糖尿病性腎臓病の病態と治療

出版社: 中外医学社
著者:
発行日: 2021-04-10
分野: 臨床医学:内科  >  腎臓
ISBN: 9784498224681
電子書籍版: 2021-04-10 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

7,480 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

7,480 円(税込)

商品紹介

近年,糖尿病性腎臓病という疾患概念が定着してきた.治療法においても,薬物療法から腎代替療法,生活指導まで,幅広い範囲で著しい進歩がみられる.本書は,そのような現状を踏まえ,同疾患の病態生理と治療を最新のエビデンスを反映して包括的に解説した.実現場で問題に直面した時にはポイントを絞って,全体を総体的に学びたい時には通読してほしい.基礎,臨床,ケアの実践的な知識を身につけられる,最適な1冊だ.

目次

  • 1.糖尿病性腎臓病(DKD)の診断
     A.糖尿病性腎臓病(DKD)と糖尿病性腎症の概念
     B.慢性腎臓病(CKD)重症度分類におけるDKDの位置付けと糖尿病性腎症病期分類
       (2014:日本)~分類をどのように臨床に活かしていくのか~
     C.CKD with diabetesとは?
     D.糖尿病性腎臓病(腎症)と遺伝

    2.症候・検査
     A.蛋白(アルブミン)尿の見方・考え方
     B.血清クレアチニン・シスタチンCと推算糸球体濾過量(eGFR)の見方・考え方
     C.バイオマーカーによる診断・予後解明の可能性:尿検査,血液検査
     D.糖尿病性腎症の腎病理所見

    3.病態生理:発症・進展における主因子の関与機構
     A.高血糖(終末糖化産物:AGE)
     B.微小炎症
     C.線維化・細胞外基質・microRNA
     D.ポドサイト障害
     E.高血圧:糸球体高血圧と全身高血圧
     F.脂質異常
     G.高尿酸血症
     H.肥満・サルコペニア・フレイルとCKDの関係
     I.加齢
     J.腸内細菌

    4.生活指導・薬物治療・透析療法とチーム医療
     A.生活指導:病期(eGFR,アルブミン尿)を考慮した管理選択
     B.薬物治療:病期(eGFR,アルブミン尿)を考慮した治療選択
     C.透析療法継続のための留意点:DKDと非DKDの違い
     D.わが国における腎移植の現状―DKDを中心として―〈
     E.集約的治療とチーム医療の重要性

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1. 糖尿病性腎臓病 ( DKD ) の診断

P.6 掲載の参考文献
1) KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis. 2007 ; 49 : S12-154.
2) 岡田浩一, 安田宜成, 旭浩一, 他. エビデンスに基づくCKD診療ガイドライン2018. 日腎会誌. 2018 ; 60 : 1037-193.
3) 槇野博史. 糖尿病性腎症の発症・進展機序からみた治療. Diabetes Frontier. 1997 ; 8 : 553-63.
4) Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998 ; 339 : 69-75.
5) 合田朋仁. 【糖尿病性腎症の克服を目指して~up to date~】糖尿病性腎症の進展予測マーカー アルブミン尿とeGFRのどちらが有用か, それらに代わるマーカーはないか. Pharma Medica. 2016 ; 34 : 15-20.
6) Yokoyama H, Araki SI, Kawai K, et al. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res Care. 2018 ; 6 : e000521.
8) Thomas MC, Macisaac RJ, Jerums G, et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care. 2009 ; 32 : 1497-502.
9) Boronat M, Garcia-Canton C, Quevedo V, et al. Non-albuminuric renal disease among subjects with advanced stages of chronic kidney failure related to type 2 diabetes mellitus. Ren Fail. 2014 ; 36 : 166-70.
10) Kramer HJ, Nguyen QD, Curhan G, et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003 ; 289 : 3273-7.
11) Penno G, Solini A, Bonora E, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011 ; 29 : 1802-9.
12) Penno G, Solini A, Zoppini G, et al. Independent correlates of urinary albumin excretion within the normoalbuminuric range in patients with type 2 diabetes : The Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Acta Diabetol. 2015 ; 52 : 971-81.
13) Yoshida Y, Kashiwabara K, Hirakawa Y, et al. Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Res Care. 2020 ; 8 : e000902.
17) De Cosmo S, Lamacchia O, Pacilli A, et al. Normoalbuminuric renal impairment and all-cause mortality in type 2 diabetes mellitus. Acta Diabetol. 2014 ; 51 : 687-9.
20) Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996 ; 39 : 1569-76.
22) Gohda T, Niewczas MA, Ficociello LH, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012 ; 23 : 516-24.
23) Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012 ; 23 : 507-15.
P.14 掲載の参考文献
1) 日本腎臓学会. CKD診療ガイド 2009. 東京 : 東京医学社 ; 2009.
2) 日本腎臓学会. CKD診療ガイド 2012. 日腎会誌. 2012 ; 54 : 1047.
3) Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease : a position statement from Kidney Disease : Improving Global Outcomes (KDIGO). Kidney Int. 2005 ; 67 : 2089-100.
4) Yokoyama H, Sone H, Oishi M, et al ; Japan Diabetes Clinical Data Management Study Group. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes : the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009 ; 24 : 1212-9.
6) 吉川隆一 (世話人) 糖尿病性腎症に関する合同委員会報告. 1. 糖尿病性腎症病期分類厚生省案の改訂について. 糖尿病. 2001 ; 44 : 623.
7) 糖尿病性腎症合同委員会. 糖尿病性腎症病期分類2014の策定 (糖尿病性腎症病期分類改訂) について. 糖尿病. 2014 ; 57 : 529-34.
8) 糖尿病性腎症合同委員会. 糖尿病性腎症病期分類2014の策定 (糖尿病性腎症病期分類改訂) について. 日腎会誌. 2014 ; 56 : 547-52.
10) 日本透析医学会. わが国の慢性透析療法の現況 (2018年12月31日現在). 透析会誌. 2019 ; 52 : 679-754.
11) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
12) Abe M, Okada K, Maruyama N, et al. Comparison of clinical trajectories before initiation of renal replacement therapy between diabetic nephropathy and nephrosclerosis on the KDIGO guidelines heat map. J Diabetes Res. 2016 ; 2016 : 5374746.
14) Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Eng J Med. 2001 ; 345 : 851-60.
P.23 掲載の参考文献
1) Porrini E, Ruggenenti P, Mogensen CE, et al. ERA-EDTA diabesity working group. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2015 ; 3 : 382-91.
2) Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric diabetic kidney disease. Clin Exp Nephrol. 2020 ; 24 : 573-81.
3) Anders HJ, Huber TB, Isermann B, et al. CKD in diabetes : diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018 ; 14 : 361-77.
4) 日本腎臓学会, 編. エビデンスに基づくCKDガイドライン 2018. 東京 : 東京医学社 ; 2018.
5) Mazzucco G, Bertani T, Fortunato M, et al. Different patterns of renal damage in type 2 diabetes mellitus : a multicentric study on 393 biopsies. Am J Kidney Dis. 2002 ; 39 : 713-20.
6) Qi C, Mao X, Zhang Z, et al. Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res. 2017 ; 2017 : 8637138.
7) Mak SK, Gwi E, Chan KW, et al. Clinical predictors of non-diabetic renal disease in patients with non-insulin dependent diabetes mellitus. Nephrol Dial Transplant. 1997 ; 12 : 2588-91.
8) Wong TY, Choi PC, Szeto CC, et al. Renal outcome in type 2 diabetic patients with or without coexisting nondiabetic nephropathies. Diabetes Care. 2002 ; 25 : 900-5.
9) Cao S, Fang M, Sun Y, et al. Clinical and pathological analysis of diabetic nephropathy combined with non-diabetic nephropathy. Clinical Focus. 2007 ; 22 : 1580-2 (Chinese).
10) Zhou J, Chen X, Xie Y, et al. A differential diagnostic model of diabetic nephropathy and non-diabetic renal diseases. Nephrol Dial Transplant. 2008 ; 23 : 1940-5.
11) Lin YL, Peng SJ, Ferng SH, et al. Clinical indicators which necessitate renal biopsy in type 2 diabetes mellitus patients with renal disease. Int J Clin Pract. 2009 ; 63 : 1167-76.
12) Mou S, Wang Q, Liu J, et al. Prevalence of non-diabetic renal disease in patients with type 2 diabetes. Diabetes Res Clin Pract. 2010 ; 87 : 354-9.
13) Bi H, Chen N, Ling G, et al. Nondiabetic renal disease in type 2 diabetic patients : a review of our experience in 220 cases. Ren Fail. 2011 ; 33 : 26-30.
14) Zhang PP, Ge YC, Li SJ, et al. Renal biopsy in type 2 diabetes : timing of complications and evaluating of safety in Chinese patients. Nephrology (Carlton). 2011 ; 16 : 100-5.
15) Zhuo L, Ren W, Li W, et al. Evaluation of renal biopsies in type 2 diabetic patients with kidney disease : a clinicopathological study of 216 cases. Int Urol Nephrol. 2013 ; 45 : 173-9.
16) Peng L, Wang Y. Pathological analysis of diabetic neph-ropathy and non-diabetic renal disease in patients with type 2 diabetes mellitus. Chinese and Foreign Medical Research. 2013 ; 11 : 7-9. (Chinese).
17) Wang X. Pathological and clinical characteristics of diabetic nephropathy and diabetic nephropathy combined with non-diabetic nephropathy. Journal of Clinical Research. 2015 ; 151-2. (Chinese)
P.30 掲載の参考文献
1) Pezzolesi MG, Poznik GD, Mychaleckyj JC, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009 ; 58 : 1403-10.
2) Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012 ; 8 : e1002921.
3) Germain M, Pezzolesi MG, Sandholm N, et al. SORBS1 gene, a new candidate for diabetic nephropathy : results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia. 2015 ; 58 : 543-8.
4) Sandholm N, McKnight AJ, Salem RM, et al. Chromosome 2q31.1 associates with ESRD in women with type 1 diabetes. J Am Soc Nephrol. 2013 ; 24 : 1537-43.
5) Sandholm N, Van Zuydam N, Ahlqvist E, et al. The genetic landscape of renal complications in type 1 diabetes. J Am Soc Nephrol. 2017 ; 28 : 557-74.
6) Salem RM, Todd JN, Sandholm N, et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J Am Soc Nephrol. 2019 ; 30 : 2000-16.
7) Tanaka N, BabazonoT, Saito S, et al. The association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of SNPs. Diabetes. 2003 ; 52 : 2848-53.
8) Shimazaki A, Kawamura Y, Kanazawa A, et al. Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes. 2005 ; 54 : 1171-8.
9) Kamiyama M, Kobayashi M, Araki S, et al. Polymorphisms in the 3'UTR in the neurocalcin δ gene affect mRNA stability, and confer susceptibility to diabetic nephropathy. Hum Genet. 2007 ; 122 ; 397-407.
10) Maeda S, Kobayashi M, Araki S, et al. A Single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 2010 ; 6 : e1000842.
11) Shimazaki A, Tanaka Y, Shinosaki T, et al. ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs. Kidney Int. 2006 ; 70 : 1769-76.
12) Hathaway CK, Chang AS, Grant R, et al. High Elmo1 expression aggravates and low Elmo1 expression prevents diabetic nephropathy. Proc Natl Acad Sci U S A. 2016 ; 113 : 2218-22.
13) Sharma KR, Heckler K, Stoll SJ, et al. ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions. Sci Rep. 2016 ; 6 : 37172.
14) Tang SC, Leung VT, Chan LY, et al. The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes. Nephrol Dial Transplant. 2010 ; 25 : 3931.
15) Shah VN, Cheema BS, Sharma R, et al. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem. 2013 ; 372 : 191.
16) Tai ra M, Imamura M, Takahashi A, et al. A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS One. 2018 ; 13 : e0208654.
17) van Zuydam NR, Ahlqvist E, Sandholm N, et al. A Genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes. 2018 ; 67 : 1414-27.
18) Teumer A, Tin A, Sorice R, et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes. 2016 ; 65 : 803-17.
19) Ahluwalia TS, Schulz CA, Waage J, et al. A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria. Diabetologia. 2019 ; 62 : 292-305
20) McDonough CW, Palmer ND, Hicks PJ, et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 2011 ; 79 : 563-72.
21) Iyengar SK, Sedor JR, Freedman BI, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease : Family investigation of nephropathy and diabetes (FIND). PLoS Genet. 2015 ; 11 : e1005352.
22) Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018 ; 50 : 1505-13.
23) Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019 ; 51 : 379-86.
24) Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020 ; 582 : 240-5.
25) Imamura M, Shigemizu D, Tsunoda T, et al. Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population. J Clin Endocrinol Metab. 2013 ; 98 : E1667-73.
27) Sakaue S, Kanai M, Karjalainen J, et al. Trans-biobank analysis with 676,000 individuals elucidates the association of polygenic risk scores of complex traits with human lifespan. Nat Med. 2020 ; 26 : 542-8.
28) Unoki H, Takahashi A, Kawaguchi T, et al, SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008 ; 40 : 1098-102.
29) Yasuda K, Miyake K, Horikawa Y et al, Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008 ; 40 : 1092-7.
30) Grant SF, Thorleifsson G, Reynisdottir I et al, Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006 ; 38 : 320-3.
31) Terao C, Suzuki A, Momozawa Y. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature. 2020 ; 584 ; 130-5.
32) Todd JN, Dahlstrom EH, Salem RM, et al. Genetic evidence for a causal role of obesity in diabetic kidney disease. Diabetes. 2015 ; 64 : 4238-46.
33) Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 ; 6 : 361-9.

