EBM 血液疾患の治療 2021-2022

出版社: 中外医学社
著者:
発行日: 2021-01-10
分野: 臨床医学:内科  >  血液
ISBN: 9784498225244
電子書籍版: 2021-01-10 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
発送目安:4~8営業日

15,400 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

15,400 円(税込)

商品紹介

血液疾患の諸問題にどう対応し,解決するか,最新のエビデンスをもとに解説したレファランス.治療に必須の知見を,「序論,指針,エビデンス,根拠となった臨床研究の問題点と限界,患者に適応する際の注意点,コメント,文献」の順に紹介し,現時点における最新の治療法や考え方だけでなく,現場で判断に迷うような事柄・問題点に指針を与える.急速に進歩する血液学領域の知識をcatch-upできる,臨床医必携の書だ.

目次

  • I.造血器腫瘍のクリニカルシーケンス
       1.骨髄系腫瘍に対するクリニカルシーケンス
       2.リンパ系腫瘍に対するクリニカルシーケンス

    II.赤血球系疾患
       1.再生不良性貧血(AA)の分子病態研究の進歩
       2.未治療再生不良性貧血に対する免疫抑制療法
       3.再発・難治再生不良性貧血に対するTPO 受容体作動薬
       4.再生不良性貧血(AA)に対する移植前処置
       5.先天性骨髄不全症に対する造血幹細胞移植
       6.骨髄異形成症候群(MDS)に対する薬物療法
       7.骨髄異形成症候群(MDS)に対する同種造血幹細胞移植
       8.骨髄異形成症候群(MDS)に対する開発中の新規治療薬
       9.赤芽球癆(PRCA)の治療
       10.難治性自己免疫性溶血性貧血(AIHA)の治療
       11.寒冷凝集素症(CAD)に対する治療と開発中の新規治療薬
       12.発作性夜間ヘモグロビン尿症(PNH)に対する治療

    III.白血病
     A.急性骨髄性白血病(AML)
       1.AML の分子病態と予後解析研究の進展
       2.家族性白血病の病態
       3.初発AML の治療
       4.高齢者AML の治療
       5.小児AML の治療
       6.再発・難治AML の治療
       7.第1 寛解期AML に対する同種造血幹細胞移植
       8.AML に対する新規治療薬開発の現状

     B.急性前骨髄球性白血病(APL)
       1.初発APL の寛解導入療法
       2.再発APL の治療

     C.急性リンパ性白血病(ALL)
       1.成人Ph 陽性ALL の治療
       2.成人Ph 陰性ALL の治療
       3.再発・難治ALL の治療
       4.AYA 世代ALL の治療
       5.高齢者ALL の治療

     D.慢性骨髄性白血病(CML)
       1.初発CP-CML の治療
       2.進行期CML の治療
       3.TKI 長期投与による有害事象とその対策
       4.CML の治療目標とTKI 投与中止

     E.骨髄増殖性腫瘍(MPN)
       1.骨髄増殖性腫瘍(MPN)における分子病態研究の進歩
       2.真性多血症(PV)の治療
       3.本態性血小板増加症(ET)の治療
       4.原発性骨髄線維症(PMF)の治療
       5.好酸球増加症候群(HES)の治療
       6.慢性好中球性白血病(CNL)の病態と診断・治療

    IV.リンパ系腫瘍
     A.慢性リンパ性白血病(CLL)
       1.初発CLL の治療
       2.治療抵抗性CLL の治療
       3.CLL におけるMRD 検出方法と意義

     B.Indolent B 細胞リンパ腫
       1.進行期低腫瘍量濾胞性リンパ腫(FL)の治療方針
       2.進行期高腫瘍量濾胞性リンパ腫(FL)の治療方針
       3.再発・再燃濾胞性リンパ腫(FL)の治療方針
       4.辺縁帯リンパ腫(MZL)・リンパ形質細胞リンパ腫(LPL)の治療方針

     C.マントル細胞リンパ腫(MCL)
       1.若年者マントル細胞リンパ腫(MCL)の治療方針
       2.高齢者マントル細胞リンパ腫(MCL)の治療指針

     D.Aggressive B 細胞リンパ腫
       1.限局期びまん性大細胞型B 細胞リンパ腫(DLBCL)の初回治療方針
       2.若年進行期びまん性大細胞型B 細胞リンパ腫(DLBCL)の初回治療方針
       3.高齢者びまん性大細胞型B 細胞リンパ腫(DLBCL)の治療方針
       4.再発・再燃びまん性大細胞型B 細胞リンパ腫(DLBCL)の治療方針
       5.血管内大細胞型B 細胞リンパ腫(IVLBCL)の治療方針

     E.T/NK 細胞リンパ腫
       1.CD30 陽性T 細胞リンパ腫(PTCL)の初回治療方針
       【トピックス1】CD30 陽性の判定方法
       2.CD30 陰性T 細胞リンパ腫(PTCL)の初回治療方針
       3.節外性NK/T 細胞リンパ腫(ENKL)の治療方針
       4.T/NK 細胞リンパ腫(PTCL・ENKL)に対する免疫チェックポイント阻害薬

     F.成人T 細胞白血病/リンパ腫(ATLL)
       1.成人T 細胞白血病リンパ腫(ATLL)の治療方針
       2.成人T 細胞白血病(ATL)に対する造血幹細胞移植

     G.ホジキンリンパ腫
       1.限局期ホジキンリンパ腫(HL)の治療方針
       2.進行期ホジキンリンパ腫(HL)の治療方針
       3.再発・治療抵抗性ホジキンリンパ腫(HL)の治療方針

    V.多発性骨髄腫と関連疾患
       1.多発性骨髄腫(MM)の分子病態研究の進歩
       2.くすぶり型多発性骨髄腫(SMM)の治療
       3.移植適応初発多発性骨髄腫(MM)の治療
       4.移植非適応初発多発性骨髄腫(MM)の治療
       5.再発・難治性多発性骨髄腫(MM)の治療
       6.多発性骨髄腫(MM)に対する維持療法の意義
       7.多発性骨髄腫(MM)に対する同種移植の現状
       8.多発性骨髄腫(MM)の合併症に対する治療
       9.形質細胞性白血病(PCL)の治療
       10.原発性マクログロブリン血症(WM)の治療
       11.原発性アミロイドーシスの治療
       12.キャッスルマン症候群(CD)の治療
       13.POEMS 症候群の治療
       14.TAFRO 症候群の診断と治療

    VI.出血・血栓性疾患 457
       1.特発性血小板減少性紫斑病(ITP)に対する最新の治療戦略
       2.血栓性血小板減少性紫斑病(TTP)治療の最前線
       3.血友病診療の新たな展開
       【トピックス2】血友病保因者の健康管理
       4.後天性凝固インヒビターに対する診断・治療の最前線
       5.抗リン脂質抗体症候群(APS)の治療ストラテジー
       6.遺伝性血栓性素因の診断と管理

    VII.支持療法・輸血
       1.鉄過剰症の治療指針
       2.遷延する発熱性好中球減少症(FN)への対応
       3.クロストリディオイデス・ディフィシル感染症(CDI)の予防と治療
       4.ムーコル感染症の診断と治療
       5.同種移植後インフルエンザウイルス感染症
       6.造血器腫瘍患者の妊孕性温存対策

    VIII.造血幹細胞移植
       1.ATG によるGVHD 予防の長期予後への影響
       2.新しいGVHD 治療薬の開発
       3.機械学習によるGVHD 発症予測
       4.NIH 基準による慢性GVHD の診断の妥当性
       5.非血縁者間移植におけるHLA 不適合の影響
       6.Ph 陽性白血病に対する同種造血幹細胞移植前後のTKI の投与
       7.同種造血幹細胞移植後の骨塩量の変化
       8.臍帯血移植での全身放射線照射(TBI)の役割
       9.前処置薬の血中濃度測定の意義
       10. 腫瘍由来循環DNA による同種造血幹細胞移植後微小残存病変の評価
       11.移植後リンパ増殖性疾患(PTLD)の特徴と治療方針

    IX.血液疾患に対する遺伝子治療・細胞治療
      【トピックス3】難治性血液疾患に対するCAR-T 療法
      【トピックス4】造血幹細胞を用いた遺伝子細胞治療
      【トピックス5】血友病に対する遺伝子治療

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I. 造血器腫瘍のクリニカルシーケンス

P.6 掲載の参考文献
3) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines(R)) acute myeloid leukemia version 3.2020-december 23, 2019. <https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf>
5) Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer a joint consensus recommendation of the association for molecular pathology, American Society Clinical Oncol, and College of American Pathologists. J Molecular Diagnostics. 2017 ; 19 : 4-23.
6) 一般社団法人 日本血液学会, 編. 造血器腫瘍ゲノム検査ガイドライン 2020年度版. 2020. <http://www.jshem.or.jp/genomgl/home.html>
7) Harada Y, Nagata Y, Kihara R, et al. Prognostic analysis according to the 2017 ELN risk stratification by genetics in adult acute myeloid leukemia patients treated in the Japan Adult Leukemia Study Group (JALSG) AML201 study. Leukemia Research. 2018 ; 66 (Lancet 368 9550 2006) : 20-7.
8) Richard-Carpentier G, DiNardo CD. Single-agent and combination biologics in acute myeloid leukemia. Hematology American Society of Hematology Education Program. 2019 ; 1 : 548-56.
9) Mody RJ, Wu YM, Lonigro RJ, et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA. 2015 ; 314 : 913-25.
10) Yasuda T, Sanada M, Nishijima D, et al. Clinical utility of target capture-based panel sequencing in hematological malignancies : a multicenter feasibility study. Cancer Sci. 2020. doi : 10.1111/cas.14552. Online ahead of print.
P.11 掲載の参考文献
1) Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012 ; 367 : 826-33.
2) He J, Abdel-Wahab O, Nahas MK, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016 ; 127 : 3004-14.
4) Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019 ; 51 : 296-307.
5) Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018 ; 378 : 1396-407.
6) Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma : a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015 ; 16 : 1111-22.

