脳卒中エキスパート 神経保護・神経再生療法

出版社: 中外医学社
著者:
発行日: 2021-04-30
分野: 臨床医学:内科  >  脳神経科学/神経内科学
ISBN: 9784498328662
電子書籍版: 2021-04-30 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

4,840 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

4,840 円(税込)

商品紹介

脳卒中診療で特に重要となるテーマをエキスパートたちが深堀りするシリーズ最新刊.まず脳虚血やくも膜下出血などにおける神経障害のメカニズムを詳細に整理した上で,脳神経の保護にかわる薬の開発や脳梗塞に対する細胞治療など,近年の神経保護・神経再生療法の動向を紹介.60年以上にわたり精力的に展開されてきた分野の研究開発の歴史を知り,今後の方向性を探る一助となる一冊.

目次

  • I.神経保護・神経再生療法のオーバービュー
     1 神経保護療法・神経再生療法の今後
       1.神経保護薬の開発とSTAIR勧告
       2.NXY-059臨床試験の衝撃
       3.ポストNXY-059の時代を生きる
       4.細胞治療による神経保護・神経再生

    II.神経障害のメカニズム~温故知新
     1 虚血性神経細胞死
       1.脳虚血とは
       2.虚血性神経細胞死の分子機構
     2 脳虚血におけるグリア細胞・血液脳関門
       1.脳のグルコース代謝
       2.グルタミン酸とアストロサイト糖代謝
       3.解糖系代謝とニューロン,アストロサイト
       4.In vitro代謝解析
       5.グルコース代謝のminor pathwayと神経保護とBBB保護
       6.虚血下のアストロサイトのPPP活性制御
       7.グルコース代謝と脂質代謝,ケトン体のリンク
       8.グルタミン酸毒性とアストロサイト
     3 脳虚血におけるミトコンドリア― 総説
       1.ミトコンドリアの構造・生理的機能
       2.ミトコンドリアの品質管理
       3.脳虚血・再灌流による神経傷害とミトコンドリア
       4.ミトコンドリアを標的とした新規治療法への期待
     4 脳虚血と認知機能障害
       1.症状
       2.診断基準
       3.亜分類
       4.治療
       5.予後
     5 くも膜下出血における神経障害
       1.くも膜下出血に伴う病態
       2.早期脳損傷(early brain injury:EBI)
       3.DCI
       4.今後の展望

    III.神経保護療法
     1 最近の神経保護薬の臨床試験
       1.神経保護から神経血管ユニット保護へ
       2.側副血行促進手段の試み
       3.血栓回収療法との併用の試み
       4.遠隔虚血コンディショニングの応用
     2 フリーラジカルスカベンジャー
       1.フリーラジカルスカベンジャー,エダラボンの開発
       2.脳血管保護薬としてのエダラボン
       3.フリーラジカルスカベンジャー治療の展開
       4.ALSに応用されたフリーラジカルスカベンジャー治療
       5.フリーラジカルスカベンジャー治療の今後の展開
     3 顆粒球コロニー刺激因子(G-CSF)
       1.G-CSF
       2.脳梗塞発症後の炎症反応とアポトーシス
       3.G-CSFの神経保護・再生効果(基礎研究から)
       4.脳梗塞患者に対するG-CSF投与による効果
     4 新規脳保護薬の可能性
       1.フリーラジカル捕捉薬(NXY-059,NSP-116)
       2.Nrf2活性化薬
       3.ミトコンドリア保護薬
       4.小胞体ストレス(ERストレス)阻害薬
     5 抗炎症薬
       1.炎症の病態について
       2.脳虚血における炎症のメカニズム
       3.炎症に対する免疫治療法(抗炎症作用を有する薬剤による脳保護療法)
     6 脳冷却療法〈鐙谷武雄〉
       1.脳冷却の脳保護メカニズム
       2.全身低体温の臨床応用
       3.局所冷却灌流の臨床応用
     7 創薬を目指したトランスレーショナル・リサーチ
       1.tPA療法の出血合併の防止を目指した基礎研究
       2.臨床応用を目指したTRの実例
       3.「死の谷」を乗り越えるために