2. 症候・検査

P.39 掲載の参考文献
1) 伊藤機一, 富野康日己. 症例から学ぶ尿検査の見方・考え方. 第3版. 東京 : 医歯薬出版 ; 1996. p.18-25.
2) 和田隆志, 油野友二, 堀田 宏. 異常尿成分の化学的検査法. (1) 尿蛋白. In : 金井正光, 監修. 臨床検査法提要. 改訂第34版. 東京 : 金原出版 ; 2010. p.133-9.
3) 柘植俊直. 尿検査. In : 富野康日己, 編. エキスパートのための腎臓内科学. 東京 : 中外医学社 ; 2009. p.72-4.
4) 船曳和彦. 蛋白尿. In : 富野康日己, 編. エキスパートのための腎臓内科学. 東京 : 中外医学社 ; 2009. p.20-2.
5) 萩原晋二. 蛋白尿の評価と意義. In : 富野康日己, 監修. 尿検査のみかた, 考えかた. 東京 : 中外医学社 ; 2018. p.16-21.
6) 日本腎臓学会, 編. 腎機能 (GFR) ・尿蛋白測定ガイドライン. 東京 : 東京医学社 ; 2003.
7) 吉川隆一, 大森成二, 羽田勝計, 他. 糖尿病患者の尿中Beta2-microglobulin値について. 糖尿病. 1979 ; 22 : 621-6.
8) 大滝辛哉, 中川英彦, 前田昌子, 他. 糖尿病患者の尿中低分子量蛋白と腎尿細管機能障害. 糖尿病. 1980 ; 23 : 587-96.
9) 皆上宏俊, 中山秀隆, 青木伸, 他. 糖尿病性腎障害における尿中N-acetyl-β-D-glucosaminidaseと血中・尿中β2-microglobulin の臨床的意義. 糖尿病. 1983 ; 26 : 111-8.
10) 糖尿病性腎症合同委員会. 糖尿病性腎症病期分類2014の策定 (糖尿病性腎症病期分改訂) について. 糖尿病. 2014 ; 57 : 529-34.
11) CKD診療ガイド2012改訂委員会. 尿所見の評価表. In : 日本腎臓学会. 編. CKD診療ガイド 2012. 東京 : 東京医学社 ; 2012. p.25.
P.46 掲載の参考文献
1) Matsuo S, Imai E, Yasuda Y, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2008 ; 53 : 982-92.
2) Horio M, Imai E, Yasuda Y, et al. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese : accuracy and use for population estimates. Am J Kidney Dis. 2010 ; 56 : 32-8.
3) 富野康日己. シスタチンC. 日本臨牀. 増刊号心不全 (第2版) 上. 2018 ; 76 : 682-7.
4) 中田純一郎, 富野康日己. これからの心不全バイオマーカー. Fluid Management Renaissance. 2013 ; 3 : 67-70.
5) 下澤達雄. シスタチンC, ペントシジン. In : 金井正光, 監修. 臨床検査法提要. 改訂第34版. 東京 : 金原出版 ; 2010. p.1506-7.
6) Horio M, Imai E, Yasuda Y, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013 ; 61 : 197-203.
7) 塩見耕平, 柳久子, 斎藤知栄, 他. 慢性腎臓病患者における運動機能はeGFRcysとeGFRcreatの差と関連する. 理学療法学. 2017 ; 44 : 291-8.
8) Shimizu-Tokiwa A, Kobata M, Kobayashi N, et al. Serum cystatin C is a more sensitive marker of glomerular function than serum creatinine. Nephron. 2002 ; 92 : 224-6.
9) Shimizu A, Horikoshi S, Rinno H, et al. Serum cystatin C may predict the early prognostic stages of patients with Type 2 diabetic nephropathy. JCLA. 2003 ; 17 : 164-7.
10) Tomino Y, Suzuki S, Gohda T, et al. Serum cystatin C may predict the prognostic stages of patients with IgA nephropathy prior to renal biopsy. JCLA. 2001 ; 15 : 25-9.
11) Taglieri N, Koenig W, Kaski JC. Cystatin C and cardiovascular risk. Clin Chem. 2009 ; 55 : 1932-43.
P.53 掲載の参考文献
1) Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018 ; 33 : 138-48.
2) Macisaac RJ, Jerums G. Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens. 2011 ; 20 : 246-57.
4) 和田隆志, 湯澤由紀夫, 乳原善文, 他編. 糖尿病性腎症病期分類に基づいた腎病理診断の手引き. 東京 : 東京医学社 ; 2019. p.28-35.
5) Ruggenenti P, Remuzzi G. Time to abandon microalbuminuria? Kidney Int. 2006 ; 70 : 1214-22.
6) Araki S, Haneda M, Koya D, et al. Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care. 2010 ; 33 : 1805-10.
7) Morita M, Uchigata Y, Hanai K, et al. Association of urinary type IV collagen with GFR decline in young patients with type 1 diabetes. Am J Kidney Dis. 2011 ; 58 : 915-20.
8) Kern EF, Erhard P, Sun W, et al. Early urinary markers of diabetic kidney disease : a nested case-control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis. 2010 ; 55 : 824-34.
9) Vaidya VS, Niewczas MA, Ficociello LH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase. Kidney Int. 2011 ; 79 : 464-70.
10) Fufaa GD, Weil EJ, Nelson RG, et al. Association of urinary KIM-1, L-FABP, NAG and NGAL with incident end-stage renal disease and mortality in American Indians with type 2 diabetes mellitus. Diabetologia. 2015 ; 58 : 188-98.
11) Nielsen SE, Andersen S, Zdunek D, et al. Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int. 2011 ; 79 : 1113-8.
12) Panduru NM, Sandholm N, Forsblom C, et al. Kidney injury molecule-1 and the loss of kidney function in diabetic nephropathy : a likely causal link in patients with type 1 diabetes. Diabetes Care. 2015 ; 38 : 1130-7.
13) Nowak N, Skupien J, Niewczas MA, et al. Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int. 2016 ; 89 : 459-67.
14) Gohda T, Niewczas MA, Ficociello LH, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012 ; 23 : 516-24.
15) Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012 ; 23 : 507-15.
16) Matsui K, Kamijo-Ikemori A, Imai N, et al. Clinical significance of urinary liver-type fatty acid-binding protein as a predictor of ESRD and CVD in patients with CKD. Clin Exp Nephrol. 2016 ; 20 : 195-203.
17) Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011 ; 34 : 691-6.
18) Abe H, Sakurai A, Ono H, et al. Urinary Exosomal mRNA of WT1 as diagnostic and prognostic biomarker for diabetic nephropathy. J Med Invest. 2018 ; 65 : 208-15.
19) Suruda C, Tsuji S, Yamanouchi S, et al. Decreased urinary excretion of the ectodomain form of megalin (A-megalin) in children with OCRL gene mutations. Pediatr Nephrol. 2017 ; 32 : 621-5.
20) De S, Kuwahara S, Hosojima M, et al. Exocytosis-mediated urinary full-length megalin excretion is linked with the pathogenesis of diabetic nephropathy. Diabetes. 2017 ; 66 : 1391-404.
21) Hara A, Furuichi K, Higuchi M, et al. Autoantibodies to erythropoietin receptor in patients with immune-mediated diseases : relationship to anaemia with erythroid hypoplasia. Br J Haematol. 2013 ; 160 : 244-50.
22) Hara A, Furuichi K, Koshino A, et al. Clinical and pathological significance of autoantibodies to erythropoietin receptor in type 2 diabetic patients with CKD. Kidney Int Rep. 2018 ; 3 : 133-41.
23) Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes : metabolomic study. Kidney Int. 2014 ; 85 : 1214-24.
24) Niewczas MA, Mathew AV, Croall S, et al. Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care. 2017 ; 40 : 383-90.
25) Kikuchi K, Saigusa D, Kanemitsu Y, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019 ; 10 : 1835.
26) Cervenka I, Agudelo LZ, Ruas JL. Kynurenines : Tryptophan's metabolites in exercise, inflammation, and mental health. Science. 2017 ; 357 (6349) : eaaf 9794.
28) van der Kloet FM, Tempels FW, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012 ; 8 : 109-19.
29) Solini A, Manca ML, Penno G, et al. Prediction of declining renal function and albuminuria in patients with type 2 diabetes by metabolomics. J Clin Endocrinol Metab. 2016 ; 101 : 696-704.
30) Debnath S, Velagapudi C, Redus L, et al. Tryptophan metabolism in patients with chronic kidney disease secondary to type 2 diabetes : Relationship to inflammatory markers. Int J Tryptophan Res. 2017 ; 10 : 1178646917694600.
31) Sakurai M, Yamamoto Y, Kanayama N, et al. Serum metabolic profiles of the tryptophan-kynurenine pathway in the high risk subjects of major depressive disorder. Sci Rep. 2020 ; 10 : 1961.
32) Steiner J, Walter M, Gos T, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus : evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011 ; 8 : 94.
33) Miller AH, Raison CL. The role of inflammation in depression : from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 ; 16 : 22-34.
34) Korstanje R, Deutsch K, Bolanos-Palmieri P, et al. Loss of kynurenine 3-mono-oxygenase causes proteinuria. J Am Soc Nephrol. 2016 ; 27 : 3271-7.
35) Inaguma D, Akiyama S, Yuzawa Y. Recent progress in the development of biomarkers for diabetic nephropathy. Nihon Jinzo Gakkai Shi. 2017 ; 59 : 65-73.
36) Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013 ; 24 : 1901-12.
37) You YH, Quach T, Saito R, et al. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol. 2016 ; 27 : 466-81.
38) Kalim S, Rhee EP. An overview of renal metabolomics. Kidney Int. 2017 ; 91 : 61-9.
39) Geyer PE, Holdt LM, Teupser D, et al. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017 ; 13 : 942.
40) Barrios C, Zierer J, Wurtz P, et al. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci Rep. 2018 ; 8 : 15249.
41) Haukka JK, Sandholm N, Forsblom C, et al. Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes. Sci Rep. 2018 ; 8 : 13853.
42) Chen CJ, Liao WL, Chang CT, et al. Identification of urinary metabolite biomarkers of type 2 diabetes nephropathy using an untargeted metabolomic approach. J Proteome Res. 2018 ; 17 : 3997-4007.
43) Saulnier PJ, Darshi M, Wheelock KM, et al. Urine metabolites are associated with glomerular lesions in type 2 diabetes. Metabolomics. 2018 ; 14 : 84.
44) Lee J, Choi JY, Kwon YK, et al. Changes in serum metabolites with the stage of chronic kidney disease : Comparison of diabetes and non-diabetes. Clin Chim Acta. 2016 ; 459 : 123-31.
45) Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med. 2014 ; 31 : 1138-47.
46) Huang M, Liang Q, Li P, et al. Biomarkers for early diagnosis of type 2 diabetic nephropathy : a study based on an integrated biomarker system. Mol Biosyst. 2013 ; 9 : 2134-41.
47) Makinen VP, Tynkkynen T, Soininen P, et al. Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane Study). J Proteome Res. 2012 ; 11 : 1782-90.
48) Ng DP, Salim A, Liu Y, et al. A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia. 2012 ; 55 : 499-508.
49) Han LD, Xia JF, Liang QL, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011 ; 689 : 85-91.
50) Zhu C, Liang QL, Hu P, et al. Phospholipidomic identification of potential plasma biomarkers associated with type 2 diabetes mellitus and diabetic nephropathy. Talanta. 2011 ; 85 : 1711-20.
51) Jiang Z, Liang Q, Luo G, et al. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols : application to studies of diabetic nephropathy. Talanta. 2009 ; 77 : 1279-84.
52) Xia JF, Liang QL, Liang XP, et al. Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci. 2009 ; 877 : 1930-6.
53) Zhang J, Yan L, Chen W, et al. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC-oaTOF-MS system. Anal Chim Acta. 2009 ; 650 : 16-22.
54) Pang LQ, Liang QL, Wang YM, et al. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 ; 869 : 118-25.
55) Makinen VP, Soininen P, Forsblom C, et al. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol Syst Biol. 2008 ; 4 : 167.
56) Makinen VP, Soininen P, Forsblom C, et al. Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. MAGMA. 2006 ; 19 : 281-96.
P.63 掲載の参考文献
2) Working Group of the International Ig A Nephropathy Network and the Renal Pathology Society. Roberts IS, Cook HT, Troyanov S, et al. The Oxford classification of IgA nephropathy : pathology definitions, correlations, and reproducibility. Kidney Int. 2009 ; 76 : 546-56.
3) Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol. 1936 ; 12 : 83-98.7.
5) Advani A, Gilbert RE. The endothelium in diabetic nephropathy. Semin Nephrol. 2012 ; 32 : 199-207.
7) Tervaert TW, Mooyaart AL, Amann K, et al. Renal Pathology S : Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010 ; 21 : 556-63.
11) Hiragushi K, Sugimoto H, Shikata K, et al. Nitric oxide system is involved in glomerular hyperfiltration in Japanese normo- and micro-albuminuric patients with type 2 diabetes. Diabetes Res Clin Pract. 2001 ; 53 : 149-59.
13) Min W, Yamanaka N. Three-dimensional analysis of increased vasculature around the glomerular vascular pole in diabetic nephropathy. Virchows Arch A Pathol Anat Histopathol. 1993 ; 423 : 201-7.
17) Solez K, Colvin RB, Racusen LC, et al. Banff' 05 Meeting Report : differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN'). Am J Transplant. 2007 ; 7 : 518-26.
19) Mise K, Yamaguchi Y, Hoshino J, et al. Paratubular basement membrane insudative lesions predict renal prognosis in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. PLoS One. 2017 ; 12 : e0183190.
P.70 掲載の参考文献
3) Abe M, Okada K, Maruyama N, et al. Comparison of clinical trajectories before initiation of renal replacement therapy between diabetic nephropathy and nephrosclerosis on the KDIGO guidelines heat map. J Diabetes Res. 2016 ; 2016 : 5374746.
4) Furuichi K, Shimizu M, Okada H, et al. Clinico-pathological features of kidney disease in diabetic cases. Clin Exp Nephrol. 2018 ; 22 : 1046-51.
5) Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018 ; 33 : 138-48.
6) Furuichi K, Shimizu M, Yuzawa Y, et al. Nationwide multicenter kidney biopsy study of Japanese patients with hypertensive nephrosclerosis. Clin Exp Nephrol. 2018 ; 22 : 629-37.
7) Sugiyama H, Yokoyama H, Sato H, et al. Japan Renal Biopsy Registry and Japan Kidney Disease Registry : Committee Report for 2009 and 2010. Clin Exp Nephrol. 2013 ; 17 : 155-73.
8) 厚生労働科学研究費補助金難治性疾患等克服研究事業〔難治性疾患等実用化研究事業 (腎疾患実用化研究事業) 〕糖尿病性腎症ならびに腎硬化症の診療水準向上と重症化防止にむけた調査・研究 (研究代表者 和田隆志). 平成24-26年度総合研究報告書. 2015. p.1-14.
10) 厚生労働科学研究費補助金難治性疾患等克服研究事業〔難治性疾患等実用化研究事業 (腎疾患実用化研究事業) 〕糖尿病性腎症ならびに腎硬化症の診療水準向上と重症化防止にむけた調査・研究 研究班. 糖尿病性腎症と高血圧性腎硬化症の病理診断への手引き. 日腎会誌. 2015 ; 57 : 649-725.
11) Mauer SM, Steffes MW, Ellis EN, et al. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 ; 74 : 1143-55.
12) Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996 ; 39 : 1569-76.
14) Moriya T, Omura K, Matsubara M, et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese Patients with type 2 diabetes. Diabetes Care. 2017 ; 40 : 1373-8.
15) Shimizu M, Furuichi K, Toyama T, et al. Association of renal arteriosclerosis and hypertension with renal and cardiovascular outcomes in Japanese type 2 diabetes patients with diabetic nephropathy. J Diabetes Investig. 2019 ; 10 : 1041-9.
16) Yamanouchi M, Hoshino J, Ubara Y, et al. Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One. 2018 ; 13 : e0190930.
17) Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS One. 2018 ; 13 : e0190923.
18) Yamanouchi M, Hoshino J, Ubara Y, et al. Clinicopathological predictors for progression of chronic kidney disease in nephrosclerosis : a biopsy-based cohort study. Nephrol Dial Transplant. 2019 ; 34 : 1182-8.
19) Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease : a report from an ADA Consensus Conference. Diabetes Care. 2014 ; 37 : 2864-83.
20) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 第16章 糖尿病性腎臓病 (DKD) 前文. 日腎会誌. 2018 ; 60 : 1164-5.
23) Tanaka N, Yamamoto Y, Yokoyama Y, et al. Temporal trends in the prevalence of albuminuria and reduced eGFR in Japanese patients with type 2 diabetes. Diabetol Int. 2019 ; 10 : 279-87.
24) Yokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes : the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009 ; 24 : 1212-9.
25) Yokoyama H, Araki SI, Kawai K, et al. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res Care. 2018 ; 6 : e000521.
29) Yokoyama H, Araki SI, Kawai K, et al. The prognosis of patients with type 2 diabetes and nonalbuminuric diabetic kidney disease is not always poor : Implication of the effects of coexisting macrovascular complications (JDDM 54). Diabetes Care. 2020 ; 43 : 1102-10.
31) Furuichi K, Shimizu M, Toyama T, et al. Japan Diabetic Nephropathy Cohort Study : study design, methods, and implementation. Clin Exp Nephrol. 2013 ; 17 : 819-26.
33) Nakagawa N, Sofue T, Kanda E, et al. J-CKD-DB : A nationwide multicentre electronic health record-based chronic kidney disease database in Japan. Sci Rep. 2020 ; 10 : 7351.
34) Sofue T, Nakagawa N, Kanda E, et al. Prevalence of anemia in patients with chronic kidney disease in Japan : A nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PLoS One. 2020 ; 15 : e0236132.
P.79 掲載の参考文献
1) 和田隆志, 他監. 糖尿病性腎症と高血圧性腎硬化症の病理診断への手引き. 東京 : 東京医学社 ; 2015.
3) Gellman DD, Pirani CL, Soothill JF, et al. Diabetic nephropathy : a clinical and pathologic study based on renal biopsies. Medicine. 1959 ; 38 : 321-68.
4) Harris RD, Steffes MW, Bilous RW, et al. Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int. 1991 ; 40 : 107-14.
5) Gambara V, Mecca G, Remuzzi G, et al. Heterogeneous nature of renal lesions in type II diabetes. J Am Soc Nephrol. 1993 ; 3 : 1458-66.
6) Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996 ; 39 : 1569-76.
7) Fioretto P, Caramori ML, Mauer M. The kidney in diabetes : dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008 ; 51 : 1347-55.
8) Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018 ; 33 : 138-48.
9) Oh SW, Kim S, Na KY, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract. 2012 ; 97 : 418-24.
12) Stefan G, Stancu S, Zugravu A, et al. Histologic predictors of renal outcome in diabetic nephropathy : Beyond renal pathology society classification. Medicine (Baltimore). 2019 ; 98 : e16333.
13) Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS One. 2018 ; 13 : e0190923.
14) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
15) Furuichi K, Shimizu M, Okada H, et al. Clinico-pathological features of kidney disease in diabetic cases. Clin Exp Nephrol. 2018 ; 22 : 1046-51.
16) Yamanouchi M, Hoshino J, Ubara Y, et al. Clinicopathological predictors for progression of chronic kidney disease in nephrosclerosis : a biopsy-based cohort study. Nephrol Dial Transplant. 2019 ; 34 : 1182-8.
17) Furuichi K, Shimizu M, Yamanouchi M, et al. Clinicopathological features of fast eGFR decliners among patients with diabetic nephropathy. BMJ Open Diabetes Res Care. 2020 ; 8 : e001157.
18) Yamanouchi M, Hoshino J, Ubara Y, et al. Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One. 2018 ; 13 : e0190930.