II. 赤血球系疾患

P.17 掲載の参考文献
1) Nakao S, Takamatsu H, Chuhjo T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994 ; 84 : 4257-61.
2) Inaguma Y, Akatsuka Y, Hosokawa K, et al. Induction of HLA-B*40 : 02-restricted T cells possessing cytotoxic and suppressive functions against haematopoietic progenitor cells from a patient with severe aplastic anaemia. Br J Haematol. 2016 ; 172 : 131-4.
3) Espinoza JL, Elbadry MI, Chonabayashi K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018 ; 2 : 390-400.
4) Kordasti S, Costantini B, Seidl T, et al. Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 2016 ; 128 : 1193-205.
5) Hosokawa K, Muranski P, Feng X, et al. Memory stem T cells in autoimmune disease : High frequency of circulating CD8+memory stem cells in acquired aplastic anemia. J Immunol. 2016 ; 196 : 1568-78.
9) Babushok DV, Duke JL, Xie HM, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017 ; 1 : 1900-10.
10) Elbadry MI, Mizumaki H, Hosokawa K, et al. Escape hematopoiesis by HLA-B5401-lacking hematopoietic stem progenitor cells in men with acquired aplastic anemia. Haematologica. 2019 ; 104 : e447-50.
11) Hosokawa K, Mizumaki H, Elbadry MI, et al. Clonal hematopoiesis by SLIT1-mutated hematopoietic stem cells due to a breakdown of the autocrine loop involving Slit1 in acquired aplastic anemia. Leukemia. 2019 ; 33 : 2732-66.
12) Hosokawa K, Sugimori C, Ishiyama K, et al. Establishment of a flow cytometry assay for detecting paroxysmal nocturnal hemoglobinuria-type cells specific to patients with bone marrow failure. Ann Hematol. 2018. 97 : 2289-97.
13) Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006 ; 107 : 1308-14.
14) Kulagin A, Lisukov I, Ivanova M, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression : results of two-centre prospective study. Br J Haematol. 2014 ; 164 : 546-54.
15) Mizumaki H, Hosomichi K, Hosokawa K, et al. A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica. 2020. ~247809.
16) Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015 ; 373 : 35-47.
17) Kulasekararaj AG, Jiang J, Smith AE, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014 ; 124 : 2698-704.
18) Zhao X, Gao S, Wu Z, et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood. 2017 ; 130 : 2762-73.
20) Hosokawa K, Katagiri T, Sugimori N, et al. Favorable outcome of patients who have 13q deletion : a suggestion for revision of the WHO 'MDS-U' designation. Haematologica. 2012 ; 97 : 1845-9.
P.23 掲載の参考文献
1) 中尾眞二, 濱麻人, 大橋春彦, 他. 再生不良性貧血の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 再生不良性貧血診療の参照ガイド 令和1年改訂版 : 厚生労働科学研究費補助金難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 (研究代表者 三谷絹子). 2020. <http://zoketsushogaihan.umin.jp/file/2020/02.pdf>
2) 臼杵憲祐. 再生不良性貧血. 臨床血液. 2016 ; 57 : 1890-9.
3) Saito C, Ishiyama K, Yamazaki H, et al. Hypomegakaryocytic thrombocytopenia (HMT) : an immune- mediated bone marrow failure characterized by an increased number of PNH-phenotype cells and high plasma thrombopoietin levels. Br J Haematol. 2016 ; 175 : 246-51.
4) Yamazaki H, Sugimori C, Chuhjo T, et al. Cyclosporine therapy for acquired aplastic anemia : predictive factors for the response and long-term prognosis. Intl J Hematol. 2007 ; 85 : 186-90.
7) Desmond R, Townsley DM, Dumitriu B, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014 ; 123 : 1818-25.
9) Scheinberg P, Nunez O, Young N. Re-treatment with rabbit antithymocyte globulin and ciclosporin for patients with relapsed or refractory severe aplastic anaemia. Br J Haematol. 2006 ; 133 : 622-7.
10) Tichelli A, Passweg J, Nissen C, et al. Repeated treatment with horse antilymphocyte globulin for severe aplastic anaemia. Br J Haematol. 1998 ; 100 : 393-400.
11) Gupta V, Gordon-Smith E, Cook G, et al. A third course of anti-thymocyte globulin in aplastic anaemia is only beneficial in previous responders. Br J Haematol. 2005 ; 128 : 110-7.
12) Tichelli A, G Socie, M Honry-Amnr, et al. Effectiveness of immunosuppressive therapy in older patients with aplastic anemia. Ann Intern Med. 1999 ; 130 : 193-201.
13) Tichelli A, Socie G, Marsh J, et al. Outcome of pregnancy and disease outcome among women with aplastic anemia treated with immunosuppression. Ann Int Med. 2002 ; 137 : 164-72.
14) Kwon, JY, Lee Y, Shin JC, et al. Supportive management of pregnancy-associated aplastic anemia. Int J Gynaecol and Obstetrics. 2016 ; 95 : 115-20.
15) McKay DB, Josephson MA. Pregnancy in recipients of solid organs-Effects on mother and child. N Engl J Med. 2006 ; 354 : 1281-93.
16) Gupta V, Brooker C, Tooze JA, et al. Clinical relevance of cytogenetic abnormalities at diagnosis of acquired aplastic anaemia in adults. Br J Haematol. 2006 ; 134 : 95-9.
17) Mikhailova N, Sessarego M, Fugazza G, et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica. 1996 ; 81 : 418-22.
18) Appelbaum FR, Barrall J, Storb R, et al. Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp Hematol. 1987 ; 15 : 1134-9.
19) Geary CG, Harrison CJ, Philpott NJ, et al. Abnormal cytogenetic clones in patients with aplastic anaemia : response to immunosuppressive therapy. Br J Haematol. 1999 ; 104 : 271-4.
20) Ohga S, Ohara A, Hibi S, et al. Treatment responses of childhood aplastic anaemia with chromosomal aberrations at diagnosis. Br J Haematol. 2002 ; 118 : 313-9.
21) Piaggio G, Podesta M, Pitto A, et al. Coexistence of normal and clonal haemopoiesis in aplastic anaemia patients treated with immunosuppressive therapy. Br J Haematol. 1999 ; 107 : 505-11.
22) Ishiyama K, Karasawa M, Miyawaki S, et al. Aplastic anaemia with 13q- : a benign subset of bone marrow failure responsive to immunosuppressive therapy. Br J Haematol. 2002 ; 117 : 747-50.
23) Maciejewski JP, Risitano A, Sloand EM, et al. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. 2002 ; 99 : 3129-35.
24) Sloand EM, Yong AS, Ramkissoon S, et al. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci U S A. 2006 ; 103 : 14483-8.
P.30 掲載の参考文献
1) de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by c-MPL ligand. Nature. 1994 ; 369 : 533-8.
2) Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994 ; 369 : 565-8.
3) Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor MPL. Cell. 1994 ; 77 : 1117-24.
4) Sohma Y, Akahori H, Seki N, et al. Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Lett. 1994 ; 353 : 57-61.
5) Kato T, Ogami K, Shimada Y, et al. Purification and characterization of thrombopoietin. J. BIochem. 1995 ; 118 : 229-36.
6) Warren S, Alexander AW, Nicos A, et al. Definicied in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood. 1996 ; 87 : 2162-70.
7) Qian H, Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007 ; 1 : 671-84.
8) Alexander WS, Roberts AW, Nicola NA, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996 ; 87 : 2162-70.
9) Alvarado LJ, Andreoni A, Hunstman HD, et al. Heterodimerization of TPO and INF impairs human hematopoietic Stem/Progenitor cell signaling and survival in chronic inflammation. Blood. 2017 ; 130 ; 4.
10) Schifferli A, Kuhne T. Thrombopoietin receptor agonists : a new immune modulatoly strategy in immunothrombocytepenia? Semin Hematol. 2016 ; 53 : S31.
11) Kojima S, Ohara A, Tsuchida M, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood. 2002 ; 100 : 786-90.
12) Shin SH, Yoon JH, Yahng SA, et al. The efficacy of rabbit antithymocyte globulin with cyclosporine in comparison to horse antithymocyte globulin as a first-line treatment in adult patients with severe aplastic anemia : a single-center retrospective study. Ann Hematol. 2013 ; 92 : 817-24.
13) Desmond R, Townsley DM, Dumitriu B, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014 ; 123 : 1818-25.
15) Winkler T, Fan X, Cooper J, et al. Treatment optimization and genomic outcomes in refractory severe aplastic anemia treated with eltrombopag. Blood. 2019 ; 133 : 2575-85.
16) Lengline E, Drenou B, Peterlin P, et al. Nationwide survey on the use of eltrombopag in patients with severe aplastic anemia : A report on behalf of the French Reference Center for Aplastic Anemia. Haematologica. 2018 ; 103 : 212-20.
17) Escade M, Lengline E, Knol-Bout C, et al. Use of eltrombopag in aplastic anemia in Europe. Ann Hematol. 2019 ; 98 : 1341-50.
18) Lee JW, Lee SE, Jung CW, et al. Romiplostim in patients with refractory aplastic anemia previously treated with immunosuppressive therapy : A dose-finding and long-term treatment phase 2 trial. Lancet Haematol. 2019 ; 6 ; e562-72.
P.35 掲載の参考文献
1) Anasetti C, Doney KC, Storb R, et al. Marrow transplantation for severe aplastic anemia. Long-term outcome in fifty "untransfused" patients. Ann Intern Med. 1986 ; 104 : 461-6.
2) Storb R, Etzioni R, Anasetti C, et al. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anemia. Blood. 1994 ; 84 : 941-9.
3) Storb R, Blume KG, O'Donnell MR, et al. Cyclophosphamide and antithymocyte globulin to condition patients with aplastic anemia for allogeneic marrow transplantations : the experience in four centers. Biol Blood Marrow Transplant. 2001 ; 7 : 39-44.
4) Kahl C, Leisenring W, Deeg HJ, et al. Cyclophosphamide and antithymocyte globulin as a conditioning regimen for allogeneic marrow transplantation in patients with aplastic anaemia : a long-term follow-up. Br J Haematol. 2005 ; 130 : 747-51.
5) Deeg HJ, Anasetti C, Petersdorf E, et al. Cyclophosphamide plus ATG conditioning is insufficient for sustained hematopoietic reconstitution in patients with severe aplastic anemia transplanted with marrow from HLA-A, B, DRB matched unrelated donors. Blood. 1994 ; 83 : 3417-8.
6) Deeg HJ, O'Donnell M, Tolar J, et al. Optimization of conditioning for marrow transplantation from unrelated donors for patients with aplastic anemia after failure of immunosuppressive therapy. Blood. 2006 ; 108 : 1485-91.
7) Gottdiener JS, Appelbaum FR, Ferrans VJ, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med. 1981 ; 141 : 758-63.
8) Bacigalupo A, Locatelli F, Lanino E, et al. Fludarabine, cyclophosphamide and anti-thymocyte globulin for alternative donor transplants in acquired severe aplastic anemia : a report from the EBMT-SAA Working Party. Bone Marrow Transplant. 2005 ; 36 : 947-50.
9) Bacigalupo A, Socie G, Lanino E, et al. Fludarabine, cyclophosphamide, antithymocyte globulin, with or without low dose total body irradiation, for alternative donor transplants, in acquired severe aplastic anemia : a retrospective study from the EBMT-SAA Working Party. Haematologica. 2010 ; 95 : 976-82.
10) Kako S, Kanda Y, Onizuka M, et al. Allogeneic hematopoietic stem cell transplantation for aplastic anemia with pre-transplant conditioning using fludarabine, reduced-dose cyclophosphamide, and low-dose thymoglobulin : A KSGCT prospective study. Am J Hematol. 2020 ; 95 : 251-7.
11) Yamamoto H, Kato D, Uchida N, et al. Successful sustained engraftment after reduced-intensity umbilical cord blood transplantation for adult patients with severe aplastic anemia. Blood. 2011 ; 117 : 3240-2.
12) Kuwatsuka Y, Kanda J, Yamazaki H, et al. A comparison of outcomes for cord blood transplantation and unrelated bone marrow transplantation in adult aplastic anemia. Biol Blood Marrow Transplant. 2016 ; 22 : 1836-43.
14) Hill RS, Petersen FB, Storb R, et al. Mixed hematologic chimerism after allogeneic marrow transplantation for severe aplastic anemia is associated with a higher risk of graft rejection and a lessened incidence of acute graft-versus-host disease. Blood. 1986 ; 67 : 811-6.
15) Kako S, Yamazaki H, Ohashi K, et al. Mixed chimerism and secondary graft failure in allogeneic hematopoietic stem cell transplantation for aplastic anemia. Biol Blood Marrow Transplant. 2020 ; 26 : 445-50.
16) DeZern AE, Zahurak ML, Symons HJ, et al. Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Adv. 2020 ; 4 : 1770-9.
17) Kako S, Gomyo A, Akahoshi Y, et al. Haploidentical transplantation using low-dose alemtuzumab : Comparison with haploidentical transplantation using low-dose thymoglobulin. Eur J Haematol. 2019 ; 102 : 256-64.
P.40 掲載の参考文献
1) Peffault de Latour R, Porcher R, Dalle JH, et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia : the European Group for Blood and Marrow Transplantation experience. Blood. 2013 ; 122 : 4279-86.
2) Ayas M, Siddiqui K, Al-Jefri A, et al. Factors affecting the outcome of related allogeneic hematopoietic cell transplantation in patients with Fanconi anemia. Biol Blood Marrow Transplant. 2014 ; 20 : 1599-603.
3) Wagner JE, Eapen M, MacMillan ML, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood. 2007 ; 109 : 2256-62.
4) Gluckman E, Rocha V, Ionescu I, et al. Results of unrelated cord blood transplant in Fanconi anemia patients : risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant. 2007 ; 13 : 1073-82.
5) Ayas M, Saber W, Davies SM, et al. Allogeneic hematopoietic cell transplantation for Fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol. 2013 ; 31 : 1669-76.
6) Yabe M, Shimizu T, Morimoto T, et al. Matched sibling donor stem cell transplantation for Fanconi anemia patients with T-cell somatic mosaicism. Pediatr Transplant. 2012 ; 16 : 340-5.
7) Yabe H, Inoue H, Matsumoto M, et al. Allogeneic haematopoietic cell transplantation from alternative donors with a conditioning regimen of low-dose irradiation, fludarabine and cyclophosphamide in Fanconi anaemia. Br J Haematol. 2006 ; 134 : 208-12.
P.46 掲載の参考文献
3) List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006 ; 355 : 1456-65.
4) Fenaux P, Giagounidis A, Selleslag D, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011 ; 118 : 3765-76.
5) Harada H, Watanabe M, Suzuki K, et al. Lenalidomide is active in Japanese patients with symptomatic anemia in low- or intermediate-1 risk myelodysplastic syndromes with a deletion 5q abnormality. Int J Hematol. 2009 ; 90 : 353-60.
6) Shenoy N, Vallumsetla N, Rachmilewitz E, et al. Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome. Blood. 2014 ; 124 : 873-81.
8) Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised International Prognostic Scoring System. Leukemia. 2017 ; 31 : 2449-57.
10) Jang JH, Harada H, Shibayama H, et al. A randomized controlled trial comparing darbepoetin alfa doses in red blood cell transfusion-dependent patients with low- or intermediate-1 risk myelodysplastic syndromes. Int J Hematol. 2015 ; 102 : 401-12.
12) Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS. Biol Blood Marrow Transplant. 2012 ; 18 : 1211-8.
13) Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes : a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012 ; 30 : 4533-40.
15) Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013 ; 122 : 3616-27 ; quiz 3699.
P.52 掲載の参考文献
1) 日本造血細胞移植学会. 造血細胞移植ガイドライン 2018 [第3版 : [Available from : <https://www.jshct.com/uploads/files/guideline/03_05_mds-mpn03.pdf.>
3) Gagelmann N, Eikema DJ, Stelljes M, et al. Optimized EBMT transplant-specific risk score in myelodysplastic syndromes after allogeneic stem-cell transplantation. Haematologica. 2019 ; 104 : 929-36.
4) Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised international prognostic scoring system. Leukemia. 2017 ; 31 : 2449-57.
5) de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML : recommendations from an international expert panel. Blood. 2017 ; 129 : 1753-62.
6) Rashidi A, Meybodi MA, Cao W, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation in myelodysplastic syndromes : Systematic review and meta-analysis. Biol Blood Marrow Transplant. 2020 ; 26 : e138-41.
7) Craddock C, Slade D, De Santo C, et al. Combination lenalidomide and azacitidine : A novel salvage therapy in patients who relapse after allogeneic stem-cell transplantation for acute myeloid leukemia. J Clin Oncol. 2019 ; 37 : 580-8.
8) Schroeder T, Rautenberg C, Kruger W, et al. Treatment of relapsed AML and MDS after allogeneic stem cell transplantation with decitabine and DLI-a retrospective multicenter analysis on behalf of the German cooperative transplant study group. Ann Hematol. 2018 ; 97 : 335-42.
9) Guillaume T, Malard F, Magro L, et al. Prospective phase II study of prophylactic low-dose azacitidine and donor lymphocyte infusions following allogeneic hematopoietic stem cell transplantation for high-risk acute myeloid leukemia and myelodysplastic syndrome. Bone Marrow Transplant. 2019 ; 54 : 1815-26.
10) Duncavage EJ, Jacoby MA, Chang GS, et al. Mutation clearance after transplantation for myelodysplastic syndrome. N Engl J Med. 2018 ; 379 : 1028-41.
12) Gooptu M, Koreth J. A post-transplant optimized transplant-specific risk score in myelodysplastic syndromes. Haematologica. 2019 ; 104 : 859-61.
P.58 掲載の参考文献
1) Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020 ; 38 : 140-51.
2) Garcia-Manero G, Griffiths EA, Steensma DP, et al. Oral cedazuridine/decitabine : a phase 2, pharmacokinetic/pharmacodynamic, randomized, crossover study in MDS and CMML. Blood. 2020 ; 136 : 674-83.