    IV.神経再生療法
     1 幹細胞を用いた脳梗塞に対する細胞治療
       1.幹細胞とは,再生医療・細胞治療とは
       2.脳梗塞に対する幹細胞を用いた臨床研究
       3.国内で進行中の治験
       4.脳梗塞以外の脳血管障害に対する治験
       5.残されている課題
     2 歯髄幹細胞を用いた脳梗塞に対する細胞治療
       1.歯髄幹細胞とは
       2.脳虚血における歯髄幹細胞の治療効果
       3.脳梗塞急性期患者に対する歯髄幹細胞移植を用いた治療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I. 神経保護・神経再生療法のオーバービュー

P.10 掲載の参考文献
1) Stroke Therapy Academic Industry Roundtable. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999 ; 30 : 2752-8.
2) O'Collins VE, Macleod MR, Donnan GA, et al. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006 ; 59 : 467-77.
3) Savitz SI, Fisher M. Future of neuroprotection for acute stroke : in the aftermath of the SAINT trials. Ann Neurol. 2007 ; 61 : 396-402.
4) Kuroda S, Tsuchidate R, Smith ML, et al. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1999 ; 19 : 778-87.
7) Ehrenreich H, Weissenborn K, Prange H, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009 ; 40 : e647-56.
8) Ringelstein EB, Thijs V, Norrving B, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke : results of the AX200 for Ischemic Stroke trial. Stroke. 2013 ; 44 : 2681-7.
9) Rother J. Neuroprotection does not work! Stroke. 2008 ; 39 : 523-4.
11) Dirnagl U, Endres M. Found in translation : preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke. 2014 ; 45 : 1510-8.
12) Borlongan CV, Chopp M, Steinberg GK, et al. Potential of stem/progenitor cells in treating stroke : the missing steps in translating cell therapy from laboratory to clinic. Regen Med. 2008 ; 3 : 249-50.
13) Boltze J, Modo MM, Mays RW, et al. Stem cells as an emerging paradigm in stroke 4 : advancing and accelerating preclinical research. Stroke. 2019 ; 50 : 3299-306.
14) Savitz SI, Chopp M, Deans R, et al. Stem Cell Therapy as an Emerging Paradigm for Stroke (STEPS) II. Stroke. 2011 ; 42 : 825-9.
15) Savitz SI, Cramer SC, Wechsler L, et al. Stem cells as an emerging paradigm in stroke 3 : enhancing the development of clinical trials. Stroke. 2014 ; 45 : 634-9.
16) Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Natl Acad Sci U S A. 1998 ; 95 : 3908-13.
17) Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999 ; 96 : 10711-6.
18) 黒田敏. ラボから急性期脳梗塞の治療へ-ラジカルスカベンジャーと骨髄細胞移植. 脳卒中. 2008 ; 30 : 875-9.
19) Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia : from basic science to clinical applications. J Cereb Blood Flow Metab. 2012 ; 32 : 1317-31.
20) Kuroda S. Bone marrow stromal cell transplantation for ischemic stroke--its multi-functional feature. Acta Neurobiol Exp (Wars). 2013 ; 73 : 57-65.
21) Kuroda S. Current opinion of bone marrow stromal cell transplantation for ischemic stroke. Neurol Med Chir (Tokyo). 2016 ; 56 : 293-301.
22) Shichinohe H, Kawabori M, Iijima H, et al. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW) : a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol. 2017 ; 17 : 179.
23) Houkin K, Shichinohe H, Abe K, et al. Accelerating cell therapy for stroke in Japan : regulatory framework and guidelines on development of cell-based products. Stroke. 2018 ; 49 : e145-52.