3. 病態生理 : 発症・進展における主因子の関与機構

P.86 掲載の参考文献
1) Yamagishi S, Imaizumi T. Diabetic vascular complications : pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharm Des. 2005 ; 11 : 2279-99.
2) Yamagishi S, Matsui T, Fukami K. Role of receptor for advanced glycation end products (RAGE) and its ligands in cancer risk. Rejuvenation Res. 2015 ; 18 : 48-56.
3) Yamagishi S, Fukami K, Matsui T. Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence : A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 2015 ; 185 : 263-8.
4) Yamagishi S. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets. 2011 ; 12 : 2096-102.
5) Yamagishi S. Potential clinical utility of advanced glycation end product cross-link breakers in age- and diabetes-associated disorders. Rejuvenation Res. 2012 ; 15 : 564-72.
6) Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005 ; 353 : 2643-53.
7) Writing Group for the DCCT/EDIC Research Group, Orchard TJ, Nathan DM, et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. JAMA. 2015 ; 313 : 45-53.
9) Yamagishi SI, Nakamura N, Matsui T. Glycation and cardiovascular disease in diabetes : A perspective on the concept of metabolic memory. J Diabetes. 2017 ; 9 : 141-8.
10) Yamagishi S, Matsui T. Soluble form of a receptor for advanced glycation end products (sRAGE) as a biomarker. Front Biosci (Elite Ed). 2010 ; 2 : 1184-95.
11) Genuth S, Sun W, Cleary P, et al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with type 1 diabetes. Diabetes. 2005 ; 54 : 3103-11.
12) Genuth S, Sun W, Cleary P, et al. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes. 2015 ; 64 : 266-78.
14) Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010 ; 3 : 101-8.
15) Yamagishi S, Matsui T. Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy-Friend or foe? Pharmacol Res. 2011 ; 64 : 187-94.
16) Yamagishi S. Role of advanced glycation endproduc (t AGE) -receptor for advanced glycation endproduct (RAGE) axis in cardiovascular disease and its therapeutic intervention. Circ J. 2019 ; 83 : 1822-8.
17) Ando R, Ueda S, Yamagishi S, et al. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab Vasc Dis Res. 2013 ; 10 : 436-41.
18) Ojima A, Ishibashi Y, Matsui T, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013 ; 182 : 132-41.
19) Yamagishi SI, Matsui T. Therapeutic potential of DNA-aptamers raised against AGE-RAGE axis in diabetes-related complications. Curr Pharm Des. 2018 ; 24 : 2802-9.
20) Yamagishi S, Taguchi K, Fukami K. DNA-aptamers raised against AGEs as a blocker of various aging-related disorders. Glycoconj J. 2016 ; 33 : 683-90.
21) Kaida Y, Fukami K, Matsui T, et al. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes. 2013 ; 62 : 3241-50.
22) Maeda S, Matsui T, Ojima A, et al. DNA aptamer raised against advanced glycation end products prevents abnormalities in electroretinograms of experimental diabetic retinopathy. Ophthalmic Res. 2015 ; 54 : 175-80.
23) Ojima A, Oda E, Higashimoto Y, et al. DNA aptamer raised against advanced glycation end products inhibits neointimal hyperplasia in balloon-injured rat carotid arteries. Int J Cardiol. 2014 ; 171 : 443-6.
24) Ojima A, Matsui T, Nakamura N, et al. DNA aptamer raised against advanced glycation end products (AGEs) improves glycemic control and decreases adipocyte size in fructose-fed rats by suppressing AGE-RAGE axis. Horm Metab Res. 2015 ; 47 : 253-8.
25) Ojima A, Matsui T, Maeda S, et al. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab Invest. 2014 ; 94 : 422-9.
26) Matsui T, Higashimoto Y, Nishino Y, et al. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes. 2017 ; 6 : 1683-95.
27) Taguchi K, Yamagishi SI, Yokoro M, et al. RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice. Sci Rep. 2018 ; 8 : 2686.
28) Nakamura N, Matsui T, Ishibashi Y, et al. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol Med. 2017 ; 23 : 295-306.
29) Nakamura N, Matsui T, Nishino Y, et al. Long-term local injection of RAGE-aptamer suppresses the growth of malignant melanoma in nude mice. J Oncol. 2019 ; 2019 : 7387601.
30) Yamagishi S, Matsui T. Pigment epithelium-derived factor : A novel therapeutic target for cardiometabolic diseases and related complications. Curr Med Chem. 2018 ; 25 : 1480-1500.
31) Ide Y, Matsui T, Ishibashi Y, et al. Pigment epithelium-derived factor inhibits advanced glycation end product-elicited mesangial cell damage by blocking NF-kappaB activation. Microvasc Res. 2010 ; 80 : 227-32.
32) Maeda S, Matsui T, Takeuchi M, et al. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs) -receptor (RAGE) axis. Pharmacol Res. 2011 ; 63 : 241-8.
33) Ishibashi Y, Matsui T, Ohta K, et al. PEDF inhibits AGE-induced podocyte apoptosis via PPAR-gamma activation. Microvasc Res. 2013 ; 85 : 54-9.
34) Fujimura T, Yamagishi S, Ueda S, et al. Administration of pigment epithelium-derived factor (PEDF) reduces proteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats. Nephrol Dial Transplant. 2009 ; 24 : 1397-406.
35) Yamagishi SI, Matsui T. Protective role of sodium-glucose cotransporter 2 (SGLT2) inhibition against vascular complications in diabetes. Rejuvenation Res. 2016 ; 19 : 107-14.
36) Ishibashi Y, Matsui T, Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res. 2016 ; 48 : 191-5.
37) Maeda S, Matsui T, Takeuchi M, et al. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev. 2013 ; 29 : 406-12.
38) Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and anti-fibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Hormone Metab Res. 2015 ; 47 : 686-92.
39) Ishibashi Y, Matsui T, Yamagishi SI. Tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, suppresses renal damage in KKAy/Ta mice, obese and type 2 diabetic animals. Diab Vasc Dis Res. 2016 ; 13 : 438-41.
P.93 掲載の参考文献
4) Gaede P, Vedel P, Parving HH, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria : the Steno type 2 randomised study. Lancet. 1999 ; 353 : 617-22.
6) 日本透析医学会. わが国の慢性透析療法の現況 (2018年12月31日現在) 〔http://docs.jsdt.or.jp/overview/index.html〕
7) Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013 ; 124 : 139-52.
9) Kajitani N, Shikata K, Nakamura A, et al. Microinflammation is a common risk factor for progression of nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2010 ; 88 : 171-6.
10) Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016 ; 12 : 13-26.
11) Tang SC, Leung JC, Lai KN. Diabetic tubulopathy : an emerging entity. Contrib Nephrol 2011 ; 170 : 124-34.
12) Hutton HL, Ooi JD, Holdsworth SR, et al. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton). 2016 ; 21 : 736-44.
13) Tschopp J, Schroder K. NLRP3 inflammasome activation : The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010 ; 10 : 210-5.
15) Chen K, Zhang J, Zhang W, et al. ATP-P2X4 signaling mediates NLRP3 inflammasome activation : a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol. 2013 ; 45 : 932-43.
16) Miyamoto S, Hsu CC, Hamm G, et al. Mass spectrometry imaging reveals elevated glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a possible mediator. EBioMedicine. 2016 ; 7 : 121-34
19) Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes : an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019 ; 394 : 131-8.
21) Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014 ; 9 : e100777.
22) Miyamoto S, Shikata K, Miyasaka K, et al. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage : anti-inflammatory effect of cholecystokinin. Diabetes. 2012 ; 61 : 897-907.
P.100 掲載の参考文献
2) LeBleu VS, Taduri G, O'Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013 ; 19 : 1047-53.
3) Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker : FSP1. J Cell Biol. 1995 ; 130 : 393-405.
4) Iwano M, Plieth D, Danoff TM, et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002 ; 110 : 341-50.
5) Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis : pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol. 2004 ; 15 : 1-12.
6) Li J, Bertram JF. Review : Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology (Carlton). 2010 ; 15 : 507-12.
7) Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003 ; 9 : 964-8.
8) Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014 ; 15 : 178-96.
9) Yamaguchi Y, Iwano M, Suzuki D, et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis. 2009 ; 54 : 653-64.
10) He J, Xu Y, Koya D, et al. Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol. 2013 ; 17 : 488-97.
11) Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008 ; 455 : 64-71.
12) Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta : the master regulator of fibrosis. Nat Rev Nephrol. 2016 ; 12 : 325-38.
13) Loboda A, Sobczak M, Jozkowicz A, et al. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016 ; 2016 : 8319283.
14) Zhong X, Chung AC, Chen HY, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol. 2011 ; 22 : 1668-81.
15) Zhong X, Chung AC, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013 ; 56 : 663-74.
16) Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012 ; 4 : 121ra18.
17) Chung AC, Lan HY. MicroRNAs in renal fibrosis. Front Physiol. 2015 ; 6 : 50.
18) Kriegel AJ, Fang Y, Liu Y, et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1 : a novel role of miR-382. Nucleic Acids Res. 2010 ; 38 : 8338-47.
19) Wang X, Shen E, Wang Y, et al. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions. Sci Rep. 2016 ; 6 : 31506.
20) Denby L, Ramdas V, Lu R, et al. MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol. 2014 ; 25 : 65-80.
21) Dangi-Garimella S, Strouch MJ, Grippo PJ, et al. Collagen regulation of let-7 in pancreatic cancer involves TGF-beta1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene. 2011 ; 30 : 1002-8.
22) Chang CJ, Hsu CC, Chang CH, et al. Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep. 2011 ; 26 : 1003-10.
23) Thornton JE, Chang HM, Piskounova E, et al. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA. 2012 ; 18 : 1875-85.
24) Brennan EP, Nolan KA, Borgeson E, et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1. J Am Soc Nephrol. 2013 ; 24 : 627-37.
25) Wang B, Jha JC, Hagiwara S, et al. Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 2014 ; 85 : 352-61.
26) Nagai T, Kanasaki M, Srivastava SP, et al. N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. Biomed Res Int. 2014 ; 2014 : 696475.
27) Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013 ; 229 : 274-85.
28) Du B, Ma LM, Huang MB, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010 ; 584 : 811-6.
29) Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011 ; 22 : 1462-74.
30) Bracken CP, Khew-Goodall Y, Goodall GJ. Network-based approaches to understand the roles of miR-200 and other microRNAs in cancer. Cancer Res. 2015 ; 75 : 2594-9.
31) Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 2012 ; 21 : 410-6.
32) Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008 ; 283 : 14910-4.
33) Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012 ; 302 : F369-79.
34) Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes. 2011 ; 60 : 280-7.
35) Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One. 2010 ; 5 : e13614.
36) Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy : fact or Fiction? Cells. 2015 ; 4 : 631-52.
P.107 掲載の参考文献
1) Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type III diabetes. J Clin Invest. 1997 ; 99 : 342-8.
2) Weil EJ, Lemley KV, Mason CC, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int. 2012 ; 82 : 1010-7.
3) Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988.
4) Orchard TJ, Chang YF, Ferrell RE, et al. Nephropathy in type 1 diabetes : A manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int. 2002 ; 62 : 963-70.
5) Welsh GI, Hale LJ, Eremina V, et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010 ; 12 : 329-40.
6) Musso C, Javor E, Cochran E, et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol. 2006 ; 1 : 616-22.
7) Lennon R, Pons D, Sabin MA, et al. Saturated fatty acids induce insulin resistance in human podocytes : Implications for diabetic nephropathy. Nephrol Dial Transplant. 2009 ; 24 : 3288-96.
8) Pedigo CE, Ducasa GM, Leclercq F, et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016 ; 126 : 3336-50.
9) Drapeau N, Lizotte F, Denhez B, et al. Expression of SHP-1 induced by hyperglycemia prevents insulin actions in podocytes. Am J Physiol- Endocrinol Metab. 2013 ; 304 : 1188-98.
10) Lizotte F, Denhez B, Guay A, et al. Persistent insulin resistance in podocytes caused by epigenetic changes of SHP-1 in diabetes. Diabetes. 2016 ; 65 : 3705-17.
11) Lay AC, Hurcombe JA, Betin VMS, et al. Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia. 2017 ; 60 : 2299-311.
12) Hale LJ, Hurcombe J, Lay A, et al. Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Renal Physiol. 2013 ; 305 : 182-8.
13) Madhusudhan T, Wang H, Dong W, et al. Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy. Nat Commun. 2015 ; 6 : 6496.
14) Audzeyenka I, Rogacka D, Piwkowska A, et al. Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes. Int J Biochem Cell Biol. 2016 ; 75 : 23-33.
