955-960, 2019.
6) Lalaoui N, et al : Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577 : 103-108, 2020.
7) Tao P, et al : A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577 : 109-114, 2020.
P.262 掲載の参考文献
1) Izawa K, et al : Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med 214 : 73-89, 2017.
2) Abolhassani H, et al : Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med 214 : 91-106, 2017.
3) Goodwin RG, et al : Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73 : 447-456, 1993.
4) Ghosh S, et al : Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood, 2020. [DOI : 10.1182/blood.2020006738]
5) Caorsi R, et al : CD70 Deficiency due to a Novel Mutation in a Patient with Severe Chronic EBV Infection Presenting As a Periodic Fever. Front Immunol 8 : 2015, 2018.
P.265 掲載の参考文献
1) Bitra A, et al : Crystal structures of the human 4-1BB receptor bound to its ligand 4-1BBL reveal covalent receptor dimerization as a potential signaling amplifier. J Biol Chem 293 : 9958-9969, 2018.
2) Alosaimi MF, et al : Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol 144 : 574-583.e5, 2019.
3) Somekh I, et al : CD137 deficiency causes immune dysregulation with predisposition to lymphomagenesis. Blood 134 : 1510-1516. 2019.
4) Rodriguez R, et al : Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 216 : 2800-2818, 2019.
5) Tangye SG, Latour S : Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135 : 644-655, 2020.
P.268 掲載の参考文献
1) Salzer E, et al : RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 17 : 1352-1360, 2016.
2) Platt CD, et al : Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol 183 : 142-144, 2017.
3) Mao H, et al : RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol 142 : 595-604. e16, 2018.
4) Winter S, et al : Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med 10 : 188-199, 2018.
5) Somekh I, et al : Novel Mutations in RASGRP1 are Associated with Immunodeficiency, Immune Dysregulation, and EBV-Induced Lymphoma. J Clin Immunol 38 : 699-710, 2018.
6) Latour S, Winter S : Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 9 : 1103, 2018.
P.271 掲載の参考文献
1) Sorte HS, et al : A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4 : 604-616, 2016.
2) Wang Y, et al : Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213 : 2413-2435, 2016.
3) Roncagalli R, et al : The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213 : 2437-2457, 2016
4) Schober T, et al : A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun 8 : 14209, 2017.
5) Alazami AM, et al : Novel CARMIL2 Mutations in Patients with Variable Clinical Dermatitis, Infections, and Combined Immunodeficiency. Front Immunol 9 : 203, 2018.
6) Magg T, et al : CARMIL2 Deficiency Presenting as Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 25 : 1788-1795, 2019.
7) Atschekzei F, et al : A Novel CARMIL2 Mutation Resulting in Combined Immunodeficiency Manifesting with Dermatitis, Fungal, and Viral Skin Infections As Well as Selective Antibody Deficiency. J Clin Immunol 39 : 274-276, 2019.
8) Marangi G, et al : Complex muco-cutaneous manifastations of CARMIL2-associated combined immunodeficiency : a novel presentation of dysfunctional epithelial barriers. Acta Derm Venereol 100 : adv00038, 2020.
9) Kurolap A, et al : A unique presentation of infantile-onset colitis and eosinophilic disease without recurrent infections resulting from a novel homozygous CARMIL2 variant. J Clin Immunol 39 : 430-439, 2019.
10) Maccari ME, et al : Profound immunodeficiency with severe skin disease explained by concomitant novel CARMIL2 and PLEC1 loss-of-function mutations. Clin Immunol 208 : 108228, 2019.
11) Yonkof JR, et al : A Novel Pathogenic Variant in CARMIL2 (RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 11 : 884, 2020.
12) Liang Y, et al : The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14 : 858-866, 2013.

VII 食細胞 ( 数あるいは機能 ) 異常症

P.277 掲載の参考文献
1) Lavin Y, et al : Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15 : 731-744, 2015.
2) Panopoulos AD, Watowich SS : Granulocyte colony-stimulating factor : molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 42 : 277-288, 2008.
3) Karsunky H. et al : Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfil. Nat Genet 30 : 295-300, 2002.
4) Hambleton S, et al : IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365 : 127-138, 2011.
6) 松久明生, ほか : 感染とNETs (neutrophil extracellular traps) 形成の関わりから敗血症と自己免疫疾患を眺める. 日本細菌学雑誌 73 : 171-191, 2018.
P.280 掲載の参考文献
1) Witzel M, et al : Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 49 : 742-752, 2017.
2) Priam P, et al : SMARCD2 subunit of SWI/SNF chromatin-remodeling complex mediates granulopoiesis through a CEBP ε dependent mechanism. Nat Genet 49 : 753-764, 2017.