3) Savona MR, Kolibaba K, Conkling P, et al. Extended dosing with CC-486 (oral azacitidine) in patients with myeloid malignancies. Am J Hematol. 2018 ; 93 : 1199-206.
4) Garcia-Manero G, Roboz G, Walsh K, et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes : phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019 ; 6 : e317-e27.
5) Navada SC, Garcia-Manero G, OdchimarReissig R, et al. Rigosertib in combination with azacitidine in patients with myelodysplastic syndromes or acute myeloid leukemia : Results of a phase 1 study. Leuk Res. 2020 ; 94 : 106369.
6) Cluzeau T, Sebert M, Rahme R, et al. APR-246 combined with azacitidine (AZA) in TP53 mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). a phase 2 study by the Groupe Francophone des Myelodysplasies (GFM). Blood. 2019 ; 134 (Suppl 1) : 677.
7) Savona MR, Odenike O, Amrein PC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes : a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019 ; 6 : e194-e203.
8) de Lima M, Oran B, Champlin RE, et al. CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant. 2018 ; 24 : 2017-24.
P.65 掲載の参考文献
1) Sawada K, Fujishima N, Hirokawa M. Acquired pure red cell aplasia : updated review of treatment. Br J Haematol. 2008 ; 142 : 505-14.
2) Means RT Jr. Pure red cell aplasia. Blood. 2016 ; 128 : 2504-9.
3) 赤芽球癆診療の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 赤芽球癆診療の参照ガイド. 令和1年改訂版 (第6版). 2020.
4) Sawada K, Hirokawa M, Fujishima N, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica. 2007 ; 92 : 1021-8.
5) Hirokawa M, Sawada K, Fujishima N, et al. Long-term response and outcome following immunosuppressive therapy in thymoma-associated pure red cell aplasia : a nationwide cohort study in Japan by the PRCA collaborative study group. Haematologica. 2008 ; 93 : 27-33.
6) Fujishima N, Sawada K, Hirokawa M, et al. Long-term responses and outcomes following immunosuppressive therapy in large granular lymphocyte leukemia-associated pure red cell aplasia : a Nationwide Cohort Study in Japan for the PRCA Collaborative Study Group. Haematologica. 2008 ; 93 : 1555-9.
7) Crabol Y, Terrier B, Rozenberg F, et al. Intravenous immunoglobulin therapy for pure red cell aplasia related to human parvovirus b19 infection : a retrospective study of 10 patients and review of the literature. Clin Infect Dis. 2013 ; 56 : 968-77.
8) Hirokawa M, Sawada K, Fujishima N, et al. Long-term outcome of patients with acquired chronic pure red cell aplasia (PRCA) following immunosuppressive therapy : a final report of the nationwide cohort study in 2004/2006 by the Japan PRCA collaborative study group. Br J Haematol. 2015 ; 169 : 879-86.
9) Hirokawa M, Fukuda T, Ohashi K, et al. Efficacy and long-term outcome of treatment for pure red cell aplasia after allogeneic stem cell transplantation from major ABO-incompatible donors. Biol Blood Marrow Transplant. 2013 ; 19 : 1026-32.
10) Kawakami T, Sekiguchi N, Kobayashi J, et al. Frequent STAT3 mutations in CD8+ T cells from patients with pure red cell aplasia. Blood Adv. 2018 ; 2 : 2704-12.
P.71 掲載の参考文献
1) Murphy S, LoBuglio AF. Drug therapy of autoimmune hemolytic anemia. Semin Hematol. 1976 ; 13 : 323-4.
2) Petz LD, Garratty G. Immune Hemolytic Anemias. 2nd ed. Philadelphia : Elsevier ; 2004.
3) Reynaud Q, Durieu I, Dutertre M, et al. Efficacy and safety of rituximab in auto-immune hemolytic anemia : A meta-analysis of 21 studies. Autoimmun Revs. 2015 ; 14 : 304-13.
4) Chao SH, Chang YL, Yen JC, et al. Efficacy and safety of rituximab in autoimmune and microangiopathic hemolytic anemia : a systematic review and meta-analysis. Exp Hematol Oncol. 2020 ; 9 : 6.
5) Jager U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults : Recommendations from the First International Consensus Meeting. Blood Rev. 2020 ; 41 : 100648.
6) Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia : a GIMEMA study of 308 patients. Blood. 2014 ; 124 : 2930-6.
7) 中尾眞二, 濱麻人, 大橋春彦, 他. 再生不良性貧血の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 再生不良性貧血診療の参照ガイド 令和1年改訂版 : 厚生労働科学研究費補助金難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 (研究代表者 三谷絹子). 2020. p.20. <http://zoketsushogaihan.umin.jp/file/2020/02.pdf>
8) Giudice V, Rosamilio R, Ferrara I. Efficacy and safety of splenectomy in adult autoimmune hemolytic anemia. Open Med. 2016 ; 11 : 374-80.
9) Ho G, Brunson A, Keegan THM, et al. Splenectomy and the incidence of venous thromboembolism and sepsis in patients with autoimmune hemolytic anemia. Blood Cells Mol Dis. 2020 ; 81 : 102388.
10) Garvey B. Rituximab in the treatment of autoimmune haematological disorders. Br J Haematol. 2008 ; 141 : 149-69.
11) Barcellini W, Zaja F, Zaninoni A, et al. Low-dose rituximab in adult patients with idiopathic autoimmune hemolytic anemia : clinical efficacy and biologic studies. Blood. 2012 ; 119 : 3691-7.
12) Barcellini W, Zaja F, Zaninoni A, et al. Sustained response to low-dose rituximab in idiopathic autoimmune hemolytic anemia. Eur J Haematol. 2013 ; 91 : 546-51.
13) Fattizzo B, Zaninoni A, Pettine L, et al. Low-dose rituximab in autoimmune hemolytic anemia : 10 years after. Blood. 2019 ; 133 : 996-8.
14) Go RS, Winters JL, Kay NE. How I treat autoimmune hemolytic anemia. Blood. 2017 ; 129 : 2971-9.
15) Li BJ, Yuan X, Jiang YJ, et al. Retrospective analysis of 30 severe autoimmune hemolytic anemia patients treated by whole blood exchange transfusion. Transfusion. 2015 ; 55 : 2231-7.
16) Arbach O, Funck R, Seibt F, et al. Erythropoietin may improve anemia in patients with autoimmune hemolytic anemia associated with reticulocytopenia. Transfus Med Hemother. 2012 ; 39 : 221-3.
17) Ovalle JP, Orozco EM, Pedraza LC, et al. Treatment of autoimmune hemolytic anemia with erythropoietin : A case report. Arch Case Rep. 2019 ; 3 : 43-6.
18) Moyo VM, Smith D, Brodsky I, et al. High-dose cyclophosphamide for refractory autoimmune hemolytic anemia. Blood. 2002 ; 100 : 704-6.
19) Thabet AF, Faisal M. Pulse cyclophosphamide therapy in refractory warm autoimmune hemolytic anemia : a new perspective. Indian J Hematol Blood Transfus. 2014 ; 30 : 313-8.
20) Nader K, Patel M, Ferber A. Ofatumumab in rituximab-refractory autoimmune hemolytic anemia associated with chronic lymphocytic leukemia : A case report and review of literature. Clin Lymphoma Myeloma Leuk. 2013 ; 13 : 511-3.
21) Karlsson C, Hansson L, Celsing F, et al. Treatment of severe refractory autoimmune hemolytic anemia in B cell chronic lymphocytic leukemia with alemtuzumab (humanized CD52 monoclonal antibody). Leukemia. 2007 ; 21 : 511-4.
22) Kaufman M, Limaye SA, Driscoll N, et al. A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma. 2009 ; 50 : 892-9.
23) Osterborg A, Karlsson C, Lundin J. Alemtuzumab to treat refractory autoimmune hemolytic anemia or thrombocytopenia in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2009 ; 4 : 47-53.
24) Manda S, Dunbar N, Marx-Wood CR, et al. Ibrutinib is an effective treatment of autoimmune haemolytic anaemia in chronic lymphocytic leukaemia. Br J Haematol. 2015 ; 170 : 734-6.
25) Rogers KA, Ruppert AS, Bingman A, et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia. 2016 ; 30 : 346-50.
26) Lacerda MP, Guedes NR, Yamakawa PE, et al. Treatment of refractory autoimmune hemolytic anemia with venetoclax in relapsed chronic lymphocytic leukemia with del (17p). Ann Hematol. 2017 ; 96 : 1577-8.
27) Danchaivijitr P, Yared J, Rapoport AP. Successful treatment of IgG and complement-mediated autoimmune hemolytic anemia with bortezomib and low-dose cyclophosphamide. Am J Hematol. 2011 ; 86 : 331-2.
28) Hosoba S, Jaye DL, Cohen C, et al. Successful treatment of severe immune hemolytic anemia after allogeneic stem cell transplantation with bortezomib : report of a case and review of literature. Transfusion. 2015 ; 55 : 259-64.
29) Jasinski S, Weinblatt ME, Glasser CL. Sirolimus as an effective agent in the treatment of immune thrombocytopenia (ITP) and Evans syndrome (ES) : a single institution's experience. J Pediatr Hematol Oncol. 2017 ; 39 : 420-4.
30) Howard J, Hoffbrand AV, Prentice HG, et al. Mycophenolate mofetil for the treatment of refractory auto-immune haemolytic anaemia and auto-immune thrombocytopenia purpura. Br J Haematol. 2002 ; 117 : 712-5.
31) Miano M, Ramenghi U, Russo G, et al. Mycophenolate mofetil for the treatment of children with immune thrombocytopenia and Evans syndrome. A retrospective data review from the Italian association of paediatric haematology/oncology. Br J Haematol. 2016 ; 175 : 490-5.
32) Michel M, Terriou L, Roudot-Thoraval F, et al. A randomized and double-blind controlled trial evaluating the safety and efficacy of rituximab for warm auto-immune hemolytic anemia in adults (the RAIHA study). Am J Hematol. 2017 ; 92 : 23-7.
33) Deng J, Zhou F, Wong CY, et al. Efficacy of therapeutic plasma exchange for treatment of autoimmune hemolytic anemia : A systematic review and meta-analysis of randomized controlled trials. J Clin Apher. 2020 ; 35 : 294-306.
34) Kawamoto S, Kamesaki T, Masutani R, et al. Ectopic expression of band 3 anion transport protein in colorectal cancer revealed in an autoimmune hemolytic anemia patient. Hum Pathol. 2019 ; 83 : 193-8.
35) Kitao A, Kawamoto S, Kurata K, et al. Band 3 ectopic expression in colorectal cancer induces an increase in erythrocyte membrane-bound IgG and may cause immune-related anemia. Int J Hematol. 2020 ; 111 : 657-66.
P.79 掲載の参考文献
1) Hill QA, Stamps R, Massey E, et al. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017 ; 176 : 395-411.
2) Hill QA, Stamps R, Massey E, et al. Guidelines on the management of drug-induced immune and secondary autoimmune, haemolytic anaemia. Br J Haematol. 2017 ; 177 : 208-20.
3) Jager U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults : Recommendations from the First International Consensus Meeting. Blood Rev. 2019 : 100648. PubMed PMID : 31839434.
4) Berentsen S, Ulvestad E, Langholm R, et al. Primary chronic cold agglutinin disease : a population based clinical study of 86 patients. Haematologica. 2006 ; 91 : 460-6.
5) Bylsma LC, Gulbech Ording A, et al. Occurrence, thromboembolic risk, and mortality in Danish patients with cold agglutinin disease. Blood Adv. 2019 ; 3 : 2980-5.
6) 厚生労働科学研究費補助金 難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 研究代表者 三谷絹子. 自己免疫性溶血性貧血診療の参照ガイド (令和1年改訂版). 2020. <http://zoketsushogaihan.umin.jp/file/2020/09.pdf>
7) Barcellini W. Immune hemolysis : diagnosis and treatment recommendations. Semin Hematol. 2015 ; 52 : 304-12.
8) Berentsen S. How I manage patients with cold agglutinin disease. Br J Haematol. 2018 ; 181 : 320-30.
9) Ulvestad E, Berentsen S, Mollnes TE. Acute phase haemolysis in chronic cold agglutinin disease. Scand J Immunol. 2001 ; 54 : 239-42.
10) Broome C, Cunningham JM, Mullins M, et al. Increased risk of thrombotic events in cold agglutinin disease : A 10-year retrospective analysis. Res Pract Thromb Haemost. 2020 ; 4 (Suppl 2) : 1-8.
11) Berentsen S. Cold agglutinin disease. Hematol Am Soc Hematol Educ Program. 2016 ; 2016 : 226-31.
12) Berentsen S, Randen U, Oksman M, et al. Bendamustine plus rituximab for chronic cold agglutinin disease : results of a Nordic prospective multicenter trial. Blood. 2017 ; 130 : 537-41.
13) Berentsen S, Ulvestad E, Gjertsen BT, et al. Rituximab for primary chronic cold agglutinin disease : a prospective study of 37 courses of therapy in 27 patients. Blood. 2004 ; 103 : 2925-8.
14) Schollkopf C, Kjeldsen L, Bjerrum OW, et al. Rituximab in chronic cold agglutinin disease : a prospective study of 20 patients. Leuk Lymphoma. 2006 ; 47 : 253-60.
15) Berentsen S, Roth A, Randen U, et al. Cold agglutinin disease : current challenges and further prospects. J Blood Med. 2019 ; 10 : 93-103.
16) Berentsen S, Randen U, Vagan AM, et al. High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. 2010 ; 116 : 3180-4.
17) Treon SP, Branagan AR, Ioakimidis L, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood. 2009 ; 113 : 3673-8.
18) Rossi G, Gramegna D, Paoloni F, et al. Short course of bortezomib in anemic patients with relapsed cold agglutinin disease : a phase 2 prospective GIMEMA study. Blood. 2018 ; 132 : 547-50.
19) Roth A, Bommer M, Huttmann A, et al. Eculizumab in cold agglutinin disease (DECADE) : an open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018 ; 2 : 2543-9.
20) Roth A, Huttmann A, Rother RP, et al. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood. 2009 ; 113 : 3885-6.
21) Gupta N, Wang ES. Long-term response of refractory primary cold agglutinin disease to eculizumab therapy. Ann Hematol. 2014 ; 93 : 343-4.
22) Barbara DW, Mauermann WJ, Neal JR, et al. Cold agglutinins in patients undergoing cardiac surgery requiring cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2013 ; 146 : 668-80.
23) Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010 ; 25 : 83-177.
24) Fattizzo B, Languille L, Levati G et al. Evidence based use of erythropoietin in patients with autoimmune hemolytic anemia : A multicenter international study. HemaSphere. 2019 ; 3 : 405-6.
25) Berentsen S, Tjonnfjord GE. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia. Blood Rev. 2012 ; 26 : 107-15.
26) Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia : an update. Expert Rev Hematol. 2011 ; 4 : 607-18.
27) Sanz J, Arriaga F, Montesinos P, et al. Autoimmune hemolytic anemia following allogeneic hematopoietic stem cell transplantation in adult patients. Bone Marrow Transplant. 2007 ; 39 : 555-61.
28) Jager U, D'Sa S, Schorgenhofer C, et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease : a first-in-human trial. Blood. 2019 ; 133 : 893-901.
29) Berentsen S, Hill A, Hill QA, et al. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther Adv Hematol. 2019 ; 10 : 1-20.
30) Shi J, Rose EL, Singh A, et al. TNT003, an inhibitor of the serine protease C1s, prevents complement activation induced by cold agglutinins. Blood. 2014 ; 123 : 4015-22.
31) Wouters D, Stephan F, Strengers P, et al. C1-esterase inhibitor concentrate rescues erythrocytes from complement-mediated destruction in autoimmune hemolytic anemia. Blood. 2013 ; 121 : 1242-4.
32) Tesfaye A, Broome C. A novel approach for treatment of cold agglutinin syndromerelated severe hemolysis. J Hematol. 2016 ; 5 : 30-3.
33) Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica. 2015 ; 100 : 1388-95.
34) Roth A, Barcellini W, D'Sa S, et al. Inhibition of complement C1s with sutimlimab in patients with cold agglutinin disease (CAD) : Results from the phase 3 cardinal study. Blood. 2019 ; 134 (Suppl 2) : LBA-2.
35) Gertz MA, Qiu H, Kendall L, et al. ANX005, An inhibitory antibody against C1q, blocks complement activation triggered by cold agglutinins in human disease. 58th Meeting of the American Society of Hematology, San Diego, CA, USA. Blood. 2016 ; 128 : 1265.
36) Grossi F, Shum MK, Gertz MA, et al. Inhibition of C3 with APL-2 results in normalisation of markers of intravascular and extravascular hemolysis in patients with autoimmune hemolytic anemia (AIHA). 60th Annual Meeting of the American Society of Hematology, San Diego, CA. Blood. 2018 ; 132 : 3623.
37) Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015 ; 372 : 1430-40.
38) Cao Y, Yang G, Hunter ZR, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 Wild-type and CXCR4 WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015 ; 170 : 134-8.
P.85 掲載の参考文献
1) Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood. 2005 ; 106 : 3699-709.
2) Hochsmann B, Murakami Y, Osato M, et al. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest. 2019 ; 129 : 5123-36.
3) 金倉譲, 二宮治彦, 中熊秀喜, 他. 発作性夜間ヘモグロビン尿症診療の参照ガイド 令和1年改訂版. 2019. <http://zoketsushogaihan.umin.jp/file/2020/06v2.pdf.>
4) Lee JW, Fontbrune FS, Lee LWL, et al. Ravulizumab (ALXN1210) vs Eculizumab in adult patients with PNH naive to complement inhibitors : The 301 Study. Blood. 2019 ; 133 : 530-9.
5) Kulasekararaj AG, Hill A, Rottinghaus ST, et al. Ravulizumab (ALXN1210) vs Eculizumab in C5-inhibitor-experienced adult patients with PNH : The 302 study. Blood. 2019 ; 133 : 540-9.
6) Brodsky RA, Latour RP, Rottinghaus ST, et al. Characterization of breakthrough hemolysis events observed in the phase 3 randomized studies of ravulizumab versus eculizumab in adults with paroxysmal nocturnal hemoglobinuria. Haematologica. 2020. (Haematol. 2019, 236877)
7) Roth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood. 2020 ; 135 : 912-20.
9) Nishimura J, Kanakura Y, Ware RE, et al. Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine. 2004 ; 83 : 193-207.
10) Wiles JA, Galvan MD, Podos SD, et al. Discovery and development of the oral complement factor D inhibitor ACH-4471. Curr Med Chem. 2020 ; 27 : 4165-80.
11) Schubart A, Anderson K, Mainolfi N, et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A. 2019 ; 116 : 7926-31.