15) Lay AC, Coward RJM. The evolving importance of insulin signaling in podocyte health and disease. Front Endocrinol (Lausanne). 2018 ; 9 : 1-9.
16) Eremina V, Cui S, Gerber H, et al. Vascular endothelial growth factor A signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J Am Soc Nephrol. 2006 ; 17 : 724-35.
17) Kanesaki Y, Suzuki D, Uehara G, et al. Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am J Kidney Dis. 2005 ; 45 : 288-94.
18) Baelde HJ, Eikmans M, Lappin DWP, et al. Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int. 2007 ; 71 : 637-45.
19) Flyvbjerg A, Dagnas-Hansen F, De Vriese AS, et al. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes. 2002 ; 51 : 3090-4.
20) Sung SH, Ziyadeh FN, Wang A, et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol. 2006 ; 17 : 3093-104.
21) Oltean S, Qiu Y, Ferguson JK, et al. Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J Am Soc Nephrol. 2015 ; 26 : 1889-904.
22) Falkevall A, Mehlem A, Palombo I, et al. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease. Cell Metab. 2017 ; 25 : 713-26.
23) Chen HC, Chen CA, Guh JY, et al. Altering expression of α3β1 integrin on podocytes of human and rats with diabetes. Life Sci. 2000 ; 67 : 2345-53.
24) Sawada K, Toyoda M, Kaneyama N, et al. Upregulation of α3 β1-integrin in podocytes in early-stage diabetic nephropathy. J Diabetes Res. 2016 ; 2016 : 9265074.
25) Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008 ; 14 : 55-63.
26) Maile LA, Gollahon K, Wai C, et al. Blocking αvβ3 integrin ligand occupancy inhibits the progression of albuminuria in diabetic rats. J Diabetes Res. 2014 ; 2014 : 421827.
27) Zhou X, Zhang J, Haimbach R, et al. An integrin antagonist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model. Pharmacol Res Perspect. 2017 ; 5 : 1-14.
28) Asanuma K, Tanida I, Shirato I, et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003 ; 17 : 1165-7.
29) Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010 ; 120 : 1084-96.
31) Fang L, Zhou Y, Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One. 2013 ; 8 : e60546.
32) Ma T, Zhu J, Chen X, et al. High glucose induces autophagy in podocytes. Exp Cell Res. 2013 ; 319 : 779-89.
33) Lenoir O, Jasiek M, Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 2015 ; 11 : 1130-45.
34) Huang SS, Ding DF, Chen S, et al. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep. 2017 ; 7 : 1-15.
35) Hayashi K, Sasamura H, Nakamura M, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest. 2014 ; 124 : 2523-37.
36) Gong J, Zhan H, Li Y, et al. Kruppel-like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep. 2019 ; 20 : 3240-8.
37) King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004 ; 122 : 333-8.
38) Koya D, Hayashi K, Kitada M, et al. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol. 2003 ; 14 (Suppl. 3) : 250-3.
39) Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy : The beginning and end to diabetic nephropathy? Br J Pharmacol. 2014 ; 171 : 1917-42.
40) Guo Y, Song Z, Zhou M, et al. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway. Oncotarget. 2017 ; 8 : 53276-87.
41) Lee SC, Han SH, Li JJ, et al. Induction of heme oxygenase-1 protects against podocyte apoptosis under diabetic conditions. Kidney Int. 2009 ; 76 : 838-48.
42) Zheng S, Carlson EC, Yang L, et al. Podocyte-specific overexpression of the antioxidant metallothionein reduces diabetic nephropathy. J Am Soc Nephrol. 2008 ; 19 : 2077-85.
43) Wu J, Zhang R, Torreggiani M, et al. Induction of diabetes in aged C57B6 mice results in severe nephropathy : An association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am J Pathol. 2010 ; 176 : 2163-76.
44) Lindenmeyer MT, Rastaldi MP, Ikehata M, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol. 2008 ; 19 : 2225-36.
45) Cao Y, Hao Y, Li H, et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med. 2014 ; 33 : 809-16.
46) Chen Y, Liu CP, Xu KF, et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am J Nephrol. 2008 ; 28 : 1014-22.
47) Motonishi S, Nangaku M, Wada T, et al. Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes. J Am Soc Nephrol. 2015 ; 26 : 1939-59.
48) Chuang PY, Dai Y, Liu R, et al. Alteration of forkhead box o (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One. 2011 ; 6 : e23566.
49) Hasegawa K, Wakino S, Sakamaki Y, et al. Communication from tubular epithelial cells to podocytes through sirt1 and nicotinic acid metabolism. Curr Hypertens Rev. 2016 ; 12 : 95-104.
50) Hasegawa K, Wakino S, Simic P, et al. Renal tubular sirt1 attenuates diabetic albuminuria by epigenetically suppressing claudin-1 overexpression in podocytes. Nat Med. 2013 ; 19 : 1496-504.
51) Rogacka D, Piwkowska A, Audzeyenka I, et al. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp Cell Res. 2016 ; 349 : 328-38.
52) Rogacka D, Audzeyenka I, Rychlowski M, et al. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim Biophys Acta Mol Basis Dis. 2018 ; 1864 : 115-25.
P.114 掲載の参考文献
1) Suganami T, Ogawa Y. Adipose tissue macrophages : their role in adipose tissue remodeling. J Leukoc Biol. 2010 ; 88 : 33-9.
2) 橋本佳明, 二村梓, 須田隆興, 他. 喫煙, 飲酒と動脈硬化の危険因子頻度との関係. 人間ドック. 2006 ; 21 : 860-5.
3) 田中正巳, 伊藤裕. 糖尿病に合併した高血圧の特徴. 糖尿病. 2014 ; 57 : 492-4.
4) 木村玄次郎. 腎と高血圧. 日腎会誌. 2008 ; 50 : 16-20.
5) 安藤大作, 他. 食塩感受性と腎障害に関する新知見. 日腎会誌. 2009 ; 51 : 428-32.
6) Uzu T, Ishikawa K, Fujii T, et al. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997 ; 96 : 1859-62.
7) Uzu T, Kimura G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1999 ; 100 : 1635-38.
8) Floras JS. Hypertension and sleep apnea. Can J Cardiol. 2015 ; 31 : 889-97.
9) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版 ; 2019.
10) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
11) Kosaka H, Hirayama K, Yoda N, et al. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family. Eur J Pharmacol. 2010 ; 635 : 49-55.
12) Ando K, Ueshima K, Tanaka S, et al. Comparison of the antialbuminuric effects of L-/N-type and L-type calcium channel blockers in hypertensive patients with diabetes and microalbuminuria : the study of assessment for kidney function by urinary microalbumin in randomized (SAKURA) trial. Int J Med Sci. 2013 ; 10 : 1209-16.
13) 深水圭. 糖尿病性腎臓病. 臨床と研究. 2020 ; 97 : 17-23.
15) Kawamori R, Daida H, Tanaka Y, et al. Amlodipine versus angiotensin II receptor blocker ; control of blood pressure evaluation trial in diabetics (ADVANCED-J). BMC Cardiovasc Disorders. 2006 ; 6 : 39.
18) 伊藤佐久耶, 甲斐田裕介, 深水圭. 糖尿病性腎臓病 (DKD) における降圧治療のTips. 血圧. 2018 ; 25 : 328-34.
P.119 掲載の参考文献
1) Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009 ; 5 : 150-9.
2) Hirano T. Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014 ; 18 : 206-9.
3) Bonnet F, Cooper ME. Potential influence of lipids in diabetic nephropathy : insights from experimental data and clinical studies. Diabetes Metab. 2000 ; 26 : 254-64.
4) Hayashi T, Hirano T, Taira T, et al. Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis. 2008 ; 197 : 154-8.
5) Ramasamy R, Yan SF, Herold K, et al. Receptor for advanced glycation end products : fundamental roles in the inflammatory response : winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann N Y Acad Sci. 2008 ; 1126 : 7-13.
6) Thongnak L, Pongchaidecha A, Lungkaphin A. Renal Lipid metabolism and lipotoxicity in diabetes. Am J Med Sci. 2020 ; 359 : 84-99.
7) Wheeler DC, Fernando RL, Gillett MP, et al. Characterisation of the binding of low-density lipoproteins to cultured rat mesangial cells. Nephrol Dial Transplant. 1991 ; 6 : 701-8.
8) Ishigaki N, Yamamoto T, Shimizu Y, et al. Involvement of glomerular SREBP-1c in diabetic nephropathy. Biochem Biophys Res Commun. 2007 ; 364 : 502-8.
9) Kuwabara T, Mori K, Mukoyama M, et al. Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice. Diabetologia. 2012 ; 55 : 2256-66.
10) Iacobini C, Menini S, Ricci C, et al. Advanced lipoxidation end-products mediate lipid-induced glomerular injury : role of receptor-mediated mechanisms. J Pathol. 2009 ; 218 : 360-9.
11) Pepino MY, Kuda O, Samovski D, et al. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 2014 ; 34 : 281-303.
12) Stadler K, Goldberg IJ, Susztak K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep. 2015 ; 15 : 40.
13) Kim MY, Lim JH, Youn HH, et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia. 2013 ; 56 : 204-17.
14) Hong YA, Lim JH, Kim MY, et al. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1alpha in db/db mice. PLoS One. 2014 ; 9 : e96147.
15) Tanaka Y, Kume S, Araki S, et al. Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int. 2011 ; 79 : 871-82.
16) Yaribeygi H, Mohammadi MT, Rezaee R, et al. Fenofibrate improves renal function by amelioration of NOX-4, IL-18, and p53 expression in an experimental model of diabetic nephropathy. J Cell Biochem. 2018 ; 119 : 7458-69.
17) Zhang L, Liu J, Zhou F, et al. PGC-1alpha ameliorates kidney fibrosis in mice with diabetic kidney disease through an antioxidative mechanism. Mol Med Rep. 2018 ; 17 : 4490-8.
18) Decleves AE, Zolkipli Z, Satriano J, et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 2014 ; 85 : 611-23.
19) Douglas K, O'Malley PG, Jackson JL. Meta-analysis : the effect of statins on albuminuria. Ann Intern Med. 2006 ; 145 : 117-24.
20) Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007 ; 568 : 242-7.
21) Matoba K, Kawanami D, Ishizawa S, et al. Rho-kinase mediates TNF-alpha-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochem Biophys Res Commun. 2010 ; 402 : 725-30.
22) Kawanami D, Matoba K, Utsunomiya K. Signaling pathways in diabetic nephropathy. Histol Histopathol. 2016 ; 31 : 1059-67.
23) Qin X, Dong H, Fang K, et al. The effect of statins on renal outcomes in patients with diabetic kidney disease : A systematic review and meta-analysis. Diabetes Metab Res Rev. 2017 ; 33 (6).
24) Shen X, Zhang Z, Zhang X, et al. Efficacy of statins in patients with diabetic nephropathy : a meta-analysis of randomized controlled trials. Lipids Health Dis. 2016 ; 15 : 179.
25) Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection) : a randomised placebo-controlled trial. Lancet. 2011 ; 377 : 2181-92.
26) Nakamura T, Sato E, Amaha M, et al. Ezetimibe reduces urinary albumin excretion in hypercholesterolaemic type 2 diabetes patients with microalbuminuria. J Int Med Res. 2012 ; 40 : 798-803.
27) Tamura Y, Murayama T, Minami M, et al. Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb. 2012 ; 19 : 608-18.
28) Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study) : randomised controlled trial. Lancet. 2005 ; 366 : 1849-61.
29) Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus : the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011 ; 54 : 280-90.
30) Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010 ; 362 : 1563-74.
P.125 掲載の参考文献
1) Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001 ; 38 : 1101-6.
2) Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002 ; 282 : F991-7.
3) Kohagura K, Kochi M, Miyagi T, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease : a biopsy-based study. Hypertens Res. 2013 ; 36 : 43-9.
4) Matsukuma Y, Masutani K, Tanaka S, et al. Association between serum uric acid level and renal arteriolar hyalinization in individuals without chronic kidney disease. Atherosclerosis. 2017 ; 266 : 121-7.
5) Uedono H, Tsuda A, Ishimura E, et al. Relationship between serum uric acid levels and intrarenal hemodynamic parameters. Kidney Blood Press Res. 2015 ; 40 : 315-22.
6) 古波蔵健太郎. 尿酸と腎硬化症. In : 和田隆志, 湯澤由紀夫, 編. 腎硬化症の早期診断と治療. 東京 : 日本医事新報社 ; 2018. p.96-107.
7) Nagahama K, Inoue T, Kohagura K, et al. Associations between serum uric acid levels and the incidence of hypertension and metabolic syndrome : a 4-year follow-up study of a large screened cohort in Okinawa, Japan. Hypertens Res. 2015 ; 38 : 213-8.
8) Lv Q, Meng XF, He FF, et al. High serum uric acid and increased risk of type 2 diabetes : a systemic review and meta-analysis of prospective cohort studies. PLoS One. 2013 ; 8 : e56864.
9) Bartakova V, Kuricova K, Pacal L, et al. Hyperuricemia contributes to the faster progression of diabetic kidney disease in type 2 diabetes mellitus. J Diabetes Complications. 2016 ; 30 : 1300-7.
10) Woyesa SB, Hirigo AT, Wube TB. Hyperuricemia and metabolic syndrome in type 2 diabetes mellitus patients at Hawassa university comprehensive specialized hospital, South West Ethiopia. BMC Endocr Disord. 2017 ; 17 : 76.
11) Choi HK, Ford ES. Haemoglobin A1c, fasting glucose, serum C-peptide and insulin resistance in relation to serum uric acid levels--the Third National Health and Nutrition Examination Survey. Rheumatology (Oxford). 2008 ; 47 : 713-7.
12) Bjornstad P, Roncal C, Milagres T, et al. Hyperfiltration and uricosuria in adolescents with type 1 diabetes. Pediatr Nephrol. 2016 ; 31 : 787-93.
13) Kurajoh M, Fukumoto S, Murase T, et al. Insulin resistance associated with plasma xanthine oxidoreductase activity independent of visceral adiposity and adiponectin level : MedCity21 Health Examination Registry. Int J Endocrinol. 2019 ; 2019 : 1762161.
14) Kosugi T, Nakayama T, Heinig M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol. 2009 ; 297 : F481-8.