3) Borregaard N, et al : Granules and secretory vesicles of the human neutrophil. Clin Exp Immunol 101 (Suppl 1) : 6-9, 1995.
4) Johnston JJ, et al : Correlation of messenger RNA levels with protein defects in specific granule deficiency. Blood 80 : 2088-2091, 1992.
5) Friedman AD : Transcriptional control of granulocyte and monocyte development. Oncogene 26 : 6816-6828, 2007.
6) Lekstrom-Himes JA, et al : Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 189 : 1847-1852, 1999.
7) Gombart AF, et al : Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU. 1. Blood 101 : 3265-3273, 2003.
8) Mashtalir N, et al : Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell 175 : 1272-1288.e20, 2018.
9) Bakhtiar S, et al : The evidence for allogeneic hematopoietic stem cell transplantation for congenital neutrophil disorders : A comprehensive review by the inborn errors working party group of the EBMT. Front Pediatr 7 : 436, 2019.
P.283 掲載の参考文献
1) Haapaniemi EM, et al : Combined immunodeficiency and hypoglycemia associated with mutations in hypoxia upregulated 1. J Allergy Clin Immunol 139 : 1391-1393.e11, 2017.
2) Takeuchi S : Molecular cloning, sequence, function and structural basis of human heart 150 kDa oxygen-regulated protein, an ER chaperone. Protein J 25 : 517-528, 2006.
3) Arrington DD, et al : Targeting of the molecular chaperone oxygen-regulated protein 150 (ORP150) to mitochondria and its induction by cellular stress. Am J Physiol Cell Physid 294 : C641-650, 2008.
4) Ozawa K, et al : 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 274 : 6397-6404, 1999.
5) Wang H, et al : The Endoplasmic Reticulum Chaperone GRP170 : From Immunobiology to Cancer Therapeutics. Front Oncol 4 : 377, 2014.
P.286 掲載の参考文献
1) Bellanne-Chantelot C, et al : Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome. Blood 132 : 1318-1331, 2018.
2) Carapito R, et al : Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest 127 : 4090-4103, 2017.
3) Nyathi Y, et al : Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta 1833 : 2392-2402, 2013.
4) Karamyshev AL, et al : Translational control of secretory proteins in health and disease. Int J Mol Sci 21 : 2538, 2020.
5) Akopian D, et al : Signal recognition particle : an essential protein-targeting machine. Annu Rev Biochem 82 : 693-721, 2013.
6) Karamyshev AL, et al : Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell 156 : 146-157, 2014.
7) Halic M, et al : Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427 : 808-814, 2004.
P.289 掲載の参考文献
1) Kuhns DB, et al : Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128 : 2135-2143, 2016.
2) Picard C, et al : International Union of Immunological Societies : 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 38 : 96-128, 2018.
3) Pfajfer L, et al : Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 142 : 1589-1604.e11, 2018.
4) Standing AS, et al : Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 214 : 59-71, 2017.
5) Ono S : Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 506 : 315-322, 2018.
6) Budnar S, Yap AS : A mechanobiological perspective on cadherins and the actin-myosin cytoskeleton. F1000Prime Rep 5 : 35, 2013.
7) Wang J, et al : Hippocampal Wdr1 Deficit Impairs Learning and Memory by Perturbing F-actin Depolymerization in Mice. Cereb Cortex 29 : 4194-4207, 2019.
P.293 掲載の参考文献
1) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
2) Roesch EA, et al : Inflammation in cystic fibrosis : An update. Pediatr Pulmonol 53 : S30-S50, 2018.
3) Hamosh A, et al : Comparison of the clinical manifestations of cystic fibrosis in black and white patients. J Pediatr 132 : 255-259, 1998.
4) Orenstein DM, et al : Cystic fibrosis : a 2002 update. J Pediatr 140 : 156-164, 2002.
5) McKone EF, et al : Effect of genotype on phenotype and mortality in cystic fibrosis : a retrospective cohort study. Lancet 361 : 1671-1676, 2003.
6) Moss RB : Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosis. Chest 121 : 55-63, 2002.
7) Rafeeq MM, Murad HAS : Cystic fibrosis : current therapeutic targets and future approaches. J Transl Med 15 : 84, 2017.
P.296 掲載の参考文献
1) Wang DZ, et al : Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA 99 : 14855-14860, 2002.
2) Muehlich S, et al : Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol Cell Biol 28 : 6302-6313, 2008.
3) Record J, et al : Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homozygous mutation of MKL1. Blood 126 : 1527-1535, 2015.
4) Sprenkeler EGG, et al : MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. Blood 135 : 2171-2181, 2020.