II. 神経障害のメカニズム~温故知新

P.23 掲載の参考文献
1) Barinaga M. Finding new drugs to treat stroke. Science. 1996 ; 272 : 664.
3) Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981 ; 54 : 773-82.
4) Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005 ; 1 : 112-9.
5) Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001 ; 21 : 2-14.
6) Zhang ZG, Chopp M, Gautam S, et al. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 1994 ; 654 : 85-95.
7) Iadecola C, Zhang F, Xu S, et al. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 1995 ; 15 : 378-84.
8) Takizawa S, Fukuyama N, Hirabayashi H, et al. Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion. J Cereb Blood Flow Metab. 1999 ; 19 : 667-72.
9) Zhang N, Komine-Kobayashi M, Tanaka R, et al. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke. 2005 ; 36 : 2220-5.
10) Mizukoshi G, Katsura K, Watanabe M, et al. Evaluation of therapeutic efficacy of free radical scavenger in patients with ischemic stroke. 脳循環代謝. 2006 ; 18 : 53-60.
11) Grace Y. Chen, Gabriel Nunez Sterile inflammation : sensing and reacting to damage. Nat Rev Immunol. 2010 ; 10 : 826-37.
12) Gliem M, Mausberg AK, Lee JI, et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012 ; 71 : 743-52.
13) Boshuizen MCS, Steinberg GK. Stem cell-based immunomodulation after stroke : effects on brain repair processes. Stroke. 2018 ; 49 : 1563-70.
14) Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982 ; 239 : 57-69.
P.38 掲載の参考文献
1) Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain. In : Siegel G, et al editors. Basic Neurochemistry : Molecular, Cellular, and Medical Aspects, 6th ed. Lippincott-Raven ; 1999. p.637-69.
2) Dienel GA. Energy metabolism in the brain. In : Byrne JH, et al editors. From Molecules to Networks : an Introduction to Cellular and Molecular Neuroscience. 2nd ed. Academic Press ; 2009. p.49-110.
3) 高橋愼一. 脳循環代謝. In : 高嶋修太郎, 他編. 必携 脳卒中ハンドブック第3版. 診断と治療社 ; 2017. p.418-23.
4) Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of neurovascular unit. Neuropathology. 2020 ; 40 : 121-37.
5) Takahashi S, Izawa Y, Suzuki N. Hypothesis and proposal : astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku (Clinical Neurology). 2012 ; 52 : 41-51.
6) Takahashi S, Izawa Y, Suzuki N. Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro. 2018 ; 10 : 1759091418775562.
7) Takahashi S, Iizumi T, Mashima K, et al. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. ASN Neuro. 2014 ; 6 : pii : 1759091414550997.
8) Abe T, Suzuki M, Sasabe J, et al. Cellular origin and regulation of D- and L-serine in in vitro and in vivo models of cerebral ischemia. J Cereb Blood Flow Metab. 2014 ; 34 : 1928-35.
9) Iizumi T, Takahashi S, Mashima K, et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation. 2016 ; 13 : 99.
10) 高橋愼一. 脳の機能活動とエネルギー産生の時間的, 空間的プロファイル : ニューロン-アストロサイト連関から見たグルコース代謝. 脳循環代謝. 1997 ; 9 : 1-17.
11) 高橋愼一. 脳卒中専門医のためのミクロ解剖学 : アストロサイト (その機能と虚血時の反応). 分子脳血管病. 2006 ; 5 : 82-91.
12) 高橋愼一. 第21回日本脳循環代謝学会総会シンポジウム I 脳エネルギー代謝研究の最前線 4. ニューロンとアストロサイトのエネルギー代謝. 脳循環代謝. 2010 ; 21 : 18-26.
13) 高橋愼一. アストロサイトと糖代謝. Clin Neurosc. 2011 ; 29 : 1262-7.
14) 高橋愼一, 伊澤良兼, 飯泉琢矢, 他. シンポジウム 2 治療ターゲットとしての脳虚血後の炎症 :「アストロサイトからみた脳虚血後の炎症」. 脳循環代謝. 2012 ; 23 : 66-74.
15) 高橋愼一, 安部貴人, 伊澤良兼, 他. シンポジウム III 血液脳関門 : 2. NVUにおけるBBBの役割とcellular metabolic compartment. 脳循環代謝. 2013 ; 24 : 75-82.
16) 高橋愼一. アストログリアをターゲットとした脳梗塞治療戦略の構築. (第26回日本脳循環代謝学会総会シンポジウム 3 : 脳梗塞病態と新治療開発). 脳循環代謝. 2015 ; 26 : 67-75.
17) 高橋愼一. 6. 中毒・代謝疾患 神経細胞およびグリア細胞におけるケトン体代謝の重要性. In : 鈴木則宏, 他編. Annual Review 神経 2015. 中外医学社 ; 2015. p.196-203.
18) 高橋愼一. グリア系細胞の統合的制御による脳梗塞治療開発 (第27回日本脳循環代謝学会総会シンポジウム 2 : 脳梗塞の病態と新規治療開発の将来像). 脳循環代謝. 2016 ; 27 : 255-8.
19) Engl E, Attwell D. Non-signalling energy use in the brain. J Physiol. 2015 ; 593 : 3417-29.
20) 高橋愼一. トランスポーターと疾患 : 脳虚血. Clin Neurosci. 2018 ; 36 : 704-9.
21) Supplie LM, Duking T, Campbell G, et al. Respiration-deficient astrocytes survive as glycolytic cells in vivo. J Neurosci. 2017 ; 37 : 4231-42.