III. 白血病

P.92 掲載の参考文献
2) Breems DA, van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia : a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008 ; 26 : 4791-7.
3) Sakaguchi M, Yamaguchi H, Najima Y, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018 ; 2 : 2744-54.
4) Dohner K, Thiede C, Jahn N, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood. 2020 ; 135 : 371-80.
6) Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016 Feb 4 ; 374 : 422-33.
8) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-Mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
9) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
10) Wakita S, Yamaguchi H, Omori I, et al. Mutations of the epigenetics modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may Induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013 ; 27 : 1044-52.
P.97 掲載の参考文献
1) Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999 ; 23 : 166-75.
2) Smith ML, Cavenagh JD, Lister TA, et al. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004 ; 351 : 2403-7. doi : 10.1056/NEJMoa041331.
3) Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011 ; 43 : 1012-7.
4) Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011 ; 118 : 2653-5.
5) Zhang MY, Churpek JE, Keel SB, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015 ; 47 : 180-5. doi : 10.1038/ng.3177
6) Polprasert C, Schulze I, Sekeres MA, et al. Inherited and somatic defects in DDX41 in Myeloid Neoplasms. Cancer Cell. 2015 ; 27 : 658-70. doi : 10.1016/j.ccell.2015.03.017.
7) Cardoso SR, Ryan G, Walne AJ, et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia 2016 ; 30 : 2083-6. doi : 10.1038/leu.2016.124.
8) Lewinsohn M, Brown AL, Weinel LM, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016 ; 127 : 1017-23. doi : 10.1182/blood-2015-10-676098.
9) Kobayashi S, Kobayashi A, Osawa Y, et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia. 2017 ; 31 : 1020-2. doi : 10.1038/leu.2017.44.
10) Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016 ; 48 : 792-7.
P.106 掲載の参考文献
1) 日本血液学会, 編. 急性骨髄性白血病 : 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版. 2020 ; p8-37.
2) NCCN guidelines Version 3.2010 Acute Myeloid Leukemia.
6) Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia : results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014 ; 32 : 219-28.
9) Burnett AK, Russell NH, Hills RK, et al. UK NCRI AML Study Group. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction : results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015 ; 125 : 3878-85.
10) Harada K, Doki N, Hagino T, et al. Underweight status at diagnosis is associated with poorer outcomes in adult patients with acute myeloid leukemia : A retrospective study of JALSG AML 201. Ann Hematol. 2018 ; 97 : 73-81.
12) Lambert J, Pautas C, Terre C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia : final efficacy and safety updates from the Open-label, Phase III ALFA-0701 trial. Haematologica. 2019 ; 104 : 113-9.
13) Castaigne S, Pautas C, Terre C, et al. Acute Leukemia french association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701) : A randomised, open-label, Phase 3 study. Lancet. 2012 ; 379 : 1508-16.
14) Winters AC, Gutman JA, Purev E, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019 ; 3 : 2911-9.
15) Kawashima N, Ishikawa Y, Atsuta Y, et al. Japan Adult Leukemia Study Group (JALSG). Allogeneic hematopoietic stem cell transplantation at the first remission for younger adults with FLT3-internal tandem duplication AML : The JALSG AML209-FLT3-SCT study. Cancer Sci. 2020 ; 11 : 2472-81.
16) Brunner AM, Blonquist TM, DeAngelo DJ, et al. Alisertib plus induction chemotherapy in previously untreated patients with high-risk, Acute myeloid leukaemia : A Single-Arm, Phase 2 Trial. Lancet Haematol. 2020 ; 7 : e122-33.
17) DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019 ; 133 : 7-17.
18) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
20) Pophali P, Litzow M. What is the best daunorubicin dose and schedule for acute myeloid leukemia induction? Curr Treat Options Oncol. 2017 ; 18 : 3.
P.112 掲載の参考文献
1) Klepin HD. Elderly acute myeloid leukemia : assessing risk. Curr Hematol Malig Rep. 2015 : 10 : 118-25.
2) Wakita A, Ohtake S, Takada S, et al. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia : the JALSG GML200 Study. Int J Hematol. 2012 ; 96 : 84-93.
3) Devine SM, Onzar K, Blum W, et al. Phase II study of allogeneic transplantation for older patients with acute myeloid leukemia in first complete remission using a reduced-intensity conditioning regimen : results from cancer and leukemia group B 100103 (Alliance for Clinical Trials in Oncology) /Blood and Marrow Transplant Clinical Trial Network 0502. J Clin Oncol. 2015 ; 33 : 4167-75.
4) Klepin HD, Ritchie E, Majer Elech B, et al. Geriatric Assessment Among Older Adults Receiving Intensive Therapy for Acute Myeloid Leukemia : Report of CALGB 361006 (Alliance). J Geriatric Oncol. 2020 ; 11 : 107-13.
5) Huls G, et al. Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood. 2019 ; 133 : 1457-64.
7) Berger E, Delpievre C. Are social inequalities in acute myeloid leukemia survival explained by differences in treatment utilization? Results from a French Longitudinal Observational Study Among Older Patients. BMC Cancer. 2019 ; 19 : 883.
8) Zeidan AM, Podoltsev NA, Wang X, et al. Temporal patterns and predictors of receiving no active treatment among older patients with acute myeloid leukemia in the United States : A population-level analysis. Cancer. 2019 ; 125 : 4241-51.
P.117 掲載の参考文献
1) Horibe K, Yumura-Yagi K, Kudoh T, et al. Long-term results of the risk-adapted treatment for childhood B-Cell acute lymphoblastic leukemia : Report from the Japan association of childhood leukemia study ALL-97 trial. J Pediatr Hematol Oncol. 2017 ; 39 : 81-9.
2) Taga T, Tomizawa D, Takahashi H, et al. Acute myeloid leukemia in children : Current status and future directions. Pediatr I : 2016 ; 58 : 71-80.
3) Tomizawa D, Tawa A, Watanabe T, et al. Excess treatment reduction including anthracyclines results in higher incidence of relapse in core binding factor acute myeloid leukemia in children. Leukemia. 2013 ; 27 : 2413-6.
4) Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk : results from the randomized phase III Children's Oncology Group trial AAML0531. J Clin Oncol. 2014 ; 32 : 3021-32.
5) Rubnitz JE, Lacayo NJ, Inaba H, et al. Clofarabine can replace anthracyclines and etoposide in remission induction therapy for childhood acute myeloid leukemia : The AML08 multicenter, randomized Phase III Trial. J Clin Oncol. 2019 ; 37 : 2072-81.
6) Inaba H, Coustan-Smith E, Cao X, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012 ; 30 : 3625-32.
7) Ehlers S, Herbst C, Zimmermann M, et al. Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol. 2010 ; 28 : 2591-7.
8) Taub JW, Berman JN, Hitzler JK, et al. Improved outcomes for myeloid leukemia of Down syndrome : a report from the Children's Oncology Group AAML0431 trial. Blood. 2017 ; 129 : 3304-13.
9) Taga T, Watanabe T, Tomizawa D, et al. Preserved high probability of overall survival with significant reduction of chemotherapy for myeloid leukemia in down syndrome : A nationwide prospective study in Japan. Pediatr Blood Cancer. 2016 ; 63 : 248-54.
10) Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related cardiotoxicity and Its impact on outcomes among children treated in the AAML0531 Clinical Trial : A report from the children's oncology group. J Clin Oncol. 2019 ; 37 : 12-21.
P.123 掲載の参考文献
1) Tallman MS. NCCN clinical practice guidelines in oncology, acute myeloid leukemia. version 3. 2020. 2019.
3) Montillo M, Mirto S, Petti MC, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998 ; 58 : 105-9.
4) Karanes C, Kopecky KJ, Head DR, et al. A phase III comparison of high dose ARA-C (HIDAC) versus HIDAC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leuk Res. 1999 ; 23 : 787-94.
5) Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018 ; 103 : e404-7
6) DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018 ; 93 : 401-7.
7) Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia : a prospective study of the alfa group. Leukemia. 2007 ; 21 : 66-71.
8) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-Mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
9) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
10) DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018 ; 378 : 2386-98.
P.127 掲載の参考文献
2) Kanda J, Saji H, Fukuda T, et al. Related transplantation with HLA-1 Ag mismatch in the GVH direction and HLA-8/8 allele-matched unrelated transplantation : a nationwide retrospective study. Blood. 2012 ; 119 : 2409-16.
3) Shouval R, Fein JA, Labopin M, et al. Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors : a European Society for Blood and Marrow Transplantation registry retrospective analysis. Lancet Haematol. 2019 ; 6 : e573-84.
4) Ostgard LSG, Lund JL, Norgaard JM, et al. Impact of allogeneic stem cell transplantation in first complete remission in acute myeloid leukemia : A National Population-Based Cohort Study. Biol Blood Marrow Transplant. 2018 ; 24 : 314-23.
5) Versluis J, Labopin M, Ruggeri A, et al. Alternative donors for allogeneic hematopoietic stem cell transplantation in poor-risk AML in CR1. Blood Adv. 2017 ; 1 : 477-85.
6) Bashey A, Zhang X, Sizemore CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013 ; 31 : 1310-6.
7) Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015 ; 126 : 1033-40.
8) Wang Y, Liu QF, Xu LP, et al. Haploidentical vs identical-sibling transplant for AML in remission : a multicenter, prospective study. Blood. 2015 ; 125 : 3956-62.
9) Yu S, Huang F, Wang Y, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission : a prospective multicentre cohort study. Leukemia. 2020 ; 34 : 1433-43.
10) Devine SM, Owzar K, Blum W, et al. Phase II study of allogeneic transplantation for older patients with acute myeloid leukemia in first complete remission using a reduced-intensity conditioning regimen : Results from cancer and leukemia group b 100103 (Alliance for clinical trials in oncology)/Blood and marrow transplant clinical trial network 0502. J Clin Oncol. 2015 ; 33 : 4167-75.
11) Shimoni A, Labopin M, Savani B, et al. Comparable long-term outcome after allogeneic stem cell transplantation from sibling and matched unrelated donors in patients with acute myeloid leukemia older than 50 years : A report on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : 2251-60.
12) Ciurea SO, Shah MV, Saliba RM, et al. Haploidentical transplantation for older patients with acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2018 ; 24 : 1232-6.
13) Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 1788-97.
14) Hourigan CS, Dillon LW, Gui G, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol. 2020 ; 38 : 1273-83.
16) Milano F, Gooley T, Wood B, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016 ; 375 : 944-53.
17) Gilleece MH, Labopin M, Yakoub-Agha I, et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission : A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol. 2018 ; 93 : 1142-52.
P.134 掲載の参考文献
2) DiNardo CD, Jonas B, Pullarkat V, et al. A randomized, double-blind, placebo-controlled study of venetoclax with azacitidine vs azacitidine in treatment-naive patients with acute myeloid leukemia ineligible for intensive therapy-VIAKE-A. EHA. 2020 ; LB2601.
3) Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019 ; 33 : 379-89.
4) Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 2684-92.
5) DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018 ; 378 : 2386-98.
7) Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy : a phase 3 randomized placebo-controlled trial. Blood. 2020 ; 135 : 2137-45.
P.138 掲載の参考文献
1) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 Trial. J Clin Oncol. 2017 ; 35 : 605-12.
2) Lo-Coco F, Avvisati G, Vignetti M, et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years : results of the AIDA-2000 trial of the GIMEMA Group. Blood. 2010 ; 116 : 3171-9.
P.143 掲載の参考文献
1) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017 ; 35 : 605-12.
2) Russell N, Burnett A, Hills R, et al. Attenuated arsenic trioxide plus ATRA therapy for newly diagnosed and relapsed APL : long-term follow-up of the AML17 trial. Blood. 2018 ; 132 : 1452-4.
3) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 ; 110 : 59-66.
4) Zhu HH, Qin YZ, Huang XJ. Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med. 2014 ; 370 : 1864-6.
5) Goto E, Tomita A, Hayakawa F, et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood. 2011 ; 118 : 1600-9.
6) Esteve J, Escoda L, Martin G, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99) : benefit of an early intervention. Leukemia. 2007 ; 21 : 446-52.
7) Sanford D, Lo-Coco F, Sanz MA, et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol. 2015 ; 171 : 471-7.
10) Lengfelder E, Lo-Coco F, Ades L, et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia : registry results from the European LeukemiaNet. Leukemia. 2015 ; 29 : 1084-91.
11) Holter Chakrabarty JL, Rubinger M, Le-Rademacher J, et al. Autologous is superior to allogeneic hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission. Biol Blood Marrow Transplant. 2014 ; 20 : 1021-5.
13) Aribi A, Kantarjian HM, Estey EH, et al. Combination therapy with arsenic trioxide, all-trans retinoic acid, and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer. 2007 ; 109 : 1355-9.
P.147 掲載の参考文献
1) Chiaretti S, Vitale A, Vignetti M, et al. A sequential approach with imatinib, chemotherapy and transplant for adult Ph+acute lymphoblastic leukemia : final results of the GIMEMA LAL 0904 study. Haematologica. 2016 ; 101 : 1544-52.
3) Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016 ; 128 : 774-82.
4) Fielding AK. Curing Ph+ALL : assessing the relative contributions of chemotherapy, TKIs, and allogeneic stem cell transplant. Hematol Am Soc Hematol Educ Program. 2019 ; 2019 : 24-29.
5) Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018 ; 5 : e618-27.
6) Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016 ; 128 : 504-7.
7) Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015 ; 125 : 3711-19.
8) Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019 ; 33 : 1910-22.
9) Thomas DA, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004 ; 103 : 4396-407.
10) Hatta Y, Mizuta S, Matsuo K, et al. Final analysis of the JALSG Ph+ALL202 study : tyrosine kinase inhibitor-combined chemotherapy for Ph+ALL. Ann Hematol. 2018 ; 97 : 1535-45.
11) Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia : Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010 ; 28 : 3644-52.
12) Ravandi F, Othus M, O'Brien SM, et al. US Intergroup Study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016 ; 1 : 250-9.
13) Kim DY, Joo YD, Lim SN, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015 ; 126 : 746-56.
P.154 掲載の参考文献
2) Ram R, Wolach O, Vidal L, et al. Adolescents and young adults with acute lymphoblastic leukemia have a better outcome when treated with pediatric-inspired regimens : systematic review and meta-analysis. Am J Hematol. 2012 ; 87 : 472-8.
3) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版 ; 2020.
4) 日本造血細胞移植学会, 編. 造血細胞移植ガイドライン 急性リンパ性白血病 (成人) 第3版. 東京 : 2020.
5) Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia : results of CALGB 10403. Blood. 2019 ; 133 : 1548-59.
6) Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia : A meta-analysis. JAMA Oncol. 2017 ; 3 : e170580.
10) Atsuta Y. Introduction of transplant registry unified management program 2 (TRUMP2) : scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016 ; 103 : 3-10.
12) Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia : The GRAALL-2003 study. J Clin Oncol. 2009 ; 27 : 911-8.
13) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : A phase II study by the Japan adult leukemia study group. Blood Cancer J. 2014 ; 4 : e252.