5) Posern G, Treisman R : Actin' together : serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16 : 588-596, 2006.
6) Esnault C, et al : Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28 : 943-958, 2014.
7) Olson EN, Nordheim A : Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11 : 353-365, 2010.
8) Li S, et al : Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Mol Cell Biol 26 : 5797-5808, 2006.
9) Cheng EC, et al : Role for MKL1 in megakaryocytic maturation. Blood 113 : 2826-2834, 2009.
P.299 掲載の参考文献
1) Beutler E : G6PD : population genetics and clinical manifestations. Blood Rev 10 : 45-52, 1996.
3) Ruwende C, Hill A : Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 76 : 581-588, 1998.
4) von Fricken ME, et al : Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Ouest and Sud-Est departments of Haiti. Acta Trop 135 : 62-66, 2014.
5) Beutler E : The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 27 : 137-164, 1990.
6) Wolach B, et al : Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel. Pediatr Res 55 : 807-813, 2004.
7) Cocco P, et al : Mortality in a cohort of men expressing the glucose-6-phosphate dehydrogenase deficiency. Blood 91 : 706-709, 1998.

VIII 内因性あるいは自然免疫の異常

P.311 掲載の参考文献
1) Tangye SG, et al : Human Inborn Errors of Immunity : 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 40 : 24-64, 2020.
2) Bustamante J, et al : Mendelian susceptibility to mycobacterial disease : genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 26 : 454-470, 2014.
3) Rosain J, et al : Mendelian susceptibility to mycobacterial disease : 2014-2018 update. Immunol Cell Biol 97 : 360-367, 2019.
4) de Jong SJ, et al : The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 215 : 2289-2310, 2018.
5) Hernandez PA, et al : Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34 : 70-74, 2003.
6) Poyhonen L, et al : Life-Threatening Infections Due to Live-Attenuated Vaccines : Early Manifestations of Inborn Errors of Immunity. J Clin Immunol 39 : 376-390, 2019.
7) Jing H, Su HC : New immunodeficiency syndromes that help us understand the IFN-mediated antiviral immune response. Curr Opin Pediatr 31 : 815-820, 2019.
8) Grier JT, et al : Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J Clin Invest 122 : 3769-3780, 2012.
9) Zhang SY : Herpes simplex virus encephalitis of childhood : inborn errors of central nervous system cell-intrinsic immunity. Hum Genet 139 : 911-918, 2020.
10) Zhang SY, et al : Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection. Cell 172 : 952-965.e18, 2018.
11) Puel A : Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum Genet 139 : 1011-1022, 2020.
12) Okada S, et al : Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology 5 : e114, 2016.
13) Boisson B : The genetic basis of pneumococcal and staphylococcal infections : inborn errors of human TLR and IL-1R immunity. Hum Genet 139 : 981-991, 2020.
14) Guerin A, et al : IRF4 haploinsufficiency in a family with Whipple's disease. Elife 7 : e32340, 2018.
15) Belkaya S, et al : Inherited IL-18BP deficiency in human fulminant viral hepatitis. J Exp Med 216 : 1777-1790, 2019.
P.315 掲載の参考文献
1) Kong XF, et al : Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol 19 : 973-985, 2018.
2) Rosain J, et al : Mendelian susceptibility to mycobacterial disease : 2014-2018 update. Immunol Cell Biol 97 : 360-367, 2019.
3) 浅野孝基, 岡田賢 : メンデル遺伝型マイコバクテリア易感染症 (MSMD ; Mendelian Susceptibility to Mycobacterial Disease) ~これまでの流れから最近の話題まで~. 日本小児血液・がん学会雑誌 56 : 379-387, 2019.
4) 原発性免疫不全症候群 診療の手引き (日本免疫不全症研究会編), p108, 診断と治療社, 2017.
P.318 掲載の参考文献
1) Strobl B, et al : Tyrosine Kinase 2 (TYK2) in Cytokine Signalling and Host Immunity. Front Biosci (Landmark Ed) 16 : 3214-3232, 2011.
3) Kreins AY, et al : Human TYK2 deficiency : Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 212 : 1641-1662, 2015.
4) Boisson-Dupuis S, et al : Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol 3 : eaau8714, 2018.
5) Kerner G, et al : Homozygosity for TYK2 P1104A underlies tuberculosis in about l% of patients in a cohort of European ancestry. Proc Natl Acad Sci USA 116 : 10430-10434, 2019.
6) Li Z, et al : Two rare disease-associated Tyk2 variants are catalytically impaired but signaling competent. J Immunol 190 : 2335-2344, 2013.
7) Dendrou CA, et al : Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci Transl Med 8 : 363ra149, 2016.