22) P ellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis : a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA. 1994 ; 91 : 10625-9.
23) Takahashi S, Driscoll BF, Law MJ, et al. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA. 1995 ; 92 : 4616-20.
24) Zhao Y, Fung C, Shin D, et al. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders. Mol Psychiatry. 2010 ; 15 : 286-99.
25) Lundgaard I, Li B, Xie L, et al. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. 2015 ; 6 : 6807.
26) 鈴木将貴, 笹部潤平. アストロサイトとアミノ酸代謝. Clin Neurosci. 2011 ; 29 : 1268-72.
27) Wang GH, Jiang ZL, Chen ZQ, et al. Neuroprotective effect of L-serine against temporary cerebral ischemia in rats. J Neurosci Res. 2010 ; 88 : 2035-45.
28) Ren TJ, Qiang R, Jiang ZL, et al. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia. PLoS One. 2013 ; 8 : e67044.
P.52 掲載の参考文献
1) Baughman JM, Perocchi F, Girgis HS, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011 ; 476 : 341-5.
2) Jiang D, Zhao L, Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science (New York, NY). 2009 ; 326 : 144-7.
3) Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012 ; 337 : 1062-5.
4) Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab. 2016 ; 36 : 2022-33.
5) Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001 ; 21 : 2-14.
6) Ahmed E, Donovan T, Yujiao L, et al. Mitochondrial targeted antioxidant in cerebral ischemia. J Neurol Neurosci. 2015 ; 6 : 17.
7) Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009 ; 40 : e331-9.
8) Webster KA, Graham RM, Thompson JW, et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal. 2006 ; 8 : 1667-76.
9) Abe K, Aoki M, Kawagoe J, et al. Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke. 1995 ; 26 : 1478-89.
10) Kambe Y, Nakamichi N, Takarada T, et al. A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons. Neurochem Int. 2011 ; 59 : 10-20.
11) Nakano Y, Deguchi K, Yamashita T, et al. High incidence of dementia conversion than stroke recurrence in poststroke patients of late elder society. J Stroke Cerebrovasc Dis. 2015 ; 24 : 1621-8.
12) Zhang N, Wang S, Li Y, et al. A selective inhibitor of Drp1, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats. Neurosci Lett. 2013 ; 535 : 104-9.
13) Liu X, Yamashita T, Shang J, et al. Twendee X ameliorates phosphorylated tau, alpha-synuclein and neurovascular dysfunction in Alzheimer's disease transgenic mice with chronic cerebral hypoperfusion. J Stroke Cerebrovas Dis. 2019 ; 28 : 104310.
14) Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013 ; 9 : 1321-33.
15) Li Q, Zhang T, Wang J, et al. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun. 2014 ; 444 : 182-8.
16) Zhang X, Yuan Y, Jiang L, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury : Involvement of PARK2-dependent mitophagy. Autophagy. 2014 ; 10 : 1801-13.
17) He Z, Ning N, Zhou Q, et al. Mitochondria as a therapeutic target for ischemic stroke. Free Radi Biol Med. 2020 ; 146 : 45-58.
18) Liu K, Ji K, Guo L, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014 ; 92 : 10-8.
19) Babenko VA, Silachev DN, Popkov VA, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018 ; 23 : 687.
20) Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016 ; 535 : 551-5.
21) Huang PJ, Kuo CC, Lee HC, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016 ; 25 : 913-27.
22) Emani SM, Piekarski BL, Harrild D, et al. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017 ; 154 : 286-9.
23) Ohsawa Y, Hagiwara H, Nishimatsu SI, et al. Taurine supplementation for prevention of stroke-like episodes in MELAS : a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry. 2019 ; 90 : 529-36.
P.66 掲載の参考文献
1) Ikejima C, Ikeda M, Hashimoto M, et al. Multicenter population-based study on the prevalence of early onset dementia in Japan : vascular dementia as its prominent cause. Psychiatry Clin Neurosci. 2014 ; 68 : 216-24.