14) Nagafuji K, Miyamoto T, Eto T, et al. Prospective evaluation of minimal residual disease monitoring to predict prognosis of adult patients with Ph-negative acute lymphoblastic leukemia. Eur J Haematol. 2019 ; 103 : 164-71.
P.160 掲載の参考文献
1) Pui CH, Mullighan CG, Evans WE, et al. Pediatric acute lymphoblastic leukemia : Where are we going and how do we get there? Blood. 2012 ; 120 : 1165-74.
2) Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011 ; 29 : 532-43.
3) National Comprehensive Cancer Network. NCCNClinical Practice Guidelines in acute lymphoblastic leukemia. version 1. 2020. <https://www.nccn.org/professionals/physician_gls/pdf/all.pdf>.
4) Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004 ; 103 : 784-9.
5) Jeha S, Gaynon PS, Razzouk BI, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006 ; 24 : 1917-23.
6) Hijiya N, Gaynon P, Barry E, et al. A multi-center phase i study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia. 2009 ; 23 : 2259-64.
7) Hijiya N, Paul JA, Borowitz MJ, et al. Phase 2 results of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood. 2010 ; 116 : 866.
8) DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma : Cancer and Leukemia Group B study 19801. Blood. 2007 ; 109 : 5136-42.
9) Basara N, Baurmann H, Beck J, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011 ; 118 : 3504-11.
10) Faderl S, Thomas DA, O'Brien S, et al. Augmented hyper-CVAD based on dose-intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy. Clin Lymphoma, Myeloma Leuk. 2011 ; 11 : 54-9.
11) Rosen PJ, Rankin C, Head DR, et al. A phase II study of high dose ARA-C and mitoxantrone for treatment of relapsed or refractory adult acute lymphoblastic leukemia. Leuk Res. 2000 ; 24 : 183-7.
12) Camera A, Annino L, Chiurazzi F, et al. GIMEMA ALL- Rescue 97 : a salvage strategy for primary refractory or relapsed adult acute lymphoblastic leukemia. Haematologica. 2004 ; 89 : 145-53.
13) Weiss MA, Aliff TB, Tallman MS, et al. A single, high dose of idarubicin combined with cytarabine as induction therapy for adult patients with recurrent or refractory acute lymphoblastic leukemia. Cancer. 2002 ; 95 : 581-7.
14) Wiernik PH, Dutcher JP, Paietta E, et al. Long-term follow-up of treatment and potential cure of adult acute lymphocytic leukemia with MOAD : A non-anthracycline containing regimen. Leukemia. 1993 ; 7 : 1236-41.
15) Wetzler M, Sanford BL, Kurtzberg J, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia : Cancer and Leukemia Group B Study 9511. Blood. 2007 ; 109 : 8-11.
16) Kadia TM, Kantarjian HM, Thomas DA, et al. Phase II study of methotrexate, vincristine, pegylated- asparaginase, and dexamethasone (MOpAD) in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2015 ; 90 : 120-4.
17) Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors : Recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011 ; 118 : 1208-15.
18) Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J. Med. 2013 ; 369 : 1783-96.
19) Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of HyperCVAD and Dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014 ; 89 : 282-7.
20) Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J. Med. 2017 ; 376 : 836-47.
22) Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl J Med. 2018 ; 378 : 439-48.
23) Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018 ; 131 : 1522-31.
24) Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-Engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011 ; 29 : 2493-8.
25) Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia : A Phase 2 Clinical Trial. JAMA Oncol. 2018 ; 4 : 230-34.
26) Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive Leukemia. Clin Lymphoma Myeloma Leuk. 2017 ; 17 : 897-901.
27) Jain N, Cortes JE, Ravandi F, et al. Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph+ALL or CML in lymphoid blast phase. Blood. 2017 ; 130 (Suppl 1) : 143.
28) Webster J, Luskin MR, Prince GT, et al. Blinatumomab in combination with Immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell acute lymphoblastic leukemia (ALL) : Preliminary results of a phase I study. Blood. 2018 ; 132 (Suppl 1) : 557.
29) Durer S, Durer C, Shafqat M, et al. Concomitant use of blinatumomab and donor lymphocyte infusion for mixed-phenotype acute leukemia : A case report with literature review. Immunotherapy. 2019 ; 11 : 373-8.
30) Sasaki K, Kantarjian HM, Ravandi F, et al. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL) : A Phase 2 Trial. Blood. 2018 ; 132 (Suppl 1) : 553.
32) Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018 ; 24 : 20-8.
33) Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 2019 ; 25 : 625-38.
34) Lacayo NJ, Pullarkat VA, Stock W, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019 ; 134 (Suppl 1) : 285.
35) Guerra VA, Jabbour EJ, Ravandi F, et al. Novel monoclonal antibody-based treatment strategies in adults with acute lymphoblastic leukemia. Ther Adv Hematol. 2019 ; 10 : 1-17.
P.166 掲載の参考文献
1) Boissel N, Baruchel A. Acute lymphoblastic leukemia in adolescent and young adults : treat as adults or as children. Blood. 2018 ; 132 : 351-61.
2) 康勝好. AYA世代の急性リンパ性白血病-小児科の立場から-. 臨床血液. 2017 ; 58 : 1024-30.
3) Siegel SE, Stock W, Johnson RH, et al. Pediatric inspired treatment regimens for adolescent and young adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. A Review. JAMA Oncol. 2018 ; 4 : 725-34.
4) Dhedin N, Huynh A, Maury S, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015 ; 125 : 2486-96.
5) Gokbuget N, Domblet H, Giebel S, et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. Hematol. 2019 ; 24 : 337-48.
6) Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia : results of CALGB 10403. Blood. 2019 ; 133 : 1548-9.
7) Sakura T, Hayakawa F, Sugiura I, et al. High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia : A phase III study by JALSG. Leukemia. 2018 ; 32 : 626-32.
8) Jabbour EJ, Sasaki K, Ravandi F, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia : A propensity score analysis. Cancer. 2019 ; 125 : 2578-86.
9) Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with acute lymphoblastic leukemia : A report from Children's Oncology Group study AALL0232. J Clin Oncol. 2016 ; 34 : 2380-8.
10) Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia : Results from the children's oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018 ; 10 : 2926-34.
11) Dalle IA, Jabbour E, Short NJ, et al. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Ther Adv Hematol. 2020 ; 11 : 2040620720910023.
P.173 掲載の参考文献
1) Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020 ; 395 : 1146-62.
2) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : a phase II study by the Japan Adult Leukemia Study Group. Blood Cancer Journal. 2014 ; 4 : e252.
3) Moorman AV, Chilton L, Wilkinson J, et al. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010 ; 115 : 206-14.
4) Chiaretti S, Vitale A, Cazzaniga G, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013 ; 98 : 1702-10.
5) Legrand O, Marie JP, Marjanovic Z, et al. Prognostic factors in elderly acute lymphoblastic leukaemia. Br J Haematol. 1997 ; 97 : 596-602.
6) Thomas X, Olteanu N, Charrin C, et al. Acute lymphoblastic leukemia in the elderly : The Edouard Herriot Hospital experience. Am J Hematol. 2001 ; 67 : 73-83.
7) Goekbuget N, Beck J, Brueggemann M, et al. Moderate intensive chemotherapy including CNS-Prophylaxis with liposomal cytarabine is feasible and effective in older patients with Ph-negative acute lymphoblastic leukemia (ALL) : Results of a prospective trial from The German multicenter study group for adult all (GMALL). Blood. 2012 ; 120 : 1493.
8) Goekbuget N. How I treat older patients with ALL. Blood. 2013 ; 122 : 1366-75.
9) Mohile SG, Dale W, Somerfield MR, et al. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy : ASCO Guideline for Geriatric Oncology. J Clin Oncol. 2018 ; 36 : 2326-47.
10) Klepin HD. Ready for prime time : role for geriatric assessment to improve quality of care in hematology practice. Blood. 2019 ; 134 : 2005-12.
11) Liu MA, DuMontier C, Murillo A, et al. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood. 2019 ; 134 : 374-82.
12) Hurria A, Togawa K, Mohile SG, et al. Predicting chemotherapy toxicity in older adults with cancer : a prospective multicenter study. J Clin Oncol. 2011 ; 29 : 3457-65.
13) Lees J, Chan A. Polypharmacy in elderly patients with cancer : clinical implications and management. The Lancet Oncol. 2011 ; 12 : 1249-57.
14) Sharma M, Loh KP, Nightingale G, et al. Polypharmacy and potentially inappropriate medication use in geriatric oncology. Journal of Geriatric Oncology. 2016 ; 7 : 346-53.
15) Sancho JM, Ribera JM, Xicoy B, et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol. 2007 ; 78 : 102-10.
16) Fathi AT, DeAngelo DJ, Stevenson KE, et al. Phase 2 study of intensified chemotherapy and allogeneic hematopoietic stem cell transplantation for older patients with acute lymphoblastic leukemia. Cancer. 2016 ; 122 : 2379-88.
17) Gokbuget N. Treatment of older patients with acute lymphoblastic leukaemia. Drugs & Aging. 2018 ; 35 : 11-26.
18) Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia : cancer and leukemia group B study 8811. Blood. 1995 ; 85 : 2025-37.
19) Harnicar S, Adel N, Jurcic J. Modification of vincristine dosing during concomitant azole therapy in adult acute lymphoblastic leukemia patients. J Oncol Pharm Practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2009 ; 15 : 175-82.
20) van Schie RM, Bruggemann RJ, Hoogerbrugge PM, et al. Effect of azole antifungal therapy on vincristine toxicity in childhood acute lymphoblastic leukaemia. J Antimicrob Chemother. 2011 ; 66 : 1853-6.
21) Goekbuget N, Leguay T, Hunault M, et al. First european chemotherapy schedule for elderly patients with acute lymphoblastic leukemia : Promising remission rate and feasible moderate dose intensity consolidation. Blood. 2008 ; 112 : 304.
22) Landsburg DJ, Stadtmauer E, Loren A, et al. Receipt of maintenance therapy is most predictive of survival in older acute lymphoblastic leukemia patients treated with intensive induction chemotherapy regimens. Am J Hematol. 2013 ; 88 : 657-60.
23) van Dongen JJ, van der Velden VH, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia : need for sensitive, fast, and standardized technologies. Blood. 2015 ; 125 : 3996-4009.
24) Bergfelt E, Kozlowski P, Ahlberg L, et al. Satisfactory outcome after intensive chemotherapy with pragmatic use of minimal residual disease (MRD) monitoring in older patients with Philadelphia-negative B cell precursor acute lymphoblastic leukaemia : a Swedish registry-based study. Med Oncol. 2015 ; 32 : 135.
25) Wolach O, Stevenson KE, Wadleigh M, et al. Allogeneic transplantation is not superior to chemotherapy in most patients over 40 years of age with Philadelphia-negative acute lymphoblastic leukemia in first remission. Am J Hematol. 2016 ; 91 : 793-9.
26) Roth-Guepin G, Canaani J, Ruggeri A, et al. Allogeneic stem cell transplantation in acute lymphoblastic leukemia patients older than 60 years : a survey from the acute leukemia working party of EBMT. Oncotarget. 2017 ; 8 : 112972-9.
27) Kozlowski P, Lennmyr E, Ahlberg L, et al. Age but not Philadelphia positivity impairs outcome in older/elderly patients with acute lymphoblastic leukemia in Sweden. Eur J Haematol. 2017 ; 99 : 141-9.
28) Dinmohamed AG, Szabo A, van der Mark M, et al. Improved survival in adult patients with acute lymphoblastic leukemia in the Netherlands : a population-based study on treatment, trial participation and survival. Leukemia. 2016 ; 30 : 310-7.
29) Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents : recommendations of an expert panel. Leuk Lymphoma. 2011 ; 52 : 2237-53.
P.182 掲載の参考文献
4) Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia : Results from the randomized BFORE Trial. J Clin Oncol. 2018 ; 36 : 231-7.
5) Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood. 1984 ; 63 : 789-99.
6) Geelen IGP, Sandin F, Thielen N, et al. Validation of the EUTOS long-term survival score in a recent independent cohort of "real world" CML patients. Leukemia. 2018 ; 32 : 2299-303.
7) Pfirrmann M, Baccarani M, Saussele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016 ; 30 : 48-56.
8) Sato E, Iriyama N, Tokuhira M, et al. Introduction of second-generation tyrosine kinase inhibitors may reduce the prognostic impact of high-risk patients, according to the European treatment and outcome study (EUTOS) score. Leuk Lymphoma. 2018 ; 59 : 1105-12.
9) Baccarani M, Abruzzese E, Accurso V, et al. Managing chronic myeloid leukemia for treatment-free remission : a proposal from the GIMEMA CML WP. Blood Adv. 2019 ; 3 : 4280-90.
10) Wang W, Cortes JE, Tang G, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016 ; 127 : 2742-50.
11) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
12) Miura M, Takahashi N. Management using the plasma concentration of tyrosine kinase inhibitors for the treatment of chronic myelogenous leukemia : an update. Rinsho Ketsueki. 2019 ; 60 : 1140-7.
P.188 掲載の参考文献
1) Bonifacio M, Stagno F, Scaffidi L, et al. Management of chronic myeloid leukemia in advanced phase. Front Oncol. 2019 ; 9 : 1132.
2) Craddock CF. We do still transplant CML, don't we? Hematology Am Soc Hematol Educ Program. 2018 ; 2018 : 177-84.
3) CQ5 進行期CML (APおよびBP) の治療はTKIが勧められるか. 4 慢性骨髄性白血病/骨髄増殖性腫瘍 (chronic myeloid leukemia/myeloproliferative neoplasms : CML/MPN). 日本血液学会. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版, 2020 ; p.111-2.
4) 北中明. CML進行期の対応. 臨床血液. 2016 ; 57 : p.1962-71.
5) Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era : Cohort study of 477 patients. Cancer. 2017 ; 123 : 4391-402.
6) Lubking A, Dreimane A, Sandin F, et al. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era : population-based data from the Swedish CML registry. Bone Marrow Transpl. 2019 ; 54 : 1764-74.
7) Milojkovic D, Ibrahim A, Reid A, et al. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica. 2012 ; 97 : 473-4.
8) Strati P, Kantarjian H, Thomas D, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014 ; 120 : 373-80.
9) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
10) Kantarjian H, Cortes J, Kim DW, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib : 15-month median follow-up. Blood. 2009 ; 113 : 6322-9.
11) Cortes JE, Kim DW, Pinilla-Ibarz J, et al. PACE Investigators.. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias.. N Engl J Med. 2013 ; 369 : 1783-96. doi : 10.1056/NEJMoa1306494. Epub 2013.
12) Ohanian M, Kantarjian HM, Quintas-Cardama A, et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma Myeloma Leuk. 2014 ; 14 : 155-62.e1.
13) Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era : Cohort study of 477 patients. Cancer. 2017 ; 123 : 4391-402.
14) Khoury HJ, Kukreja M, Goldman JM, et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era : a CIBMTR analysis. Bone Marrow Transplant. 2012 ; 47 : 810-6.
15) Chhabra S, Ahn KW, Hu ZH, et al. Myeloablative vs reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chronic myeloid leukemia. Blood Adv. 2018 ; 2 : 2922-36.
16) DeFilipp Z, Ancheta R, Liu Y, et al. Maintenance tyrosine kinase inhibitors following allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia : A center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2020 ; 26 : 472-9.
P.198 掲載の参考文献
1) Bower H, Bjorkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016 ; 34 : 2851-7.
2) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : Results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
3) Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years : the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010. ; 11 : 1029-35.
5) Takahashi N, Kyo T, Maeda Y, et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012 ; 97 : 903-6.
6) Takahashi N, Nishiwaki K, Nakaseko C, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia : STAT2 trial in Japan. Haematologica. 2018 ; 103 : 1835-42.
7) Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase : results from the ENESTfreedom study. Leukemia. 2017 ; 31 : 1525-31.