8) Bustamante J : Mendelian susceptibility to mycobacterial disease : recent discoveries. Hum Genet 139 : 993-1000, 2020.
9) Boisson-Dupuis S : The monogenic basis of human tuberculosis. Hum Genet 139 : 1001-1009, 2020.
P.321 掲載の参考文献
1) Cypowyj S, et al : Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 42 : 2246-2254, 2012.
2) Romani L : Immunity to fungal infections. Nat Rev Immunol 11 : 275-288, 2011.
3) Puel A, et al : Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332 : 65-68, 2011.
4) Okada S, et al : Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunology 5 : e114, 2016.
5) Bustamante J, et al : Mendelian susceptibility to mycobacterial disease : genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol 26 : 454-470, 2014.
6) Okada S, et al : IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349 : 606-613, 2015.
7) Kurebayashi S, et al : Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 97 : 10132-10137, 2000.
P.324 掲載の参考文献
1) Bousfiha A, et al : The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 38 : 129-143, 2018.
2) Eletto D, et al : Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun 7 : 13992, 2016.
3) van Vollenhoven RF, et al : Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367 : 508-519, 2012.
4) Fleischmann R, et al : Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367 : 495-507, 2012.
5) Kremer J, et al : Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis : a randomized trial. Ann Intern Med 159 : 253-261, 2013.
6) Lee EB, et al : Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370 : 2377-2386, 2014.
7) 浅野孝基, 岡田賢 : 小児がん治療における特殊な重症感染症シリーズ : (1) 抗酸菌 メンデル遺伝型マイコバクテリア易感染症 (MSMD ; Mendelian Susceptibility to Mycobacterial Disease) ~これまでの流れから最近の話題まで~. 日本小児血液・がん学会雑誌 56 : 379-387, 2019.
P.327 掲載の参考文献
1) Ramoz N, et al : Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet 32 : 579-581, 2002.
2) de Jong SJ, et al : The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 215 : 2289-2310, 2018.
3) Shock DD, et al : Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton. Biochem J 342 (Pt 3) : 729-735, 1999.
4) Leisner TM, et al : CIB1 : a small protein with big ambitions. FASEB J 30 : 2640-2650, 2016.
5) Lazarczyk M, et al : Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med 205 : 35-42, 2008.
P.330 掲載の参考文献
1) Hernandez N, et al : Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215 : 2567-2585, 2018.
2) Bravo Garcia-Morato M, et al : Impaired control of multiple viral infections in a family with complete IRF9 deficiency, J Allergy Clin Immunol 144 : 309-312.e10, 2019.
3) Duncan CJA, et al : Human IFNAR2 deficiency : lessons for antiviral immunity. Sci Transl Med 7 : 307ra154, 2015.
P.334 掲載の参考文献
1) Hernandez N, et al : Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 216 : 2057-2070, 2019.
2) Hoyos-Bachiloglu R, et al : A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations. J Clin Invest 127 : 4415-4420, 2017.
3) Duncan CJA, et al : Human IFNAR2 deficiency : lessons for antiviral immunity. Sci Transl Med 7 : 307ra154, 2015.
4) Burns C, et al : A novel presentation of homozygous loss-of-function STAT-1 mutation in an infant with hyperinflammation-A case report and review of the literature. J Allergy Clin Immunol Pract 4 : 777-779, 2016.
5) Hambleton S, et al : STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci USA 110 : 3053-3058, 2013.
6) Hernandez N, et al : Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215 : 2567-2585, 2018.
7) Eletto D, et al : Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun 7 : 13992, 2016.
P.338 掲載の参考文献
1) Duncan CJA, et al : Human IFNAR2 deficiency : lessons for antiviral immunity. Sci Transl Med 7 : 307ra154, 2015.
2) Frodsham AJ, et al : Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. Proc Natl Acad Sci USA 103 : 9148-9153, 2006.
3) Hernandez N, et al : Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. J Exp Med 216 : 2057-2070, 2019.
4) Hambleton S, et al : STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci USA 110 : 3053-3058, 2013.
5) Hernandez N, et al : Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med 215 : 2567-2585, 2018.
P.340 掲載の参考文献
1) Lanier LL, et al : Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 141 : 3478-3485, 1988.
2) Gessner JE, et al : The human low affinity immunoglobulin G Fc receptor III-A and III-B genes. Molecular characterization of the promoter regions. J Biol Chem 270 : 1350-1361, 1995.
3) Le Coniat M, et al : The human genes for the alpha and gamma subunits of the mast cell receptor for immunoglobulin E are located on human chromosome band 1q23. Immunogenetics 32 : 183-186, 1990.