15) Bjornstad P, Lanaspa MA, Ishimoto T, et al. Fructose and uric acid in diabetic nephropathy. Diabetologia. 2015 ; 58 : 1993-2002.
16) Suijk DL, Smits MM, Muskiet MH, et al. Plasma uric acid and renal haemodynamics in type 2 diabetes patients. Nephrology (Carlton). 2020 ; 25 : 290-7.
17) Lytvyn Y, Bjornstad P, Lovshin JA, et al. Association between uric acid, renal haemodynamics and arterial stiffness over the natural history of type 1 diabetes. Diabetes Obes Metab. 2019 ; 21 : 1388-98.
18) Lytvyn Y, Skrtic M, Yang GK, et al. Plasma uric acid effects on glomerular haemodynamic profile of patients with uncomplicated type 1 diabetes mellitus. Diabet Med. 2016 ; 33 : 1102-11.
19) Lytvyn Y, Har R, Locke A, et al. Renal and vascular effects of uric acid lowering in normouricemic patients with uncomplicated type 1 diabetes. Diabetes. 2017 ; 66 : 1939-49.
20) Uedono H, Tsuda A, Ishimura E, et al. U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters in healthy subjects. Am J Physiol Renal Physiol. 2017 ; 312 : F992-7.
21) Spatola L, Angelini C, Badalamenti S, et al. Kidney stones diseases and glycaemic statuses : focus on the latest clinical evidences. Urolithiasis. 2017 ; 45 : 457-60.
22) Jalal DI, Rivard CJ, Johnson RJ, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes : findings from the Coronary Artery Calcification in Type 1 Diabetes study. Nephrol Dial Transplant. 2010 ; 25 : 1865-9.
23) Hovind P, Rossing P, Tarnow L, et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes : an inception cohort study. Diabetes. 2009 ; 58 : 1668-71.
24) Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes : results of a 6-year follow-up. Diabetes Care. 2010 ; 33 : 1337-43.
25) Takagi M, Babazono T, Uchigata Y. Differences in risk factors for the onset of albuminuria and decrease in glomerular filtration rate in people with type 2 diabetes mellitus : implications for the pathogenesis of diabetic kidney disease. Diabet Med. 2015 ; 32 : 1354-60.
26) Kuwata H, Okamura S, Hayashino Y, et al. Serum uric acid levels are associated with a high risk of rapid chronic kidney disease progression among patients with type 2 diabetes : a prospective cohort study [Diabetes Distress and Care Registry at Tenri (DDCRT 12)]. Diabetol Int. 2016 ; 7 : 352-60.
27) De Cosmo S, Viazzi F, Pacilli A, et al. Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol. 2015 ; 10 : 1921-9.
28) Momeni A, Shahidi S, Seirafian S, et al. Effect of allopurinol in decreasing proteinuria in type 2 diabetic patients. Iran J Kidney Dis. 2010 ; 4 : 128-32.
29) Wada T, Hosoya T, Honda D, et al. Uric acid-lowering and renoprotective effects of topiroxostat, a selective xanthine oxidoreductase inhibitor, in patients with diabetic nephropathy and hyperuricemia : a randomized, double-blind, placebo-controlled, parallel-group study (UPWARD study). Clin Exp Nephrol. 2018 ; 22 : 860-70.
30) Mizukoshi T, Kato S, Ando M, et al. Renoprotective effects of topiroxostat for Hyperuricaemic patients with overt diabetic nephropathy study (ETUDE study) : A prospective, randomized, multicentre clinical trial. Nephrology (Carlton). 2018 ; 23 : 1023-30.
31) Doria A, Galecki AT, Spino C, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020 ; 382 : 2493-503.
P.133 掲載の参考文献
1) Tozawa M, Iseki K, Iseki C, et al. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002 ; 62 : 956-62.
2) Yamagata K, Ishida K, Sairenchi T, et al. Risk factors for chronic kidney disease in a community-based population : a 10-year follow-up study. Kidney Int. 2007 ; 71 : 159-66.
3) Nomura I, Kato J, Kitamura K, et al. Association between body mass index and chronic kidney disease : a population-based, cross-sectional study of a Japanese community. Vasc Health Risk Manag. 2009 ; 5 : 315-20.
4) Ishizaka N, Ishizaka Y, Toda E, et al. Association between obesity and chronic kidney disease in Japanese : differences in gender and hypertensive status? Hypertens Res. 2007 ; 30 : 1059-64.
5) Ramirez SP, McClellan W, Port FK, et al. Risk factors for proteinuria in a large, multiracial, southeast Asian population. J Am Soc Nephrol. 2002 ; 13 : 1907-17.
6) Iseki K, Ikemiya Y, Kinjo K, et al. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004 ; 65 : 1870-6.
7) Pinto-Sietsma SJ, Navis G, Janssen WM, et al. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003 ; 41 : 733-41.
8) Bonnet F, Marre M, Halimi JM, et al. Waist circumference and the metabolic syndrome predict the development of elevated albuminuria in non-diabetic subjects : the DESIR Study. J Hypertens. 2006 ; 24 : 1157-63.
9) Kurella M, Lo JC, Chertow GM, et al. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005 ; 16 : 2134-40.
10) Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U. S. adults. Ann Intern Med. 2004 ; 140 : 167-74.
11) Ninomiya T, Kiyohara Y, Kubo M, et al. Metabolic syndrome and CKD in a general Japanese population : the Hisayama Study. Am J Kidney Dis. 2006 ; 48 : 383-91.
12) Kambham N, Markowiz GS, Valeri AM. Obesity-related glomerulopathy : An emerging epidemic. Kidney Int. 2001 ; 59 : 1498-509.
13) de Vries AP, Ruggenenti P, Ruan XZ. ERA-EDTA Working Group Diabesity Fatty kidney : emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014 ; 2 : 417-26.
14) 肥満関連腎症. 日本肥満学会, 編集. 肥満症診療ガイドライン 2016. 東京 : ライフサイエンス出版 ; 2016. p.98-100.
15) Tsuboi N, Okabayashi Y, Shimizu A, et al. The renal pathology and obesity. Kidney Int Rep. 2017 ; 2 : 251-60.
16) Bobulescu IA, Lotan Y, Zhang J, et al. Triglycerides in the human kidney cortex : relationship with body size. PLoS One. 2014 ; 9 : e101285.
17) Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int. 2011 ; 79 : 883-96.
18) Tsuda A, Ishimura E, Uedono H, et al. Association of albuminuria with intraglomerular hydrostatic pressure and insulin resistance in subjects with impaired fasting glucose and/or impaired glucose tolerance. Diabetes Care. 2018 ; 41 : 2414-20.
19) Hughson M, Farris AB 3rd, Douglas-Denton R. Glomerular number and size in autopsy kidneys : the relationship to birth weight. Kidney Int. 2003 ; 83 : S32-7.
20) Tsuboi N, Utsunomiya Y, Kanzaki G. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin J Am Soc Nephrol. 2012 ; 7 : 735-41.
21) Luyckx VA, Brenner BM. The clinical importance of nephron mass. J Am Soc Nephrol. 2010 ; 21 : 898-910.
23) The Look AHEAD Research Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes : one-year results of the look AHEAD trial. Diabetes Care. 2007 ; 30 : 1374-83.
24) Saiki A, Nagayama D, Ohhira M, et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int J Obes. 2005 ; 29 : 1115-20.
25) Navaneethan SD, Yehnert H, Moustarah F, et al. Weight loss interventions in chronic kidney disease : a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009 ; 4 : 1565-74.
26) Afshinnia F, Wilt TJ, Duval S, et al. Weight loss and proteinuria : systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant. 2010 ; 25 : 1173-83.
27) Chung S, Koh ES, Shin SJ, et al. Malnutrition in patients with chronic kidney disease. Open Journal of Internal Medicine. 2012 ; 2 : 89-99.
28) Pupim LB, Cuppari L, Ikizler TA. Nutrition and metabolism in kidney disease. Semin Nephrol. 2006 ; 26 : 134-57.
30) Watanabe H, Enoki Y, Maruyama T. Sarcopenia in chronic kidney disease : Factors, mechanisms, and therapeutic interventions. Biol Pharm Bull. 2019 ; 42 : 1437-45.
32) Kim JK, Choi SR, Choi MJ, et al. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr. 2014 ; 33 : 64-8.
33) Wilhelm-Leen ER, Hall YN, Tamura MK, et al. Frailty and chronic kidney disease : the Third National Health and Nutritional Evaluation Survey. Am J Med. 2009 ; 122 : 664-71.
34) Bao Y, Dalrymple L, Chertow GM, et al. Frailty, dialysis initiation, and mortality in end- stage renal disease. Arch Intern Med. 2012 ; 172 : 1071-7.
37) 山内敏正, 神谷英紀, 宇都宮一典, 他. 日本糖尿病学会コンセンサスステートメント策定に関する委員会. 糖尿病患者の栄養食事指導-エネルギー・炭水化物・タンパク質摂取量と栄養食事指導-. 糖尿病. 2020 ; 63 : 91-109.
38) 日本腎臓学会, 編. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
P.140 掲載の参考文献
1) Araki SI, Nishio Y, Araki A, et al. Factors associated with progression of diabetic nephropathy in Japanese elderly patients with type 2 diabetes : Sub-analysis of the Japanese Elderly Diabetes Intervention Trial. Geriatr Gerontrol Int. 2012 ; 1 : 127-33.
2) Moriya T, Tanaka S, Sone H, et al. Patients with type 2 diabetes having higher glomerular filtration rate showed rapid renal function decline followed by impaired glomerular filtration rate : Japan Diabetes Complications Study. J Diabetes Complications. 2017 ; 31 : 473-8.
4) Araki SI. Comprehensive risk management of diabetic kidney disease in patients with type 2 diabetes mellitus. Diabetol Int. 2018 ; 9 : 100-7.
5) Tanaka N, Yamamoto Y, Yokoyama Y, et al. Temporal trends in the prevalence of albuminuria and reduced eGFR in Japanese patients with type 2 diabetes. Diabetol Int. 2019 ; 10 : 279-87.
6) Yoshida Y, Kashiwabara K, Hirakawa Y, et al. Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Res Care. 2020 ; 8 : e000902
8) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019 (JSH2019). 2019.
9) Wanner C, Inzucchi SE, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016 ; 375 : 323-34.
10) Neal B, Perkovic V, Mahaffey KW, et al. ; CANVAS Program Collaborative Group : Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017 ; 377 : 644-57.
11) Wiviott SD, Raz I, Bonaca MP, et al. ; DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019 ; 380 : 347-57.
12) Perkovic V, Jardine MJ, Neal B, et al. ; CREDENCE Trial Investigators : Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 ; 380 : 2295-306.
13) Cherney DZI, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease : an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017 ; 5 : 610-21.
14) Neuen BL, Ohkuma T, Neal B, et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria : data from the CANVAS Program. J Am Soc Nephrol. 2019 ; 30 : 2229-42.
15) Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010 ; 120 : 1043-55.
17) Maeda S, Koya D, Araki SI, et al. Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. Clin Exp Nephrol. 2011 ; 15 : 381-90.
P.147 掲載の参考文献
1) Vaziri ND, Zho YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD : the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016 ; 31 : 737-46.
2) Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014 ; 25 : 657-70.
3) Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016 ; 12 : 154-67.
4) Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 ; 490 : 55-60.
5) Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013 ; 83 : 308-15.
7) Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013 ; 498 : 99-103.
8) Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA inn lean and over weight healthy subjects. Obecity. 2009 ; 18 : 190-5.
9) Tao S, Li L, Li L, et al. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy control : an analysis of the gut microbiota composition. Acta Diabetol. 2019 ; 56 : 581-92.
10) Vanholder R, Van Laecke S, Glorieux G. What is new in uremic toxicity? Pediatr Nephrol. 2008 ; 23 : 1211-21.
11) Lekawanvijit S, Kompa AR, Wang BH, et al. Cardiorenal syndrome : the emerging role of protein-bound uremic toxins. Circ Res. 2012 ; 111 : 1470-83.
12) Vanholder R, Fouque D, Glorieux G et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016 ; 4 : 360-73.
14) Wong J, Piceno YM, Desantis TZ, et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014 ; 39 : 230-7.
15) Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci. 2010 ; 72 : 1-11.
16) Sato E, Saigusa D, Mishima E, et al. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins : LC-MS/MS and MS imaging techniques. Toxins (Basel). 2017 ; 10 : 19.
18) Barreto FC, Barreto DV, Liabeuf S, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009 ; 4 : 1551-8.
19) Meijers BK, Claes K, Bammens B, et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol. 2010 ; 5 : 1182-9.
20) Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 ; 19 : 576-85.
21) Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016 ; 165 : 111-24.
22) Tang WH, Wang Z, Leyison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013 ; 368 : 1575-84.
23) Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015 ; 88 : 958-66.
24) Vitetta L, Gobe G. Uremia and chronic kidney disease : the role of the gut microflora and therapies with pro- and prebiotics. Mol Nutr Food Res. 2013 ; 57 : 824-32.
25) Mishima E, Fukuda S, Shima H, et al. Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol. 2015 ; 26 : 1787-94.
26) Hara-Nanto F, Kanemitsu Y, Fukuda S, et al. The guanylate cyclase C agonist linaclotide ameliorates the gut-cardio-renal axis in an adenine-induced mouse model of chronic kidney disease. Nephrol Dial Transplent. 2020 ; 35 : 250-64.
27) Sueyoshi M, Fukunaga M, Mei M, et al. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats. Clin Exp Nephrol. 2019 ; 23 : 908-19.
28) Mishima E, Fukuda S, Kanemitsu Y, et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am J Physiol Renal Physiol. 2018 ; 315 : F824-33.
29) Kikuchi K, Saigusa D, Kanemitsu Y, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019 ; 10 : 1835.