8) Okada M, Imagawa J, Tanaka H, et al. Final 3-year results of the dasatinib discontinuation trial in patients with chronic myeloid leukemia who received dasatinib as a second-line treatment. Clin Lymphoma Myeloma Leuk. 2018 ; 18 : 353-60.
9) Kimura S, Imagawa J, Murai K, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial) : a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020 ; 7 : e218-25.
10) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
11) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020.
12) Steegmann JL, Baccarani M, Breccia M, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016 ; 30 : 1648-71.
14) Yilmaz M, Lahoti A, O'Brien S, et al. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer. 2015 ; 121 : 3894-904.
15) Sakurai M, Kikuchi T, Karigane D, et al. Renal dysfunction and anemia associated with long-term imatinib treatment in patients with chronic myelogenous leukemia. Int J Hematol. 2019 ; 109 : 292-8.
18) Porkka K, Khoury HJ, Paquette RL, et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer. 2010 ; 116 : 377-86.
19) Latagliata R, Breccia M, Fava C, et al. Incidence, risk factors and management of pleural effusions during dasatinib treatment in unselected elderly patients with chronic myelogenous leukaemia. Hematol Oncol. 2013 ; 31 : 103-9.
20) Hughes TP, Laneuville P, Rousselot P, et al. Incidence, outcomes, and risk factors of pleural effusion in patients receiving dasatinib therapy for Philadelphia chromosome-positive leukemia. Haematologica. 2019 ; 104 : 93-101.
21) Radich JP, Deininger M, Abboud CN, et al. Chronic myeloid leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018 ; 16 : 1108-35.
22) Weatherald J, Chaumais MC, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension : a population-based study. Eur Respir J. 2017 ; 50 : 1700217.
25) Hughes TP, Saglio G, Larson R, et al. Long-term outcomes in patients with chronic myeloid leukemia in chronic phase receiving frontline nilotinib versus imatinib : ENESTnd 10-Year Analysis. Blood. 2019 ; 134 : 2924.
28) Haouala A, Widmer N, Duchosal MA, et al. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 ; 117 : e75-87.
29) Medeiros BC, Possick J, Fradley M. Cardiovascular, pulmonary, and metabolic toxicities complicating tyrosine kinase inhibitor therapy in chronic myeloid leukemia : Strategies for monitoring, detecting, and managing. Blood Rev. 2018 ; 32 : 289-99.
30) Minson AG, Cummins K, Fox L, et al. The natural history of vascular and other complications in patients treated with nilotinib for chronic myeloid leukemia. Blood Adv. 2019 ; 3 : 1084-91.
31) Cortes JE, Apperley JF, DeAngelo DJ, et al. Management of adverse events associated with bosutinib treatment of chronic-phase chronic myeloid leukemia : expert panel review. J Hematol Oncol. 2018 ; 11 : 143.
32) Brummendorf TH, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia : results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015 ; 168 : 69-81.
33) Cortes JE, Gambacorti-Passerini C, Kim DW, et al. Effects of bosutinib treatment on renal function in patients with philadelphia chromosome-positive leukemias. Clin Lymphoma Myeloma Leuk. 2017 ; 17 : 684-95 e6.
34) Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia : Results from the randomized BFORE Trial. J Clin Oncol. 2018 ; 36 : 231-7.
36) Seegobin K, Babbar A, Ferreira J, et al. A case of worsening pulmonary arterial hypertension and pleural effusions by bosutinib after prior treatment with dasatinib. Pulm Circ. 2017 ; 7 : 808-12.
38) Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia : an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016 ; 17 : 612-21.
40) Aghel N, Delgado DH, Lipton JH. Cardiovascular events in chronic myeloid leukemia clinical trials. Is it time to reassess and report the events according to cardiology guidelines? Leukemia. 2018 ; 32 : 2095-104.
41) Group NDR. Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circ J. 2006 ; 70 : 1249-55.
42) Latagliata R, Carmosino I, Vozella F, et al. Impact of exclusion criteria for the DASISION and ENESTnd trials in the front-line treatment of a'real-life'patient population with chronic myeloid leukaemia. Hematol Oncol. 2017 ; 35 : 232-6.
43) Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia : results of the randomized CML study IV. Blood. 2015 ; 126 : 42-9.
45) Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY) : a non-randomised, phase 2 trial. Lancet Haematol. 2019 ; 6 : e375-e83.
46) Naqvi K, Jabbour E, Skinner J, et al. Early results of lower dose dasatinib (50 mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018 ; 124 : 2740-7.
P.204 掲載の参考文献
1) Hehlmann R. Innovatioin in hematology. Perspectives. CML 2016. Hematologica. 2016 ; 101 : 657-9.
2) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
3) Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002 ; 99 : 319-25.
4) Hochhaus A, Saussele S, Rosti G, et al. Chronic myeloid leukaemia : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017 ; 28 (suppl 4) : iv41-51.
5) NCCN. NCCN Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia ; version 4. 2018 (CML-E).
6) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
7) Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) Study in patients with chronic myeloid leukemia. J Clin Oncol. 2017 ; 35 : 298-305.
9) Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI) : a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018 ; 19 : 747-57.
10) JSH. Clinical Practice Guidelines in Hematology Malignancy. In : Kizaki M, Shimoda K, Takahashi N, eds. CML/MPN. Tokyo : Kanehara Shuppan. 2018.
P.210 掲載の参考文献
1) Holmstrom MO, Riley CH, Svane IM, et al. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016 ; 30 : 2413-6.
2) Bozkus CC, Roudko V, Finnigan JP, et al. Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discov. 2019 ; 9 : 1192-207.
3) Holmstrom MO, Martinenaite E, Ahmad SM, et al. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia. 2018 ; 32 : 429-37.
4) Prestipino A, Emhardt AJ, Aumann K, et al. Oncogenic JAK2 (V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018 ; 10. eaam 7729.
5) Holmstrom MO, Ahmad SM, Klausen U, et al. High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer J. 2019 ; 9 : 8.
6) Tubb VM, Schrikkema DS, Croft NP, et al. Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies. J Immunother Cancer. 2018 ; 6 : 70.
7) Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine & growth factor reviews. 2013 ; 24 : 133-45.
8) Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008 ; 112 : 3065-72.
9) Liu P, Zhao L, Loos F, et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol Cell. 2020 ; 77 : 748-60 e9.
P.215 掲載の参考文献
2) Dan K, Yamada T, Kimura Y, et al. Clinical features of polycythemia vera and essential thrombocythemia in Japan : retrospective analysis of a nationwide survey by the Japanese Elderly Leukemia and Lymphoma Study Group. Int J Hematol. 2006 ; 83 : 443-9.
3) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 ; 金原出版. 2020.
5) Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms : critical concepts and management recommendations from European Leukemia Net. J Clin Oncol. 2011 ; 29 : 761-70.
6) Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia : an ELN and IWG-MRT consensus project. Blood. 2013 ; 121 : 4778-81.
7) Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score : prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012 ; 30 : 4098-103.
8) Ferrari A, Carobbio A, Masciulli A, et al. Clinical outcomes under hydroxyurea treatment in polycythemia vera : a systematic review and meta-analysis. Haematologica. 2019 ; 104 : 2391-9.
9) Kiladjian JJ, Zachee P, Hino M, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE) : 5-year follow up of a phase 3 study. Lancet Haematol. 2020 ; 7 : e226-37.
10) Yacoub A, Mascarenhas J, Kosiorek H, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019 ; 134 : 1498-509.
11) Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV) : a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020 ; 7 : e196-208.
P.222 掲載の参考文献
1) Tefferi A, Pardanani A. Essential thrombocythemia. N Engl J Med. 2019 ; 381 : 2135-44.
2) Cortelazzo S, Viero P, Finazzi G, et al. Incidence and risk factors for thrombotic complications in a historical cohort of 100 patients with essential thrombocythemia. J Clin Oncol. 1990 ; 8 : 556-62.
4) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版 (WEB版) 慢性骨髄性白血病/骨髄増殖性腫瘍 : アルゴリズム, 2020. <http://www.jshem.or.jp/gui-hemali/1_4.html#algo> Accessed 2020 Nov 30.
6) National comprehensive cancer network. NCCN clinical practice guidelines in oncology myeloproliferative neoplasms. Version 3. 2019. <https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf>. Accessed 2020 April 30.
7) Barbui T, Vannucchi A, Buxhofer-Ausch, V. et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer Journal. 2015 ; 5 : e369.
8) Budde U, Schaefer G, Mueller N, et al. Acquired von Willebrand's disease in the myeloproliferative syndrome. Blood. 1984 ; 64 : 981-4.
9) Alvarez-Larran A, Cervantes F, Pereira A, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010 ; 116 : 1205-10.
10) Alvarez-Larran A, Pereira A, Guglielmelli P, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016 ; 101 : 926-31.
11) Godfrey AL, Campbell PJ, MacLean C, et al. Hydroxycarbamide plus aspirin versus aspirin alone in patients with essential thrombocythemia age 40 to 59 years without high-risk features. J Clin Oncol. 2018 ; 36 : 3361-69.
12) Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995 ; 332 : 1132-7.
13) Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005 ; 353 : 33-45.
14) Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia : the ANAHYDRET Study, a randomized controlled trial. Blood. 2013 ; 121 : 1720-8.
15) Alvarez-Larran A, Pereira A, Arellano-Rodrigo E, et al. Cytoreduction plus low-dose aspirin versus cytoreduction alone as primary prophylaxis of thrombosis in patients with high-risk essential thrombocythaemia : an observational study. Br J Haematol. 2013 ; 161 : 865-71.
16) Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia : 2021 update on diagnosis, risk-stratification and management. Am J Hematol. Accepted artiales, doi 10,10021aih.26008.
P.228 掲載の参考文献
1) Guglielmelli P, Pacilli A, Rotunno G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017 ; 129 : 3227-36.
2) Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the international working group for myelofibrosis research and treatment. Blood. 2009 ; 113 : 2895-901.
4) Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus : a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011 ; 29 : 392-7.
5) Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70 : Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018 ; 36 : 310-8.
6) Takenaka K, Shimoda K, Uchida N, et al. Clinical features and outcomes of patients with primary myelofibrosis in Japan : report of a 17-year nationwide survey by the idiopathic disorders of hematopoietic organs research committee of Japan. Int J Hematol. 2017 ; 105 : 59-69.
7) Kroger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015 ; 125 : 3347-3350 ; quiz 3364.
8) Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019 ; 133 : 2233-42.
11) Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis : COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017 ; 10 : 156.
12) Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis : a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016 ; 101 : 1065-73.
14) Kirito K, Okamoto S, Ohishi K, et al. Evaluation of the dose and efficacy of ruxolitinib in Japanese patients with myelofibrosis. Int J Hematol. 2018 ; 107 : 92-7.
P.234 掲載の参考文献
1) Shomali W, Gotlib J. World Health Organization?defined eosinophilic disorders : 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019 ; 94 : 1149-67.
2) Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 ; 27 : 2391-405.
3) Kirito K, The 8p11 myeloproliferative syndrome : A review of recent literature. Rinsho Ketsueki. 2019 ; 60 : 1157-65.
4) Gleich GJ, Leiferman KM, Pardanani A, et al. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002 ; 359 : 1577-8.
5) Pardanani A, D'Souza A, Knudson RA, et al. Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia : survival and clinical outcome. Leukemia. 2012 ; 26 : 2439-41.
6) Helbig G, Kyrcz-Krzemien S. Cessation of imatinib mesylate may lead to sustained hematologic and molecular remission in FIP1L1-PDGFRA mutated hypereosinophilic syndrome. Am J Hematol. 2014 ; 89 : 115.
7) Cheah CY, Burbury K, Apperley JF, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood. 2014 ; 123 : 3574-7.
9) Schwaab J, Knut M, Haferlach C, et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol. 2015 ; 94 : 233-8.
10) Helbig G, Hus M, Halasz M, et al. Imatinib mesylate may induce long-term clinical response in FIP1L1-PDGFRa-negative hypereosinophilic syndrome. Med Oncol. 2012 ; 29 : 1073-6.
12) Roufosse F, Kahn JE, Gleich GJ, et al. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol. 2013 ; 131 : 461-7.
13) Walsh GM. Reslizumab, a humanized anti-IL-5 mAb for the treatment of eosinophil-mediated inflammatory conditions. Curr Opin Mol Ther. 2009 ; 11 : 329-36.
14) Kuang FL, Legrand F, Makiya M, et al. Benralizumab for PDGFRAnegative hypereosinophilic syndrome. N Engl J Med. 2019 ; 380 : 1336-46.
15) Verstovsek S, Tefferi A, Kantarjian H, et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res. 2009 ; 15 : 368-73.
16) Strati P, Cortes J, Faderl S, et al. Long-term follow-up of patients with hypereosinophilic syndrome treated with alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk. 2013 ; 13 : 287-91.
17) DeLavareille A, Roufosse F, Schmid-Grendelmeier P, et al. High serum thymus and activation-regulated chemokine levels in the lymphocytic variant of the hypereosinophilic syndrome. J Allergy Clin Immunol. 2002 ; 110 : 476-9.
18) Pardanani A, Lashi T, Wassie E, et al. Predictors of survival in WHOdefined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia. 2016 ; 30 : 1924-6.
19) Verstovsek S, Vannucchi AM, Rambaldi A, et al. Interim results from Fight-203, a phase 2, open-label, multicenter study evaluating the efficacy and safety of pemigatinib (INCB054828) in patients with myeloid/lymphoid neoplasms with rearrangement of fibroblast growth factor receptor 1 (FGFR1). Blood. 2018 ; 132 Suppl 1 : 690.
20) Panch SR, Bozik ME, Brown T, et al. Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood. 2018 ; 132 : 501-9.
21) Pardanani A, Reeder T, Porrata L, et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood. 2003 ; 101 : 3391-7.
22) Pitini V, Arrigo C, Azzarello D, et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood. 2003 ; 102 : 3456-7.
23) Bradeen HA, Eide CA, O'Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an Nethyl-N-nitrosourea (ENU) -based mutagenesis screen : high efficacy of drug combinations. Blood. 2006 ; 108 : 2332-8.
24) Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRalpha D842V, a novel pan resistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia. 2009 ; 23 : 845-51.
25) Roufosse F, De Lavareille A, Schandene L, et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J Allergy Clin Immunol. 2010 ; 126 : 828-35.
P.239 掲載の参考文献
2) Stahl M, Xu ML, Steensma DP, et al. Clinical response to ruxolitinib in CSF3R T618-mutated chronic neutrophilic leukemia. Ann Hematol. 2016 ; 95 : 1197-200.
3) Uppal G. Gong, J. Chronic neutrophilic leukaemia. J Clin Pathol. 2015 ; 68 : 680-4.
5) Bain BJ, Ahmad S. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions : Br J Haematol. 2015 ; 171 : 400-10.
6) Elliott MA, Hanson CA, Dewald GW, et al. WHO-defined chronic neutrophilic leukemia : a long-termanalysis of 12 cases and a critical review of the literature. Leukemia. 2005 ; 19 : 313-7.
7) Lee SE, Jo I, Jang W, et al. T618I-mutated colony stimulating factor 3 receptor in chronic neutrophilic leukemia and chronic myelomonocytic leukemia patients who underwent allogeneic stem cell transplantation. Ann Lab Med. 2015 ; 35 : 376-8.