2) Corraini P, Henderson VW, Ording AG, et al. Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke. Stroke. 2017 ; 48 : 180-6.
4) Gold G, Bouras C, Canuto A, et al. Clinicopathological validation study of four sets of clinical criteria for vascular dementia. Am J Psychiatry. 2002 ; 159 : 82-7.
5) Sachdev P, Kalaria R, O'Brien J, et al. Diagnostic criteria for vascular cognitive disorders : a VASCOG statement. Alzheimer Dis Assoc Disord. 2014 ; 28 : 206-18.
6) Kalaria RN, Ballard C. Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord. 1999 ; 13 Suppl 3 : S115-23.
7) Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997 ; 277 : 813-7.
8) Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016 ; 1862 : 915-25.
9) Rockwood K, Wentzel C, Hachinski V, et al. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology. 2000 ; 54 : 447-51.
10) Hachinski V, Iadecola C, Petersen RC, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006 ; 37 : 2220-41.
12) Yamamoto Y, Ihara M. Disruption of transforming growth factor-β superfamily signaling : A shared mechanism underlying hereditary cerebral small vessel disease. Neurochem Int. 2017 ; 107 : 211-8.
13) Andin U, Gustafson L, Passant U, et al. A clinico-pathological study of heart and brain lesions in vascular dementia. Dement Geriatr Cogn Disord. 2005 ; 19 : 222-8.
14) Meyer JS, Huang J, Chowdhury MH. MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias. J Neurol Sci. 2007 ; 257 : 97-104.
15) Pendlebury ST, Cuthbertson FC, Welch SJ, et al. Underestimation of cognitive impairment by mini-mental state examination versus the montreal cognitive assessment in patients with transient ischemic attack and stroke : a population-based study. Stroke. 2010 ; 41 : 1290-3.
16) Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia : a statement for healthcare professionals from The American Heart Association/American Stroke Association. Stroke. 2011 ; 42 : 2672-713.
17) 認知症疾患診療ガイドライン作成委員会. 認知症疾患診療ガイドライン. 東京 : 医学書院 ; 2017.
18) Pearce LA, McClure LA, Anderson DC, et al. Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke : a secondary analysis from the SPS3 randomised trial. Lancet Neurol. 2014 ; 13 : 1177-85.
19) Kalantarian S, Stern TA, Mansour M, et al. Cognitive impairment associated with atrial fibrillation : a meta-analysis. Ann Intern Med. 2013 ; 158 : 338-46.
20) Friberg L, Rosenqvist M. Less dementia with oral anticoagulation in atrial fibrillation. Eur Heart J. 2018 ; 39 : 453-60.
21) Fotuhi M, Hachinski V, Whitehouse PJ. Changing perspectives regarding late-life dementia. Nat Rev Neurol. 2009 ; 5 : 649-58.
22) Matthews FE, Brayne C, Lowe J, et al. Epidemiological pathology of dementia : attributable-risks at death in the Medical Research Council Cognitive Function and Ageing Study. PLoS Med. 2009 ; 6 : e1000180.
23) Schneider JA, Arvanitakis Z, Bang W, et al. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007 ; 69 : 2197-204.
24) Iturria-Medina Y, Sotero RC, Toussaint PJ, et al. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun. 2016 ; 7 : 11934.
P.82 掲載の参考文献
1) Petridis AK, Kamp MA, Cornelius JF, et al. Aneurysmal Subarachnoid Hemorrhage. Dtsch Arztebl Int. 2017 ; 114 : 226-36.
2) Frontera JA, Ahmed W, Zach V, et al. Acute ischaemia after subarachnoid haemorrhage, relationship with early brain injury and impact on outcome : a prospective quantitative MRI study. J Neurol Neurosurg Psychiatry. 2015 ; 86 : 71-8.
3) Konczalla J, Seifert V, Beck J, et al. Outcome after Hunt and Hess Grade V subarachnoid hemorrhage : a comparison of pre-coiling era (1980-1995) versus post-ISAT era (2005-2014). J Neurosurg. 2018 ; 128 : 100-10.
4) Suzuki H. Inflammation : a good research target to improve outcomes of poor-grade subarachnoid hemorrhage. Transl Stroke Res. 2019 ; 10 : 597-600.
5) Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res. 2019 ; 14 : 1138-43.
6) Peeyush Kumar T, McBride DW, Dash PK, et al. Endothelial cell dysfunction and injury in subarachnoid hemorrhage. Mol Neurobiol. 2019 ; 56 : 1992-2006.