4. 生活指導・薬物治療・透析療法とチーム医療

P.156 掲載の参考文献
1) 日本腎臓学会. 慢性腎臓病に対する食事療法基準 2014年版. 東京 : 東京医学社 ; 2014.
2) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
3) 厚生労働省. 日本人の食事摂取基準 (2020年版). 2020.
4) Levey AS, Greene T, Beck GJ, et al. Dietary protein restriction and the progression of chronic renal disease : what have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J Am Soc Nephrol. 1999 ; 10 : 2426-39.
5) Knight EL, Stampfer MJ, Hankinson SE, et al. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003 ; 138 : 460-7.
7) Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N Engl J Med. 2017 ; 377 : 1765-76.
8) 日本腎臓学会. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
9) 日本透析医学会. サルコペニア・フレイルを合併した透析期CKDの食事療法. 透析会誌. 2019 ; 52 : 397-9.
10) 日本糖尿病学会. 糖尿病治療ガイド 2020-2021. 東京 : 文光堂 ; 2020.
12) 日本糖尿病学会. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019.
13) Suckling RJ, He FJ, Macgregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010 ; (12) : CD006763.
14) Heerspink HJL, Holtkamp FA, Parving HH, et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 2012 ; 82 : 330-7.
15) Kwakernaak AJ, Krikken JA, Binnenmars SH, et al. Holland Nephrology Study (HONEST) Group. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy : a randomised clinical trial. Lancet Diabetes Endocrinol. 2014 ; 2 : 385-95.
16) 佐藤弘恵, 細島康宏, 鈴木芳樹. たんぱく質の質と腎臓との関係 : 食事パターンも含めて. 日腎会誌. 2019 ; 61 : 563-73.
17) Slagman MC, Waanders F, Hemmelder MH, et al. HOlland NEphrology Study Group. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure : randomised controlled trial. BMJ. 2011 ; 26 : 343 : d4366.
P.162 掲載の参考文献
1) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018. p.51-2.
2) Panwar B, Hanks L, Tanner RM, et al. Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 2015 ; 87 : 1216-22.
3) 日本肥満学会, 編. 肥満症診療ガイドライン 2016. 東京 : ライフサイエンス出版 ; 2016. p.48.
5) Yazawa M, Kido R, Ohira S, et al. Early mortality was highly and strongly associated with functional status in incident Japanese hemodialysis patients : a cohort study of the large national dialysis registry. PLoS One. 2016 ; 11 : e0156951.
7) Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl j Med. 2003 ; 348 : 383-93.
8) Roshanravan B, Robinson-Cohen C, Patel KV, et al. Association between physical performance and all cause mortality in CKD. J Am Soc Nephrol. 2013 ; 24 : 822-30.
9) Castaneda C, Gordon PL, Parker RC, et al. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis. 2004 ; 43 : 607-16.
10) Zhang L, Wang Y, Xiong L, et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients : evidence from a meta-analysis. BMC Nephrol. 2019 ; 20 : 398.
11) 日本腎臓リハビリテーション学会, 編. 腎臓リハビリテーションガイドライン. 東京 : 南江堂 ; 2018. p.56.
12) Tentori F, Elder SJ, Thumma J, et al. Physical exrcise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS) : correlates and associated outcomes. Nephrol Dial Transplant. 2010 ; 25 : 3050-62.
P.165 掲載の参考文献
1) 日本糖尿病学会, 編著. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019.
2) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
3) Pan A, Wang Y, Talaei M, et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes : A meta-analysis and systematic review. Circulation. 2015 ; 132 : 1795-804.
4) 富野康日己, 編. CKD診療テキスト かかりつけ医と専門医の連携のために. 東京 : 中外医学社 ; 2013.
5) Leong WB, Jadhakhan F, Taheri S, et al. The association between obstructive sleep apnea on diabetic kidney disease : A systematic review and meta-analysis. Sleep. 2016 ; 39 : 301-8.
6) 日本糖尿病学会, 編著. 糖尿病専門医研修ガイドブック. 改訂第7版. 東京 : 診断と治療社 ; 2017.
7) Sato T, Inoue T, Endo K, et al. End-stage renal disease (ESRD) contributes to the increasing prevalence of herpes zoster. NDT Plus. 2009 ; 2 : 263-4.
8) 新型コロナウイルス感染症 (COVID-19) 診療の手引き. 第4版. 令和2年度厚生労働行政推進調査事業費補助金 新興・再興感染症及び予防接種政策推進研究事業 一類感染症等の患者発生時に備えた臨床的対応に関する研究 ; 2020.
P.169 掲載の参考文献
1) 12 糖尿病と妊娠. In : 日本糖尿病学会, 編. 糖尿病専門医研修ガイドブック. 第7版. 東京 : 診断と治療社 ; 2017. p.342-7.
2) Piccoli GB, Attini R, Vasario E, et al. Pregnancy and chronic kidney disease : a challenge in all CKD stages. Clin J Am Soc Nephrol. 2010 ; 5 : 844-55.
3) Piccoli GB, Clari R, Ghiotto S, et al. Type 1 diabetes, diabetic nephropathy, and pregnancy : a systematic review and meta-study. Rev Diabet Stud. 2013 ; 10 : 6-26.
4) III. CKD 患者が妊娠を希望した場合のリスク評価. In : 日本腎臓学会腎疾患患者の妊娠 : 診療の手引き改訂委員会, 編. 腎疾患患者の妊娠診療ガイドライン 2017. 東京 : 診断と治療社 ; 2017. p.7-32.
5) 佐中眞由実. IV章 特別な配慮を必要とする糖尿病. 2 糖尿病と妊娠. In : 東京女子医科大学糖尿病センター, 編. 糖尿病の治療マニュアル. 第6版. 東京 : 医歯薬出版 ; 2012. p.396-415.
6) 17 妊婦の糖代謝異常. In : 日本糖尿病学会, 編. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019. p.283-304.
7) 9. ライフステージごとの糖尿病. B 妊娠と糖尿病. In : 日本糖尿病学会, 編. 糖尿病治療ガイド 2020-2021. 東京 : 文光堂 ; 2020. p.101-2.
8) American Diabetes Association. 14. Management of Diabetes in Pregnancy : Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019 ; 42 (Suppl 1) : S165-72.
9) VI. 腎疾患合併症妊娠. In : 日本妊娠高血圧学会, 編. 妊娠高血圧症候群の診療指針 2015-Best Practice Guide. 東京 : メジカルビュー社 ; 2015. p.120-35.
10) 「健やか親子21」推進検討会報告書-2006. https://www.mhlw.go.jp/houdou/2006/02/h0201-3a.html (2020年7月1日)
11) Balsells M, Garcia-Patterson A, Sola I, et al. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes : a systematic review and meta-analysis. BMJ. 2015 ; 350 : h102.
12) Bramham K, Parnell B, Nelson-Piercy C, et al. Chronic hypertension and pregnancy outcomes : systematic review and meta-analysis. BMJ. 2014 ; 348 : g2301.
13) Magee LA, Pels A, Helewa M, et al. SOGC Hypertension Guideline Committee. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy : executive summary. J Obstet Gynaecol Can. 2014 ; 36 : 575-6.
14) 第10章 女性の高血圧. In : 日本高血圧学会, 編. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版 ; 2019. p.156-63.
15) Bullo M, Tschumi S, Bucher BS, et al. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists : a systematic review. Hypertension. 2012 ; 60 : 444-50.
P.176 掲載の参考文献
1) 日本透析医学会. わが国の慢性透析療法の現況 (2018年12月31日現在).
2) 日本腎臓学会, 編. エビデンスに基づくCKDガイドライン 2018. 東京 : 東京医学社 ; 2018.
4) 日本高血圧学会, 編. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版 ; 2019.
5) Araki S, Haneda M, Koya D, et al. Reduction in microalbuminuria as an integrated indicator for renal and cardiovascular risk reduction in patients with type 2 diabetes. Diabetes. 2007 ; 56 : 1727-30.
8) 日本腎臓学会・日本糖尿病学会. 腎領域における慢性疾患に関する臨床評価ガイドライン.
9) Oshima M, Toyama T, Haneda M, et al. Estimated glomerular filtration rate decline and risk of end-stage renal disease in type 2 diabetes. PLoS One. 2018 ; 13 : e0201535.
10) Oshima M, Neal B, Toyama T, et al. Different eGFR decline thresholds and renal effects of canagliflozin : Data from the CANVAS Program [published online ahead of print, 2020 Jul 21]. J Am Soc Nephrol. 2020 ; ASN. 2019121312.
11) Levey AS, Gansevoort RT, Coresh J, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD : A scientific workshop sponsored by the National Kidney Foundation in Collaboration with the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis. 2020 ; 75 : 84-104.
12) Oshima M, Jun M, Ohkuma T, et al. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes : the ADVANCE-ON study. Diabetologia. 2019 ; 62 : 1988-97.
13) Jun M, Ohkuma T, Zoungas S, et al. Changes in albuminuria and the risk of major clinical outcomes in diabetes : Results from ADVANCE-ON. Diabetes Care. 2018 ; 41 : 163-70.
14) Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease : A systematic review and meta-analysis. Diabetes Obes Metab. 2019 ; 21 : 1237-50.
15) Neuen BL, Ohkuma T, Neal B, et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria : Data from the CANVAS Program. J Am Soc Nephrol. 2019 ; 30 : 2229-42.
17) Jardine MJ, Zhou Z, Mahaffey KW, et al. Renal, cardiovascular, and safety outcomes of canagliflozin by baseline kidney function : A secondary analysis of the CREDENCE randomized trial. J Am Soc Nephrol. 2020 ; 31 : 1128-39.
18) Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017 ; 377 : 839-48.
19) Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7) : a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 ; 6 : 605-17.
20) Pollock C, Stefansson B, Reyner D, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT) : a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019 ; 7 : 429-41.
21) Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy : A randomized clinical trial. JAMA. 2015 ; 314 : 884-94.
22) Kashihara N, Ito S, Shikata K, et al. Double-blind, randomized phase 3 study comparing esaxerenone with placebo in type 2 diabetes patients with microalbuminuria (ESAX-DN Study), TH-PO1201/Abstract in 2019 ASN Kidney week, 2019.
23) de Zeeuw D, Renfurm RW, Bakris G, et al. Efficacy of a novel inhibitor of vascular adhesion protein-1 in reducing albuminuria in patients with diabetic kidney disease (ALBUM) : a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2018 ; 6 : 925-33.
25) Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010 ; 21 : 527-35.
26) Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR) : a double-blind, randomised, placebo-controlled trial [published correction appears in Lancet. 2019 ; 393 : 1936]. Lancet. 2019 ; 393 : 1937-47.
P.187 掲載の参考文献
8) Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 ; 43 : S4-212.
9) 日本老年医学会・日本糖尿病学会, 編著. 高齢者糖尿病診療ガイドライン 2017. 東京 : 南江堂 ; 2017.
11) DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995 ; 333 : 541-9.
12) 日本糖尿病学会. ビグアナイド適正使用に関する委員会. メトホルミン適正使用に関するRecommendation. 2020年改訂. http://www.fa.kyorin.co.jp/jds/uploads/recommendation_metformin.pdf
13) Baggio LL, Drucker DJ. Biology of incretins : GLP-1 and GIP. Gastroenterology. 2007 ; 132 : 2131-57.
14) Mukai E, Fujimoto S, Sato H, et al. Exendin-4 suppresses SRC activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes. 2011 ; 60 : 218-26.
18) Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk : The CARMELINA Randomized Clinical Trial. JAMA. 2019 ; 321 : 69-79.
23) Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes) : a double-blind, randomised placebo-controlled trial. Lancet. 2018 ; 392 : 1519-29.
24) Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND) : a double-blind, randomised placebo-controlled trial. Lancet. 2019 ; 394 : 121-30.
25) Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019 ; 381 : 841-51.
26) Gerstein HC, Hart R, Colhoun HM, et al. The effect of dulaglutide on stroke : an exploratory analysis of the REWIND trial. Lancet Diabetes Endocrinol. 2020 ; 8 : 106-14.
27) Chen L, Klein T, Leung PS. Effects of combining linagliptin treatment with BI-38335, a novel SGLT2 inhibitor, on pancreatic islet function and inflammation in db/db mice. Curr Mol Med. 2012 ; 12 : 995-1004.
28) Cheng ST, Chen L, Li SY, et al. The Effects of Empagliflozin, an SGLT2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLoS One. 2016 ; 11 : e0147391.
31) Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+channel blocker. Circulation. 1994 ; 90 : 700-5.
32) Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction : a nationwide study. Eur Heart J. 2011 ; 32 : 1900-8.
33) Group DS, Group IDE. Cardiovascular risk profile assessment in glucose-intolerant Asian individuals--an evaluation of the World Health Organization two-step strategy : the DECODA Study (Diabetes Epidemiology : Collaborative Analysis of Diagnostic Criteria in Asia). Diabet Med. 2002 ; 19 : 549-57.
34) Bolen S, Feldman L, Vassy J, et al. Systematic review : comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007 ; 147 : 386-99.
35) Sarafidis PA, Stafylas PC, Georgianos PI, et al. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes : a meta-analysis. Am J Kidney Dis. 2010 ; 55 : 835-47.
37) Neumann A, Weill A, Ricordeau P, et al. Pioglitazone and risk of bladder cancer among diabetic patients in France : a population-based cohort study. Diabetologia. 2012 ; 55 : 1953-62.
38) Lewis JD, Ferrara A, Peng T, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone : interim report of a longitudinal cohort study. Diabetes Care. 2011 ; 34 : 916-22.
39) Biesenbach G, Raml A, Schmekal B, et al. Decreased insulin requirement in relation to GFR in nephropathic Type 1 and insulin-treated Type 2 diabetic patients. Diabet Med. 2003 ; 20 : 642-5.
40) Pham H, Robinson-Cohen C, Biggs ML, et al. Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol. 2012 ; 7 : 588-94.
45) Bakris G, Oshima M, Mahaffey KW, et al. Effects of canagliflozin in patients with baseline eGFR < 30ml/min per 1.73 m. Clin J Am Soc Nephrol. 2020 ; 15 : 1705-14.
47) Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020 ; 383 : 1436-46.
48) Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020 ; 383 : 1425-35.
49) Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2020. Nov 16. (Online ahead of print)
50) Mann JFE, Hansen T, Idorn T, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes : a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials. Lancet Diabetes Endocrinol. 2020 ; 8 : 880-93.
51) Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes. 2005 ; 54 : 2983-7.
52) Araki S, Haneda M, Koya D, et al. Reduction in microalbuminuria as an integrated indicator for renal and cardiovascular risk reduction in patients with type 2 diabetes. Diabetes. 2007 ; 56 : 1727-30.
54) Ueki K, Sasako T, Okazaki Y, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3) : an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017 ; 5 : 951-64.
56) Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy : the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003 ; 290 : 2159-67.
57) Reaven PD, Emanuele NV, Wiitala WL, et al. Intensive glucose control in patients with type 2 diabetes-15-year follow-up. N Engl J Med. 2019 ; 380 : 2215-24.
58) Shurraw S, Hemmelgarn B, Lin M, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease : a population-based cohort study. Arch Intern Med. 2011 ; 171 : 1920-7.
59) 日本透析医学会. 血液透析患者の糖尿病治療ガイド 2012. 透析会誌. 2013 ; 46 : 311-57.
60) 日本透析医学会. 血糖コントロールの意義と指標・目標値. 透析会誌. 2013 ; 46 : 319-24.
61) Ricks J, Molnar MZ, Kovesdy CP, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes : a 6-year cohort study. Diabetes. 2012 ; 61 : 708-15.
62) Okada T, Nakao T, Matsumoto H, et al. Association between markers of glycemic control, cardiovascular complications and survival in type 2 diabetic patients with end-stage renal disease. Intern Med. 2007 ; 46 : 807-14.
64) Hoshino J, Hamano T, Abe M, et al. Glycated albumin versus hemoglobin A1c and mortality in diabetic hemodialysis patients : a cohort study. Nephrol Dial Transplant. 2018 ; 33 : 1150-8.
65) 津田圭一, 今村吉彦, 芝本隆. 血液透析患者の透析中における血糖動態について. 透析会誌. 2008 ; 41 : 111-7.
66) 鄭立晃, 阿部雅紀. 透析期のDKD治療. 腎と透析. 2018 ; 84 : 319-24.