IV. リンパ系腫瘍

P.247 掲載の参考文献
1) Hallek M, Fischer K, Fingerle-Rowson G, et al : German Chronic Lymphocytic Leukaemia Study Group. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia : A randomised, open-label, phase 3 trial. Lancet. 2010 ; 376 : 1164-74.
2) Jain N. Selecting frontline therapy for CLL in 2018. Am Soc Hematol Educ Program. 2018 ; 2018 : 242-7.
3) Thompson PA, Tam CS, O'Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016 ; 127 : 303-9.
4) O'Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17) : A phase 2, open-label, multi-centre study. Lancet Oncol. 2016 ; 17 : 1409-18.
5) Eichhorst B, Fink AM, Bahlo J, et al. German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10) : an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016 ; 17 : 928-42.
6) O'Brien S, Furman RR, Coutre S, et al. Single-agent ibrutinib in treatment-naive and relapsed/refractory chronic lymphocytic leukemia : a 5-year experience. Blood. 2018 ; 131 : 1910-19.
7) Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL : 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020 ; 34 : 787-98.
8) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
9) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
10) Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019 ; 380 : 2095-103.
11) Eichhorst BF, Busch R, Stilgenbauer S, et al. First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009 ; 114 : 3382-91.
12) Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first-line and relapsed/Refractory chronic lymphocytic leukemia : Final analysis of the pivotal phase 1b/2 PCYC-1102 Study. Clin Cancer Res. 2020 Mar 24. doi : 10.1158/1078-0432.
13) Nabhan C, Mato A, Flowers CR et al. Characterizing and prognosticating chronic lymphocytic leukemia in the elderly : Prospective evaluation on 455 patients treated in the United States. BMC Cancer. 2017 ; 17 : 198.
14) Davids MS, Kim HT, Brander DM, et al. A multicenter, phase II study of ibrutinib plus FCR (iFCR) as frontline therapy for younger CLL patients [abstract]. Blood. 2017 ; 130 : 496.
15) Michallet AS, Dilhuydy MS, Subtil F, et al. High rate of complete response but minimal residual disease still detectable after first-line treatment combining obinutuzumab and ibrutinib in chronic lymphocytic leukemia (CLL) : ICLL07 FILO trial [abstract]. Proceedings of the European Hematology Association Annual Meeting. 2018 ; S804.
16) Jain N, Thompson PA, Burger JA, et al. Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (GA101) (iFCG) for first-line treatment of patients with CLL with mutated IGHV and without TP53 aberrations [abstract]. Blood. 2017 ; 130 : 495.
17) Flinn IW, Gribben JG, Dyer MJS, et al. Safety, efficacy and MRD negativity of a combination of venetoclax and obinutuzumab in patients with previously untreated chronic lymphocytic leukemia- results from a phase 1b study (GP28331) [abstract]. Blood. 2017 ; 130 : 430.
P.253 掲載の参考文献
1) Hallek M, Bruce D, Cheson BD, et al. IwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018 ; 131 : 2745-60
2) Suzumiya J, Takizawa J. Evolution in the management of chronic lymphocytic leukemia in Japan : Should MRD negativity be the goal? Int J Hematol. 2020 ; 111 : 642-56.
3) Hallek M. Chronic lymphocytic leukemia : 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019 ; 94 : 1266-87.
5) Ghia P, Rawstron A. Minimal residual disease analysis in chronic lymphocytic leukemia : a way for achieving more personalized treatments. Leukemia. 2018 ; 32 : 1307-16.
6) 鈴宮淳司, 高松泰 ; 慢性リンパ性白血病/小リンパ球性リンパ腫・日本血液学会, 編. 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版. 2020. p.121-43.
7) Gribben JG. How and when I do allogeneic transplant in CLL. Blood. 2018 ; 132 : 31-9.
8) Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014 ; 371 : 213-23.
9) Byrd JC, Hillmen P, O'Brien S, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019 ; 133 : 2031-42.
10) Munir T, Brown JR, O'Brien S, et al. Final analysis from RESONATE : Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019 ; 94 : 1353-63.
12) Kater AP, Seymour JF, Hillmen P, et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival : Post-treatment follow-up of the MURANO Phase III study. J Clin Oncol. 2018 ; 37 : 269-77.
13) Ghia P, Pluta A, Wach M, et al. ASCEND : Phase III, randomized trial of acalabrutinib Versus Idelalisib Plus Rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020 (DOI https://doi.org/10.1200/JCO.19.03355).
14) Tam CS, O'Brien S, Plunkett W, et al. Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood. 2014 ; 124 : 3059-64.
15) Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018 ; 24 : 563-71.
16) Hillmen P, Rawstron AC, Kristian Brock K, et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia : The CLARITY study. J Clin Oncol. 2019 ; 37 : 2722-9.
17) Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019 ; 380 : 2225-36.
19) Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial : duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018 ; 132 : 2446-55.
20) Fink AM, Bahlo J, Robrecht S, et al. Lenalidomide maintenance after first-line therapy for high-risk chronic lymphocytic leukaemia (CLLM1) : final results from a randomised, double-blind, phase 3 study. Lancet Haematol. 2017 ; 4 : e475-e86.
P.259 掲載の参考文献
3) Hallek M. Chronic lymphocytic leukemia : 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019 ; 94 : 1266-87.
4) Milne K, Sturrock B, Chevassut T. Chronic lymphocytic leukaemia in 2020 : The Future has arrived. Curr Oncol. 2020 ; 22 : 36.
5) Thompson M, Brander D, Nabhan C, et al. Minimal residual disease in chronic lymphocytic leukemia in the era of novel agents : A Review. JAMA Oncol. 2018 ; 4 : 394-400.
6) Rawstron AC, Bottcher S, Letestu R, et al. Improving efficiency and sensitivity : European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia. 2013 ; 27 : 142-9.
7) Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia : an European Research Initiative on CLL study. Leukemia. 2016 ; 30 : 929-36.
8) Furstenau M, De Silva N, Eichhorst B, et al. Minimal residual disease assessment in CLL : Ready for use in clinical routine? Hemasphere. 2019 ; 3 : e287.
9) Del Giudice I, Raponi S, Della Starza I, et al. Minimal residual disease in chronic lymphocytic leukemia : A new goal? Front Oncol. 2019 ; 9 : 68.
11) Thompson PA, Srivastava J, Peterson C, et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood. 2019 ; 134 : 1951-9.
12) Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia : The CLARITY Study. J Clin Oncol. 2019 ; 37 : 2722-9.
13) Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019 ; 380 : 2095-103.
14) Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10) : an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016 ; 17 : 928-42.
16) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
17) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
18) Mureno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE) : a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 43-56.
P.264 掲載の参考文献
1) Sarkozy C, Maurer MJ, Link BK, et al. Cause of death in follicular lymphoma in the first decade of the rituximab era : A pooled analysis of french and US Cohorts. J Clin Oncol. 2019 ; 37 : 144-52.
5) Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin's lymphomas. N Engl J Med. 1984 ; 311 : 1471-5.
6) Ardeshna KM, Smith P, Norton A, et al. Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma : A randomised controlled trial. Lancet. 2003 ; 362 : 516-22.
7) Ardeshna KM, Qian W, Smith P, et al. Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma : An open-label randomised phase 3 trial. Lancet Oncol. 2014 ; 15 : 424-35.
8) Kahl BS, Hong F, Williams ME, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma : Eastern cooperative oncology group protocol E4402. J Clin Oncol. 2014 ; 32 : 3096-102.
9) Gyan E, Sonet A, Brice P, et al. Bendamustine and rituximab in elderly patients with low-tumour burden follicular lymphoma. Results of the LYSA phase II BRIEF study. Br J Haematol. 2018 ; 183 : 76-86.
10) Martinelli G, Schmitz SF, Utiger U, et al. Long-term follow-up of patients with follicular lymphoma receiving single-agent rituximab at two different schedules in trial SAKK 35/98. J Clin Oncol. 2010 ; 28 : 4480-4.
P.270 掲載の参考文献
2) Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma : A systematic review and meta-analysis. J Natl Cancer Inst. 2007 ; 99 : 706-14.
4) Luminari S, Ferrari A, Manni M, et al. Long-term results of the FOLL05 trial comparing R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage symptomatic follicular lymphoma. J Clin Oncol. 2018 ; 36 : 689-96.
7) Bachy E, Seymour JF, Feugier P, et al. Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma : Long-Term Results of the PRIMA Study. J Clin Oncol. 2019 ; 37 : 2815-24.
8) Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017 ; 377 : 1331-44.
9) Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018 ; 379 : 934-47.
10) Ohmachi K, Tobinai K, Kinoshita T, et al. Efficacy and safety of obinutuzumab in patients with previously untreated follicular lymphoma : a subgroup analysis of patients enrolled in Japan in the randomized phase III GALLIUM trial. Int J Hematol. 2018 ; 108 : 499-509.
P.276 掲載の参考文献
1) Sarkozy C, Maurer MJ, Link BK, et al. Cause of death in follicular lymphoma in the first decade of the rituximab era : A pooled analysis of French and UK cohorts. J Clin Oncol. 2018 ; 37 : 144-52.
2) Al-Tourah AJ, Gill KK, Chhanabhai M, et al. Population-based analysis of incidence and outcome of transformed non-Hodgkin's lymphoma. J Clin Oncol. 2008 ; 26 : 5165-9.
3) Casulo C, Friedberg JW, Ahn KW, et al. Autologous transplantation in follicular lymphoma with early therapy failure : A national lymphocare study and center for international blood and marrow transplant research analysis. Biol Blood Marrow Transplant. 2018 ; 24 : 1163-71.
4) Sehn LH, Chua N, Jiri Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN) : a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016 ; 17 : 1081-93.
6) LeonardJP, Trneny T, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
7) Seymour JF, Marcus R, Davies A, et al. Association of early disease progression and very puur survival in the GALLIUM study in follicular lymphoma : Benefit of obinutuzumab in reducing the rate of early progression. Haematologica. 2019 ; 104 : 1202-8.
P.280 掲載の参考文献
1) Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edition. IARC Press, 2017.
2) Wundisch T, Thiede C, Morgner A, et al : Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol. 2005 ; 23 : 8018-24.
5) Salar A, Domingo-Domenech E, Panizo C, et al. First-line response-adapted treatment with the combination of bendamustine and rituximab in patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01) : A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2014 ; 1 : e104-11.
6) Laribi K, Tempescul A, Ghnaya H, et al. The bendamustine plus rituximab regimen is active against primary nodal marginal zone B-cell lymphoma. Hematol Oncol 2017 ; 35 : 536-41.
7) Walewski J, Paszkiewicz-Kozik E, Michalski W, et al. First-line R-CVP versus R-CHOP induction immunochemotherapy for indolent lymphoma with rituximab maintenance. A multicentre, phase III randomized study by the Polish Lymphoma Research Group PLRG4. Br J Haematol. 2020 ; 188 : 898-906.
8) Leonard JP, Trneny M, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
9) Noy A, de Vos S, Thieblemont C, et al. Targeting bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017 ; 129 : 2224-32.
10) Laribi K, Poulain S, Willems L, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2019 ; 186 : 146-9.
11) Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab : WMCTG clinical trial 05-180. J Clin Oncol. 2009 ; 27 : 3830-5.
13) Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015 ; 372 : 1430-40.
P.287 掲載の参考文献
1) Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In : Swerdlow, SH, et al. editor., WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC press ; 2017. p.285-90.
3) 岡本昌隆, 山本一仁. マントル細胞リンパ腫. In ; 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020 ; p.215-29.
4) Martin P, Chadburn A, Christos P, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009 ; 27 : 1209-13.
5) Gerson JN, Handorf E, Villa D, et al. Survival outcomes of younger patients with mantle cell lymphoma treated in the rituximab era. J Clin Oncol. 2019 ; 37 : 471-80.
7) Ogura M, Yamamoto K, Morishima, Y et al. R-High-CHOP/CHASER/LEED with autologous stem cell transplantation in newly diagnosed mantle cell lymphoma : JCOG0406 STUDY. Cancer Sci. 2018 ; 109 : 2830-40.
9) Chen RW, Li H, Bernstein SH, et al. RB but not R-HCVAD is a feasible induction regimen prior to auto-HCT in frontline MCL : results of SWOG Study S1106. Br J Haematol. 2017 ; 176 : 759-69.
12) Wang ML, Lee H, Chuang H, et al. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma : a single-centre, open-label, phase 2 trial. Lancet Oncol. 2016 ; 17 : 48-56.
13) Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib : a pooled analysis from three open-label studies. Br J Haematol. 2017 ; 179 : 430-8.
14) Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004) : a single-arm, multicentre, phase 2 trial. Lancet. 2018 ; 391 : 659-67.