P.194 掲載の参考文献
1) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019. 2019. p.135.
2) Andersen S, Brochner-Mortensen J, Parving HH ; Irbesartan in Patients With Type 2 Diabetes and Microalbuminuria Study Group. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care. 2003 ; 26 : 3296-302.
3) Viberti G, Wheeldon NM ; MicroAlbuminuria Reduction with VALsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus : a blood pressure-independent effect. Circulation. 2002 ; 106 : 672-8.
4) Parving HH, Lehnert H, Brochner-Mortensen J, et al. Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001 ; 345 : 870-8.
5) Makino H, Haneda M, Babazono T, et al. ; INNOVATION Study Group. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007 ; 30 : 1577-8.
6) Brenner BM, Cooper ME, de Zeeuw D, et al. ; RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001 ; 345 : 861-9.
7) Lewis EJ, Hunsicker LG, Clarke WR, et al. ; Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001 ; 345 : 851-60.
8) 馬場園哲也. 高血圧と糖尿病性腎症. Diabetes Frontier. 2015 ; 26 : 187-93.
9) Uzu T, Sawaguchi M, Maegawa H, et al. Reduction of microalbuminuria in patients with type 2 diabetes : the Shiga Microalbuminuria Reduction Trial (SMART). Diabetes Care. 2007 ; 30 : 1581-3.
11) Fried LF, Emanuele N, Zhang JH, et al. ; VA NEPHRON-D Investigators. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013 ; 369 : 1892-903.
12) Bakris GL, Toto RD, McCullough PA, et al. ; GUARD (Gauging Albuminuria Reduction with Lotrel in Diabetic Patients with Hypertension) Study Investigators. Effects of different ACE inhibitor combinations on albuminuria : results of the GUARD study. Kidney Int. 2008 ; 73 : 1303-9.
13) Bakris GL, Sarafidis PA, Weir MR, et al. ; ACCOMPLISH Trial investigators. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH) : a prespecified secondary analysis of a randomised controlled trial. Lancet. 2010 ; 375 : 1173-81.
14) 伊藤佐久耶, 甲斐田裕介, 深水圭. 糖尿病性腎臓病 (DKD) における降圧治療のTips. 血圧. 2018 ; 25 : 331-3.
15) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018. p.27-9.
16) Law MR, Wald NJ, Morris JK, et al. Value of low dose combination treatment with blood pressure lowering drugs : analysis of 354 randomised trials. BMJ. 2003 ; 326 : 1427.
17) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019. 2019. p.82.
18) 安孫子亜津子. 腎機能障害例における降圧薬や脂質異常症治療薬の使い方. 糖尿病の最新治療. 2016 ; 7 : 157.
19) Brown NJ, Byiers S, Carr D, et al. Dipeptidyl peptidase-IV inhibitor use associated with increased risk of ACE inhibitor-associated angioedema. Hypertension. 2009 ; 54 : 516-23.
20) 柏原直樹, 他. 高血圧診療におけるAI/ビッグデータ/モバイルテレメディシンの活用. 血圧. 2019 ; 26 : 358.
21) Homma K, Hayashi K, Sugano N, et al. Renal microcirculation and Ca2+ channel subtype. J Jpn Coll Angiol. 2011 ; 51 : 133-8.
22) Fujita T, Ando K, Nishimura H, et al. Cilnidipine versus Amlodipine Randomised Trial for Evaluation in Renal Desease (CARTER) Study Investigators. Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic renal disease. Kidney Int. 2007 ; 72 : 1543-9.
23) Ando K, Ueshima K, Tanaka S, et al. Comparison of the antialbuminuric effects of L-/N-type and L-type calcium channel blockers in hypertensive patients with diabetes and microalbuminuria : the study of assessment for kidney function by urinary microalbumin in randomized (SAKURA) trial. Int J Med Sci. 2013 ; 10 : 1209-16.
24) 日本糖尿病学会, 編. 糖尿病診療ガイドライン 2019. 東京 ; 南江堂 : 2019. p.252-3.
25) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン. 東京 : 東京医学社 ; 2018. p.20-32.
26) Sun LJ, Sun YN, Shan JP, Jiang GR. Effects of mineralocorticoid receptor antagonists on the progression of diabetic nephropathy. J Diabetes Investig. 2017 ; 8 : 609-18.
27) Kato S, Maruyama S, Makino H, et al. Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy : a multicenter, randomized clinical trial. Clin Exp Nephrol. 2015 ; 19 : 1098-106.
28) Epstein M, Williams GH, Weinberger M, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006 ; 1 : 940-51.
29) Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015 ; 373 : 2117-28.
30) Wanner C, Inzucchi SE, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016 ; 375 : 323-34.
P.200 掲載の参考文献
1) Sasaki T, Kurata H, Nomura K, et al. Amelioration of proteinuria with pravastatin in hypercholesterolemic patients with diabetes mellitus. Jpn J Med. 1990 ; 29 : 156-63.
2) Abe M, Maruyama N, Okada K, et al. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy. J Atheroscler Thromb. 2011 ; 18 : 1018-28.
3) Kimura S, Inoguchi T, Yokomizo H, et al. Randomized comparison of pitavastatin and pravastatin treatment on the reduction of urinary albumin in patients with type 2 diabetic nephropathy. Diabetes Obes Metab. 2012 ; 14 : 666-9.
4) Douglas K, O'Malley PG, Jackson JL. Meta-analysis : the effect of statins on albuminuria. Ann Intern Med. 2006 ; 145 : 117-24.
5) Tonolo G, Melis MG, Formato M, et al. Additive effects of simvastatin beyond its effects on LDL cholesterol in hypertensive type 2 diabetic patients. Eur J Clin Invest. 2000 ; 30 : 980-7.
6) Appel GB, Radhakrishnan J, Avram MM, et al. Analysis of metabolic parameters as predictors of risk in the RENAAL study. Diabetes Care. 2003 ; 26 : 1402-7.
7) Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007 ; 568 : 242-7.
8) 的場圭一郎, 宇都宮一典. 慢性腎臓病と糖・脂質代謝異常. 循環器内科. 2011 ; 69 : 40-4.
9) Yokota T, Utsunomiya K, Murakawa Y, et al. Mechanism of preventive effect of HMG-CoA reductase inhibitor on diabetic nephropathy. Kidney Int Suppl. 1999 ; 71 : S178-81.
10) Scott RP, Hawley SP, Ruston J, et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J Am Soc Nephrol. 2012 ; 23 : 1149-54.
11) Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2007 ; 568 : 242-7.
12) Matoba K, Kawanami D, Ishizawa S, et al. Rho-kinase mediates TNF-α-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochem Biophys Res Commun. 2010 ; 402 : 725-30.
13) Matoba K, Kawanami D, Okada R, et al. Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1α. Kidney Int. 2013 ; 84 : 545-54.
14) Matoba K, Kawanami D, Tsukamoto M, et al. Rho-kinase regulation of TNF-α-induced nuclear translocation of NF-κB RelA/p65 and M-CSF expression via p38 MAPK in mesangial cells. Am J Physiol Renal Physiol. 2014 ; 307 : F571-80.
15) Ishizawa S, Takahashi-Fujigasaki J, Kanazawa Y, et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol. 2014 ; 18 : 844-52.
16) Matoba K, Kawanami D, Nagai Y, et al. Rho-kinase blockade attenuates podocyte apoptosis by inhibiting the notch signaling pathway in diabetic nephropathy. Int J Mol Sci. 2017 ; 18 : E1795.
17) Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells. Int J Mol Sci. 2019 ; 20 : E1331.
18) Nagai Y, Matoba K, Kawanami D, et al. ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. Am J Physiol Renal Physiol. 2019 ; 317 : F839-51.
19) Matoba K Takeda Y, Nagai Y, et al. ROCK inhibition may stop diabetic kidney disease. JMA Journal. 2020 ; 3 : 1-10.
20) Kanazawa Y, Takahashi-Fujigasaki J, Ishizawa S, et al. The Rho-kinase inhibitor fasudil restores normal motor nerve conduction velocity in diabetic rats by assuring the proper localization of adhesion-related molecules in myelinating Schwann cells. Exp Neurol. 2013 ; 247 : 438-46.
21) Yokota T, Utsunomiya K, Taniguchi K, et al. Involvement of the Rho/Rho kinase signaling pathway in platelet-derived growth factor BB-induced vascular endothelial growth factor expression in diabetic rat retina. Jpn J Ophthalmol. 2007 ; 51 : 424-30.
22) Kawanami D, Matoba K, Okada R, et al. Fasudil inhibits ER stress-induced VCAM-1 expression by modulating unfolded protein response in endothelial cells. Biochem Biophys Res Commun. 2013 ; 435 : 171-5.
23) Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study) : randomised controlled trial. Lancet. 2005 ; 366 : 1849-61.
24) Ansquer JC, Foucher C, Rattier S, et al. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes : results from the diabetes atherosclerosis intervention study (DAIS). Am J Kidney Dis. 2005 ; 45 : 485-93.
25) Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010 ; 362 : 1563-74.
26) Kamijo Y, Hora K, Tanaka N, et al. Identification of functions of peroxisome proliferator-activated receptor alpha in proximal tubules. J Am Soc Nephrol. 2002 ; 13 : 1691-702.
27) Kamijo Y, Hora K, Nakajima T, et al. Peroxisome proliferator-activated receptor alpha protects against glomerulonephritis induced by long-term exposure to the plasticizer di- (2-ethylhexyl) phthalate. J Am Soc Nephrol. 2007 ; 18 : 176-88.
P.209 掲載の参考文献
1) Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979 ; 241 : 2035-8.
2) Sluijs I, Holmes MV, van der Schouw YT, et al. A mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes. 2015 ; 64 : 3028-36.
3) Zoppini G, Targher G, Chonchol M, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012 ; 35 : 99-104.
4) Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes : results of a 6-year follow-up. Diabetes Care. 2010 ; 33 : 1337-43.
5) Hovind P, Rossing P, Tarnow L, et al. Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes : an inception cohort study. Diabetes. 2009 ; 58 : 1668-71.
6) Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-beta-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int. 2011 ; 79 : 883-96.
7) Johnson RJ, Perez-Pozo SE, Sautin YY, et al. Hypothesis : could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009 ; 30 : 96-116.
8) Mima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes. 2012 ; 61 : 2967-79.
9) Mima A. Inflammation and oxidative stress in diabetic nephropathy : new insights on its inhibition as new therapeutic targets. J Diabetes Res. 2013 ; 2013 : 248563.
10) Kosugi T, Nakayama T, Heinig M, et al. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol. 2009 ; 297 : F481-8.
11) Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014 ; 35 : 391-404.
12) Siu YP, Leung KT, Tong MK, et al. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006 ; 47 : 51-9.
13) Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010 ; 5 : 1388-93.
14) Goicoechea M, Garcia de Vinuesa S, Verdalles U, et al. Allopurinol and progression of CKD and cardiovascular events : long-term follow-up of a randomized clinical trial. Am J Kidney Dis. 2015 ; 65 : 543-9.
15) George J, Carr E, Davies J, et al. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006 ; 114 : 2508-16.
16) Sircar D, Chatterjee S, Waikhom R, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia : A 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015 ; 66 : 945-50.
18) Mizukoshi T, Kato S, Ando M, et al. Renoprotective effects of topiroxostat for hyperuricaemic patients with overt diabetic nephropathy study (ETUDE study) : A prospective, randomized, multicentre clinical trial. Nephrology (Carlton). 2018 ; 23 : 1023-30.
19) Kasahara M, Kuwabara Y, Moriyama T, et al. Intensive uric acid-lowering therapy in CKD patients : the protocol for a randomized controlled trial. Clin Exp Nephrol. 2020 ; 24 : 235-41.
21) Choi H, Neogi T, Stamp L, et al. New perspectives in rheumatology : implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol. 2018 ; 70 : 1702-9.
22) Kuwabara M. Febuxostat does not increase all-cause mortality and cardiovascular mortality compared with placebo : Comment on the article by choi et al. Arthritis Rheumatol. 2019 ; 71 : 479.
23) Kang EH, Choi HK, Shin A, et al. Comparative cardiovascular risk of allopurinol versus febuxostat in patients with gout : a nation-wide cohort study. Rheumatology (Oxford). 2019 ; 58 : 2122-9.
24) Chen CH, Chen CB, Chang CJ, et al. Hypersensitivity and cardiovascular risks related to allopurinol and febuxostat therapy in Asians : A population-based cohort study and meta-analysis. Clin Pharmacol Ther. 2019 ; 106 : 391-401.
25) Johnson TA, Kamatani N, Kuwabara M. Xanthine oxidase inhibitor withdrawal syndrome? Comment on the article by Choi et al. Arthritis Rheumatol. 2019 ; 71 : 1966-7.
26) Opie LH. Allopurinol for heart failure : novel mechanisms. J Am Coll Cardiol. 2012 ; 59 : 809-12.
27) Fujii K, Kubo A, Miyashita K, et al. Xanthine oxidase inhibitor ameliorates postischemic renal injury in mice by promoting resynthesis of adenine nucleotides. JCI Insight. 2019 ; 4 : e124816.
28) Khanna D, Fitzgerald JD, Khanna PP, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1 : systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012 ; 64 : 1431-46.
29) Mima A, Ichida K, Matsubara T, et al. Acute renal failure after exercise in a Japanese sumo wrestler with renal hypouricemia. Am J Med Sci. 2008 ; 336 : 512-4.
P.217 掲載の参考文献
1) Kidney Disease : Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017 ; 7 : 1-59
2) Kidney Disease : Improving Global Outcomes (KDIGO) CKD-MBD Work Group : KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of Chronic Kidney Disease- Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009 ; 113 : S1-130
3) 日本透析医学会. 慢性腎臓病に伴う骨・ミネラル代謝異常の診療ガイドライン. 日本透析医学会誌. 2012 ; 45 : 301-56.
5) Viaene L, Meijers B, Vanrenterghem Y, et al. Daytime rhythm and treatment-related fluctuations of serum phosphorus concentration in dialysis patients. Am J Nephrol. 2012 ; 35 : 242-8.
6) Block GA, Kilpatrick RD, Lowe KA, et al. CKD-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol. 2013 ; 8 : 2132-40.
8) Cannata-Andia JB, Fernandez-Martin JL, Locatelli F, et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int. 2013 ; 84 : 998-1008.
9) Isakova T, Gutierrez OM, Chang Y, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol. 2009 ; 20 : 388-96.
10) Lopes AA, Tong L, Thumma J, et al. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS) : evaluation of possible confounding by nutritional status. Am J Kidney Dis. 2012 ; 60 : 90-101.
11) Fernandez-Martin JL, Martinez-Camblor P, Dionisi MP, et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients : the COSMOS study. Nephrol Dial Transplant. 2015 ; 30 : 1542-51.
12) Scialla JJ, Astor BC, Isakova T, et al. Mineral metabolites and CKD progression in African Americans. J Am Soc Nephrol. 2013 ; 24 : 125-35.
13) Silva AP, Fragoso A, Pinho A, et al. Phosphorus as an early marker of morbidity and mortality in type 2 chronic kidney disease diabetic patients. J Diabetes Complications. 2013 ; 27 : 328-32.
14) Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006 ; 70 : 771-80.
15) de Boer IH, Rue TC, Kestenbaum B. Serum phosphorus concentrations in the third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis. 2009 ; 53 : 399-407.
16) Newsome B, Ix JH, Tighiouart H, et al. Effect of protein restriction on serum and urine phosphate in the modification of diet in renal disease (MDRD) study. Am J Kidney Dis. 2013 ; 61 : 1045-6.
17) Selamet U, Tighiouart H, Sarnak MJ, et al. Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3-5 : The Modification of Diet in Renal Disease Study. Kidney Int. 2016 ; 89 : 176-84.
18) Salusky IB, Goodman WG, Sahney S, et al. Sevelamer controls parathyroid hormone-induced bone disease as efficiently as calcium carbonate without increasing serum calcium levels during therapy with active vitamin D sterols. J Am Soc Nephrol. 2005 ; 16 : 2501-8.
19) Pieper AK, Haffner D, Hoppe B, et al. A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am J Kidney Dis. 2006 ; 47 : 625-35.
20) Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002 ; 106 : 100-5.
21) Shroff RC, Donald AE, Hiorns MP, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007 ; 18 : 2996-3003.
22) Denburg MR, Tsampalieros AK, de Boer IH, et al. Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab. 2013 ; 98 : 1930-38.
23) Ok E, Asci G, Bayraktaroglu S, et al. Reduction of dialysate calcium level reduces progression of coronary artery calcification and improves low bone turnover in patients on hemodialysis. J Am Soc Nephrol. 2016 ; 27 : 2475-86.
25) Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012 ; 23 : 1407-15.
26) Hill KM, Martin BR, Wastney ME, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int. 2013 ; 83 : 959-66.
27) Di Iorio B, Bellasi A, Russo D. Mortality in kidney disease patients treated with phosphate binders : a randomized study. Clin J Am Soc Nephrol. 2012 ; 7 : 487-93.
28) Karavetian M, de Vries N, Elzein H, et al. Effect of behavioral stage-based nutrition education on management of osteodystrophy among hemodialysis patients. Lebanon. Patient Educ Couns. 2015 ; 98 : 1116-22.
29) Lou LM, Caverni A, Gimeno JA, et al. Dietary intervention focused on phosphate intake in hemodialysis patients with hyperphosphoremia. Clin Nephrol. 2012 ; 77 : 476-83.
30) Benini O, D'Alessandro C, Gianfaldoni D, et al. Extra-phosphate load from food additives in commonly eaten foods : a real and insidious danger for renal patients. J Ren Nutr. 2011 ; 21 : 303-8.
31) Sherman RA, Mehta O. Phosphorus and potassium content of enhanced meat and poultry products : implications for patients who receive dialysis. Clin J Am Soc Nephrol. 2009 ; 4 : 1370-3.
32) Nakashima A, Yokoyama K, Kawanami D, et al. Association between resistin and fibroblast growth factor 23 in patients with type 2 diabetes mellitus. Sci Rep. 2018 ; 8 : 13999.
P.225 掲載の参考文献
1) Bosman DR, Winkler AS, Marsden JT, et al. Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care. 2001 ; 24 : 495-9.
2) El-Achkar TM, Ohmit SE, McCullough PA, et al. Higher prevalence of anemia with diabetes mellitus in moderate kidney insufficiency : The Kidney Early Evaluation Program. Kidney Int. 2005 ; 67 : 1483-8.
5) Chiang CK, Tanaka T, Inagi R, et al. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig. 2011 ; 91 : 1564-71.
8) 日本透析医学会. 2015年版 慢性腎臓病患者における腎性貧血治療のガイドライン.
9) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018. p.133.
10) Palmer SC, Navaneethan SD, Craig JC, et al. Meta-analysis : Erythropoiesis-stimulating agents in patients with chronic kidney disease. Ann Intern Med. 2010 ; 153 : 23-33.
12) Zeeuw D De, Eckardt K, Feyzi JM, et al. A trial of darbepoetin α in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 ; 361 : 2019-32.
14) Glaspy J, Crawford J, Vansteenkiste J, et al. Erythropoiesis-stimulating agents in oncology : A study-level meta-analysis of survival and other safety outcomes. Br J Cancer. 2010 ; 102 : 301-15.
15) Hazzan AD, Shah HH, Hong S, et al. Treatment with erythropoiesis-stimulating agents in chronic kidney disease patients with cancer. Kidney Int. 2014 ; 86 : 34-9.
17) Litton E, Xiao J, Ho KM. Safety and efficacy of intravenous iron therapy in reducing requirement for allogeneic blood transfusion : Systematic review and meta-analysis of randomised clinical trials. BMJ. 2013 ; 347 : 1-10.
18) Kuragano T, Shimonaka Y, Kida A, et al. Determinants of hepcidin in patients on maintenance hemodialysis : Role of inflammation. Am J Nephrol. 2010 ; 31 : 534-40.
19) Szczech LA, Barnhart HX, Sapp S, et al. A secondary analysis of the CHOIR trial shows that comorbid conditions differentially affect outcomes during anemia treatment. Kidney Int. 2010 ; 77 : 239-46.
21) Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kindey disease. N Engl J Med. 2009 ; 361 : 2019-32.
22) 日本腎臓学会. 慢性腎臓病における貧血のためのKDIGO診療ガイドライン. 東京 : 東京医学社 ; 2013.
23) Akizawa T, Saito A, Gejyo F, et al. Low hemoglobin levels and hypo-responsiveness to erythropoiesis-stimulating agent associated with poor survival in incident Japanese hemodialysis patients. Ther Apher Dial. 2014 ; 18 : 404-13.
24) Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004 ; 5 : 343-54.
26) Yeh TL, Leissing TM, Abboud MI, et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci. 2017 ; 8 : 7651-68.
27) Souma T, Nezu M, Nakano D, et al. Erythropoietin synthesis in renal myofibroblasts is restored by activation of hypoxia signaling. J Am Soc Nephrol. 2016 ; 27 : 428-38.
28) Bernhardt WM, Wiesener MS, Scigalla P, et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J Am Soc Nephrol. 2010 ; 21 : 2151-6.
29) Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019 ; 381 : 1011-22.
30) Chen N, Hao C, Peng X, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 2019 ; 381 : 1001-10.
31) Nangaku M, Farag YMK, DeGoma E, et al. Vadadustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor, for treatment of anemia of chronic kidney disease : two randomized Phase 2 trials in Japanese patients. Nephrol Dial Transplant. 2020 ; 28 ; 1-10.
32) Katavetin P, Miyata T, Inagi R, et al. High glucose blunts vascular endothelial growth factor response to hypoxia. J Am Soc Nephrol. 2006 ; 17 : 1405-13.
33) Ceradini DJ, Yao D, Grogan RH, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem. 2008 ; 283 : 10930-8.
P.236 掲載の参考文献
1) Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994 ; 124 : 96-104.
2) 丹羽利充. 尿毒素による腎・血管障害と向血栓傾向. 血栓止血誌. 2015 ; 26 : 318-22.
3) Liu WC, Tomino Y, Kuo-Cheng Lu. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120. Toxins (Basel). 2018 ; 10 : 367.
4) Kobayashi N, Maeda K, Horikoshi S, et al. Effects of oral adsorbent AST-120 (Kremezin) on renal function and glomerular injury in early-stage renal failure of subtotal nephrectomized rats. Nephron. 2002 ; 91 : 480-5.
5) Inami Y, Hamada C, Seto T, et al. Effect of AST-120 on endothelial dysfunction in adenine-induced uremic rats. Int J Nephrol. 2014 ; 2014 : 164125.
6) Vaziri N, Yuan J, Khazaeli M, et al. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption. Am J Nephrol. 2013 ; 37 : 518-25.
7) Yoshifuji A, Wakino S, Irie J, et al. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats. Clin Exp Nephrol. 2018 ; 22 : 1069-78.
8) 日本腎臓学会, 編. 尿毒症毒素の管理. In : CKD診療ガイド 2012. 東京 : 東京医学社 ; 2012. p.90.
9) 白瀧康人, 木下弘貴, 田仲義弘, 他. AST-120の服薬アドヒアランス向上を目的としたチェーン薬局における調査研究. 新薬と臨床. 2012 ; 61 : 895-905.
10) Tomino Y, Hisada-Urita A, Seki T et al. "Importance of AST-120 (Kremezin(R)) adherence in a chronic kidney disease patient with diabetes". Case Rep Nephrol Dial. 2018 ; 8 : 107-11.
11) 濱田千江子, 片岩純人, 合田朋仁, 他. 保存期慢性腎臓病患者におけるAST-120 (クレメジン(R)) 服薬サポートプログラムの効果-アドヒアランスの改善にむけて-. Nephrology Frontier. 2014 ; 13 : 96-103.
12) Schulman G, Bel T, Beck GJ, et al. The effects of AST-120 on chronic kidney disease progression in the United States of America : a post hoc subgroup analysis of randomized controlled trials. BMC Nephrology. 2016 ; 17 : 141.
13) Cha R-H, Kang SW, Park CW, et al. Sustained uremic toxin control improves renal and cardiovascular outcomes in patients with advanced renal dysfunction : post-hoc analysis of the Kremezin study against renal disease progression in Korea. Kidney Res Clin Prac. 2017 ; 36 : 68-78.
P.243 掲載の参考文献
1) 日本透析医学会. わが国の慢性透析療法の現況 (2018年12月31日現在). 透析会誌. 2019 ; 52 : 679-754.
2) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
3) 川口良人. 平成3年度厚生科学研究. 腎不全医療研究事業研究報告書. 平成4年3月. p.125-32.
4) Zanetti M, Barazzoni R, Guarnieri G. Inflammation and insulin resistance in uremia. J Ren Nutr. 2008 ; 18 : 70-5.
5) Gerich JE, Meyer C, Woerle HJ, et al. Renal gluconeogenesis : its importance in human glucose homeostasis. Diabetes Care. 2001 ; 24 : 382-91.
6) 花井豪, 馬場園哲也. 透析療法の問題点・注意点-血液透析. 臨床透析. 2019 ; 35 : 7-12.
7) Abe M, Kaizu K, Matsumoto K. Evaluation of the hemodialysis-induced changes in plasma glucose and insulin concentrations in diabetic patients : comparison between the hemodialysis and non-hemodialysis days. Ther Apher Dial. 2007 ; 11 : 288-95.
8) 日本透析医学会. 血液透析患者の糖尿病治療ガイド 2012. 透析会誌. 2013 ; 46 : 311-57.
9) 日本糖尿病学会. 糖尿病治療ガイド 2018-2019. 東京 : 文光堂 ; 2018. p88-9.
10) 石井晶子, 馬場園哲也, 春山賢介, 他. 糖尿病透析患者における網膜症の年次的変化. 糖尿病. 2002 ; 45 : 737-42.
11) Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998 ; 9 (12 Suppl) : S16-23.
13) Hase H, Joki N, Nakamura M, et al. Favourable long-term outcome by repeated percutaneous coronary revascularization in diabetic haemodialysis patients. Nephrol Dial Transplant. 2002 ; 17 : 100-5.
14) Iseki K, Fukiyama K. Clinical demographics and long-term prognosis after stroke in patients on chronic haemodialysis. The Okinawa Dialysis Study (OKIDS) Group. Nephrol Dial Transplant. 2000 ; 15 : 1808-13.
15) Onoyama K, Kumagai H, Miishima T, et al. Incidence of strokes and its prognosis in patients on maintenance hemodialysis. Jpn Heart J. 1986 ; 27 : 685-91.
16) Ishida I, Hirakata H, Sugimori H, et al. Hemodialysis causes severe orthostatic reduction in cerebral blood flow velocity in diabetic patients. Am J Kidney Dis. 1999 ; 34 : 1096-104.
17) Dahal K, Kunwar S, Rijal J, et al. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease : A meta-analysis of observational studies. Chest. 2016 ; 149 : 951-9.
18) 日本透析医学会. 血液透析患者における心血管合併症の評価と治療に関するガイドライン. 透析会誌. 2011 ; 44 : 337-425.
19) O'Hare AM, Vittinghoff E, Hsia J, et al. Renal insufficiency and the risk of lower extremity peripheral arterial disease : results from the Heart and Estrogen/Progestin Replacement Study (HERS). J Am Soc Nephrol. 2004 ; 15 : 1046-51.
20) 塩井淳. 血管石灰化・リモデリングと糖尿病. J Jpn Coll Angiol. 2010 ; 50 : 561-7.
21) Okamoto K, Oka M., Maesato K, et al. Peripheral arterial occlusive disease is more prevalent in patients with hemodialysis : comparison with the findings of multidetector-row computed tomography. Am J Kidney Dis. 2006 ; 48 : 269-76.
22) Matsuzawa R, Aoyama N, Yoshida A. Clinical Characteristics of patients on hemodialysis with peripheral arterial disease. Angiology. 2015 ; 66 : 911-7.
23) 日本透析医学会. 維持血液透析ガイドライン. 透析会誌. 2013 ; 46 : 587-632.
24) Selby NM, McIntyre CW. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol Dial Transplant. 2006 ; 21 : 1883-98.
P.251 掲載の参考文献
1) Winkelmayer WC, Glynn RJ, Levin R, et al. Late referral and modality choice in end-stage renal disease. Kidney Int. 2001 ; 60 : 1547-54.
2) Figueiredo AE, Bernardini J, Bowes E, et al. A syllabus for teaching peritoneal dialysis to patients and caregivers. Perit Dial Int. 2016 ; 36 : 592-605.
3) Wright S, Klausner D, Baird B, et al. Timing of dialysis initiation and survival in ESRD. Clin J Am Soc Nephrol. 2010 ; 5 : 1828-35.
4) 中元秀友. 腹膜透析における管理. 特集 糖尿病透析患者の管理. Diabetes Frontier. 2008 ; 19 : 785-93.
5) Holmes CJ. Reducing cardiometabolic risk in peritoneal dialysis patients : role of the dialysis solution. J Diabetes Sci Technol. 2009 ; 3 : 1472-80.
6) Marron B, Martinez Ocana JC, Salgueira M, et al. Analysis of patient flow into dialysis : role of education in choice of dialysis modality. Perit Dial Int. 2005 ; 25 (Suppl 3) : S56-9.
7) Ueda R, Nakao M, Maruyama Y, et al. Effect of diabetes on incidence of peritoneal dialysis-associated peritonitis. PLoS One. 2019 ; 14 : e0225316.
8) Honda K, Hamada C, Nakayama M, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis : a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol. 2008 ; 3 : 720-8.
9) Johnson DW, Cho Y, Livingston BE, et al. Encapsulating peritoneal sclerosis : incidence, predictors, and outcomes. Kidney Int. 2010 ; 77 : 904-12.
10) Coles GA, Williams JD. What is the place of peritoneal dialysis in the integrated treatment of renal failure? Kidney Int. 1998 ; 54 : 2234-40.
11) Locatelli F, Pozzoni P, Del Vecchio L. Renal replacement therapy in patients with diabetes and end-stage renal disease. J Am Soc Nephrol. 2004 ; 15 (Suppl 1) : S25-9.
P.258 掲載の参考文献
1) 日本臨床腎移植学会・日本移植学会. 腎移植臨床登録集計報告 (2019). 2018 年実施症例の集計報告と追跡調査結果. 移植. 2019 ; 54 : 61-80.
2) 後藤憲彦. PEKTの準備・評価. 先行的腎移植~最良の腎代替療法を目指して. 大阪 : 医薬ジャーナル社 ; 2016. p.82-101.
3) 阿南剛, 長浜正彦, 新保正貴, 他. 腎臓内科・泌尿器科の集学的アプローチによる生体腎移植導入の提案. 日本臨床腎移植学会雑誌. 2019 ; 7 : 185-8.
5) Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation. N Eng J Med. 1999 ; 341 : 1725-30.
6) 八木澤隆. 成人腎移植の成績と課題. 腎と透析. 2018 ; 85 : 479-85.
7) Meier-Kriesche HU, Schold JD, Srinivas TR, et al. Kidney transplantation halts cardiovascular disease progression in patients with end-stage renal disease. Am J Transplant. 2004 ; 4 : 1662-8.
8) Hariharan S, Smith RD, Viero R, et al. Diabetic nephropathy after renal transplantation. Clinical and pathologic features. Transplantation. 1996 ; 62 : 632-5.
10) 北村博司, 山川貴史. 糖尿病ドナーからの移植腎に展開する形態変化. 日本臨床腎移植学会雑誌. 2019 ; 7 : 31-6.
11) Harada S, Ushigome H, Nishimura A, et al. Histological reversibility of diabetic nephropathy after kidney transplantation from diabetic donor to non-diabetic recipient. Nephrology. 2015 ; 20 (Suppl. 2) : 40-4.
12) 日本臨床腎移植学会ガイドライン作成委員会. 腎移植後内科・小児科系合併症の診療ガイドライン 2011. 東京 : 日本医学館 ; 2011. p.24-9.
13) 日本移植学会広報委員会, 編. 2019 臓器移植ファクトブック. www.asas.or.jp/jst/pdf/factbook/factbook2019.pdf
14) 剣持敬. 膵臓移植の現状と展望. 外科. 2018 ; 80 : 157-62.
P.264 掲載の参考文献
1) 厚生労働省医政局長. 医療スタッフの協働・連携によるチーム医療の推進について. 厚生労働省医政局長通知 (平成22年4月30日付医政発0430 第1号). 2010.
2) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 東京 ; 東京医学社 ; 2018.
3) Yokoyama H, Oishi M, Takamura H, et al. Large-scale survey of rates of achieving targets for blood glucose, blood pressure, and lipids and prevalence of complications in type 2 diabetes (JDDM 40). BMJ Open Diabetes Research & Care. 2016 ; 4 : e000294.
4) 社会医療診療行為別統計. https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00450048&tstat=000001029602.
7) Ueki K, Sasako T, Okazaki Y, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3) : an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017 ; 5 : 951-64.

最近チェックした商品履歴

Loading...