15) Song Y, Zhou K, Zou D, et al. Treatment of patients with relapsed or refractory mantle-cell lymphoma with zanubrutinib, a selective Inhibitor of Bruton's tyrosine kinase. Clin Cancer Res. 2020 ; 26 : 4216-24.
17) Robak T, Jin J, Pylypenko H et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma : final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018.
18) Wang M, Fayad L, Wagner-Bartak N, et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma : A phase 1/2 clinical trial. Lancet Oncol. 2012 ; 13 : 716-23.
21) Trneny M, Lamy T, Walewski J, et al. Lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma (MCL-002 ; SPRINT) : a phase 2, randomised, multicentre trial. Lancet Oncol. 2016 ; 17 : 319-31.
22) Ruan J, Martin P, Christos P, et al. Five-year follow-up of lenalidomide plus rituximab as initial treatment of mantle cell lymphoma. Blood. 2018 ; 132 : 2016-25.
23) Davids MS, Roberts AW, Seymour JF, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol. 2017 ; 35 : 826-33.
25) Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020 ; 382 : 1331-42.
P.292 掲載の参考文献
1) Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In : Swerdlow SH, et al. Editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC Press ; 2017. p.285-90.
2) Chihara D, Asano N, Ohmachi K, et al. Prognostic model for mantle cell lymphoma in the rituximab era : a nationwide study in Japan. Br J Haematol. 2015 ; 170 : 657-68.
5) Rodak T, Huang H, Jin J, et al. Bortezomib-Based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015 ; 372 : 944-53.
6) Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib : a pooled analysis from three open-label studies. Br J Haematol. 2017 ; 179 : 430-8.
8) Wang M, Goy A, Martin P, et al. Efficacy and safety of single-agent ibrutinib in patients with mantle cell lymphoma who progressed after bortezomib therapy. Blood. 2014 ; 124 : 4471.
11) Rummel MJ, Knauf W, Goerner M, et al. Two years rituximab maintenance vs. observation after first-line treatment with bendamustine plus rituximab (B-R) in patients with mantle cell lymphoma : First results of a prospective, randomized, multicenter phase II study (a subgroup study of the StiL NHL7-2008 MAINTAIN trial) [abstract]. J Clin Oncol. 2016 ; 34 : Abstract. 7503.
12) Robak T, Jin J, Pylypenko H, et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma : final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018 ; 19 : 1449-58.
13) Rule S, Dreyling M, Goy A, et al. Ibrutinib for the treatment of relapsed/refractory Mantle Cell Lymphoma : Extended 3.5-year follow up from a pooled analysis. Haematologica. 2019 ; 104 : e211-4.
14) Extermann M, Hurria A. Comprehensive geriatric assessment for older patients with Cancer. J Clin Oncol. 2007 ; 25 : 1824-31.
15) Ye H, Desai A, Zeng D, et al. Frontline treatment for older patients with mantle cell lymphoma. The Oncologist. 2018 ; 23 : 1337-48.
16) Pease D, Morrison VA. Treatment of mantle cell lymphoma in older adults J Geriatr Oncol. 2018 ; 9 : 308-14.
17) Visco C, Chiappella A, Nassi L, et al. Rituximab, bendamustine, and low-dose cytarabine as induction therapy in elderly patients with mantle cell lymphoma : a multicentre, phase 2 trial from Fondazione Italiana Linfomi. Lancet Haematol. 2017 ; 4 : e15-23.
18) Maddocks K. Update on mantle cell lymphoma Blood. 2018 ; 132 : 1647-56.
P.298 掲載の参考文献
1) Poeschel V, Held G, Ziepert M, et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER) : a randomised, phase 3, non-inferiority trial. Lancet. 2019 ; 394 : 2271-81.
2) Lamy T, Damaj G, Soubeyran P, et al. R-CHOP 14 with or without radiotherapy in nonbulky limited-stage diffuse large B-cell lymphoma. Blood. 2018 ; 131 : 174-81.
3) Persky DO, Li H, Stephens DM, et al. PET-directed therapy for patients with limited-stage diffuse large B-Cell lymphoma-results of intergroup nctn study S1001. Blood. 2019 ; 134 (Suppl 1) : 349.
4) Miller TP, Dahlberg S, Cassady JR, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade Non-Hodgkin's lymphoma. N Engl J Med. 1998 ; 339 : 21-6.
5) Stephens DM, Li H, LeBlanc ML, et al. Continued Risk of relapse independent of treatment modality in limited-stage diffuse large B-cell lymphoma : Final and long-term analysis of southwest oncology group study S8736. J Clin Oncol. 2016 ; 34 : 2997-3004.
P.302 掲載の参考文献
2) Stiff PJ, Unger JM, Cook JR, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin's lymphoma. N Engl J Med. 2013 ; 369 : 1681-90.
3) Bartlett NL, Wilson WH, Jung SH, et al. Dose-Adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-Cell Lymphoma : Clinical Outcomes of the Phase III Intergroup Trial Alliance/CALGB 50303. J Clin Oncol. 2019 ; 37 : 1790-9.
4) Davies A, Cummin TE, Barrans S, et al. Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B) : an open-label, randomised, phase 3 trial. Lancet Oncol. 2019 ; 20 : 649-62.
5) Younes A, Sehn LH, Johnson P, et al. Randomized Phase III Trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell Lymphoma. J Clin Oncol. 2019 ; 37 : 1285-95.
P.307 掲載の参考文献
1) 日本老年学会・日本老年医学会. 高齢者の定義と区分に関する, 日本老年学会・日本老年医学会 高齢者に関する定義検討ワーキンググループからの提言. 日本老年医学会ホームページ.
2) Chihara D, Westin JR, Oki Y, et al. Management strategies and outcomes for very elderly patients with diffuse large B-cell lymphoma. Cancer. 2016 ; 122 : 3145-51.
3) Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002 ; 346 : 235-42.
8) Pfreundschuh M. CHOP intensification : not yet state of the art. Lancet Oncol. 2013 ; 14 : 445-7.
9) Kuhnl A, Cunningham D, Counsell N, et al. Outcome of elderly patients with diffuse large B-cell lymphoma treated with R-CHOP : results from the UK NCRI R-CHOP14v21 trial with combined analysis of molecular characteristics with the DSHNHL RICOVER-60 trial. Ann Oncol. 2017 ; 28 : 1540-6.
10) Limat S, Demesmay K, Voillat L, et al. Early cardiotoxicity of the CHOP regimen in aggressive non-Hodgkin's lymphoma. Ann Oncol. 2003 ; 14 : 277-81.
13) Bohlius J, Herbst C, Reiser M, et al. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma. Cochrane Database Syst Rev. 2008 : CD003189.
14) Miyata Y, Saito AM, Yoshida I, et al. R-mini CHP in>/=80-year-old patients with diffuse large B-cell lymphoma : A multicenter, Open-label, single-arm phase II trial protocol. Acta Med Okayama. 2018 ; 72 : 315-8.
15) Yoshida I, Suehiro Y, Miyata Y, et al. Reduced-intensity immunochemotherapy without vincristine in elderly patients older than 80 years old with diffuse large B-cell lymphoma : A multicentre, open-label, single-arm, phase II Trial. 24th EHA Congress. 2019.
P.312 掲載の参考文献
1) Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma : R-CHOP failure-what to do?. Hematology Am Soc Hematol Educ Program. 2016 : 366-78.
2) Gisselbrecht C, Neste EVD. How I manage patients with relapsed/refractory diffuse large B cell lymphoma. Br J Haematol. 2018 ; 182, 633-43.
3) Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med. 1995 ; 333 : 1540-5.
7) van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma : the ORCHA-RRD study. J Clin Oncol. 2017 ; 35 : 544-51.
8) Martin A, Conde E, Arnan M, et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma : the influence of prior exposure to rituximab on outcome. A GEL/TAMO Study. Haematologica. 2008 ; 93 : 1829-36.
9) Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019 ; 380 : 45-56.
10) Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017 ; 377 : 2545-54.
11) Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017 ; 377 : 2531-44.
12) Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1) : a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019 ; 20 : 31-42.
13) Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1 : a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017 ; 25 : 285-95.
14) Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma : results from the international SCHOLAR-1 study. Blood. 2017 ; 130 : 1800-8.
15) Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020 ; 38 : 155-65.
16) Ohmachi K, Niitsu N, Uchida T, et al. Multicenter phase II study of bendamustine plus rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2013 ; 31 : 2103-9.
P.317 掲載の参考文献
1) Nakamura S, Ponzoni M, Campo E. Intravascular large B-cell lymphoma, In ; Swerdlow SH, Campo E, Harris NL, et al, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC Press ; 2017. p.317-20.
2) Shimada K, Shimada S, Sugimoto K, et al. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma. Leukemia. 2016 ; 30 : 1568-79.
3) Suehara H, Sakata-Yanagimoto M, Hattori K, et al. Liquid biopsy for the identification of intravascular large B-cell lymphoma [abstract]. Blood. 2017 ; 130 : 378.
5) Ferreri AJ, Dognini GP, Bairey O, et al. The addition of rituximab to anthracycline-based chemotherapy significantly improves outcome in'Western'patients with intravascular large B-cell lymphoma. Br J Haematol. 2008 ; 143 : 253-7.
7) Shimada K, Yamaguchi M, Atsuta Y, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL) : a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020 ; 21 : 593-602.
8) Kato K, Mori T, Kim SW, et al. Outcome of patients receiving consolidative autologous peripheral blood stem cell transplantation in the frontline treatment of intravascular large B-cell lymphoma : Adult lymphoma working group of the Japan society for Hematopoietic Cell Transplantation. Bone Marrow Transplant. 2019 ; 54 : 1515-7.
P.321 掲載の参考文献
1) Gisselbrecht C, Gaulard P, Lepage E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Groupe d'Etudes des Lymphomes de l'Adulte (GELA). Blood. 1998 ; 92 : 76-82.
2) Yamaguchi M, Suzuki R. JSH practical guidelines for hematological malignancies, 2018 : 7. Peripheral T-cell lymphoma (PTCL). Int J Hematol. 2019 ; 109 : 137-40.
3) Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature. 1982 ; 299 : 65-7.
4) Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue : evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 ; 66 : 848-58.
5) Durkop H, Latza U, Hummel M, et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell. 1992 ; 68 : 421-7.
6) Horwitz S, O'Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2) : a global, double-blind, randomised, phase 3 trial. Lancet. 2019 ; 393 : 229-40.
7) Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017 ; 130 : 2709-17.
8) Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014 ; 123 : 3095-100.
9) Fukuhara N, Yamamoto G, Tsujimura H, et al. Retreatment with brentuximab vedotin in patients with relapsed/refractory classical Hodgkin lymphoma or systemic anaplastic large-cell lymphoma : a multicenter retrospective study. Leuk Lymphoma. 2020 ; 61 : 176-80.
10) Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma : results of a phase II study. J Clin Oncol. 2012 ; 30 : 2190-6.
P.324 掲載の参考文献
1) Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue : evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 ; 66 : 848-58.
2) Suzuki R, Kagami Y, Takeuchi K, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood. 2000 ; 96 : 2993-3000.
3) Asano N, Suzuki R, Kagami Y, et al. Clinicopathologic and prognostic significance of cytotoxic molecule expression in nodal peripheral T-cell lymphoma, unspecified. Am J Surg Pathol. 2005 ; 29 : 1284-93.
5) Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature. 1982 ; 299 : 65-7.
6) Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014 ; 123 : 3095-100.
7) Bossard C, Dobay MP, Parrens M, et al. Immunohistochemistry as a valuable tool to assess CD30 expression in peripheral T-cell lymphomas : high correlation with mRNA levels. Blood. 2014 ; 124 : 2983-6.
P.330 掲載の参考文献
1) Swerdlow SH, Campo E, Harris NL, et al. editor. Mature T- and NK-cell neoplasms. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC ; 2017. p.345-422.
2) International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study : Pathology findings and clinical outcomes. J Clin Oncol. 2008 ; 26 : 4124-30.
3) Bisig B, de Reynies A, Bonnet C, et al. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features. Haematologica 2013 ; 98 : 1250-8.
4) Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U) : a new prognostic model from a retrospective multicentric clinical study. Blood. 2004 ; 103 : 2474-79.
5) Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med. 1993 ; 328 : 1002-6.
6) The Non-Hodgkin's Lymphoma Classification Project. A clinical evaluation of the International lymphoma study group classification of non-Hodgkin's lymphoma. Blood. 1997 ; 89 : 3909-18.
7) Gisselbrecht C, Gaulard P, Lepage E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Blood. 1998 ; 92 : 76-82.
8) Watanabe T, Kinoshita T, Itoh K, et al. Pretreatment total serum protein is a significant prognostic for the outcome of patients with peripheral T/naturel killer-cell lymphomas. Leuk Lymphoma. 2010 ; 51 : 813-21.
9) Maeda Y, Nishimori H, Yoshida I, et al. Dose-adjusted EPOCH chemotherapy for untreated T-cell lymphoma : a multicenter phase II trial of West-JHOC PTCL0707. Haematologica. 2017 ; 102 : 2097-103.
10) Rodriguez J, Conde E, Gutierrez A, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma : a prospective study from The Gel-Tamo Study Group. Eur J Haematology. 2007 ; 79 : 32-8.