7) de Oliveira Manoel AL, Macdonald RL. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol. 2018 ; 9 : 292.
8) Bell JD, Thomas TC, Lass E, et al. Platelet-mediated changes to neuronal glutamate receptor expression at sites of microthrombosis following experimental subarachnoid hemorrhage. J Neurosurg. 2014 ; 121 : 1424-31.
9) Hayman EG, Wessell A, Gerzanich V, et al. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017 ; 26 : 301-10.
10) 鈴木秀謙, 川北文博, 金丸英樹, 他. 重症くも膜下出血に対する治療. 脳外誌. 2020 ; 29 : 109-15.
11) Geraghty JR, Davis JL, Testai FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage : emerging components of early brain injury related to outcome. Neurocrit Care. 2019 ; 31 : 373-89.
12) Kim JA, Rosenthal ES, Biswal S, et al. Epileptiform abnormalities predict delayed cerebral ischemia in subarachnoid hemorrhage. Clin Neurophysiol. 2017 ; 128 : 1091-9.
13) Helbok R, Kofler M, Schiefecker AJ, et al. Clinical use of cerebral microdialysis in patients with aneurysmal subarachnoid hemorrhage-state of the art. Front Neurol. 2017 ; 8 : 565.
14) 鈴木秀謙, 川北文博, 劉磊, 他. くも膜下出血後の遅発性脳障害 : 現状の整理と今後の治療ターゲット. 脳神経外科. 2015 ; 43 : 869-77.
15) Xiao M, Li Q, Feng H, et al. Neural vascular mechanism for the cerebral blood flow autoregulation after hemorrhagic stroke. Neural Plast. 2017 ; 2017 : 5819514.
16) Suzuki H, Fujimoto M, Kawakita F, et al. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage : Findings from basic and clinical studies. J Neurosci Res. 2020 ; 98 : 42-56.
17) de Oliveira Manoel AL, Jaja BN, Germans MR, et al. The VASOGRADE : a simple grading scale for prediction of delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2015 ; 46 : 1826-31.
18) Woitzik J, Dreier JP, Hecht N, et al. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2012 ; 32 : 203-12.
19) Kawakita F, Kanamaru H, Asada R, et al. Potential roles of matricellular proteins in stroke. Exp Neurol. 2019 ; 322 : 113057.
20) Tanioka S, Ishida F, Nakano F, et al. Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol. 2019 ; 56 : 7128-35.
21) S uzuki H, Kanamaru H, Kawakita F, et al. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol. 2020 Sep 30 ; 18253.
22) Macdonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping : A randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011 ; 10 : 618-25.
23) Boulouis G, Labeyrie MA, Raymond J, et al. Treatment of cerebral vasospasm following aneurysmal subarachnoid haemorrhage : a systematic review and meta-analysis. Eur Radiol. 2017 ; 27 : 3333-42.
24) Suzuki H, Nakatsuka Y, Yasuda R, et al. Dose-dependent inhibitory effects of cilostazol on delayed cerebral infarction after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2019 ; 10 : 381-8.
25) Sugimoto K, Nomura S, Shirao S, et al. Cilostazol decreases duration of spreading depolarization and spreading ischemia after aneurysmal subarachnoid hemorrhage. Ann Neurol. 2018 ; 84 : 873-85.
26) da Costa BBS, Windlin IC, Koterba E, et al. Glibenclamide in aneurysmatic subarachnoid hemorrhage (GASH) : Study protocol for a randomized controlled trial. Trials. 2019 ; 20 : 413.

III. 神経保護療法

P.89 掲載の参考文献
3) Moskowitz MA, Lo EH, Iadecola C. The science of stroke : mechanisms in search of treatments. Neuron. 2010 ; 67 : 181-98.
4) Ginsberg MD, Palesch YY, Hill MD, et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS) Part 2 : a randomised, double-blind, phase 3, placebo-controlled trial. Lancet Neurol. 2013 ; 12 : 1049-58.
6) Sheth KN, Elm JJ, Molyneaux BJ, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP) : a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016 ; 15 : 1160-9.
7) Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION) : a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2017 ; 16 : 217-26.
9) Osanai T, Houkin K, Uchiyama S, et al. Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial : rationale and design. Int J Stroke. 2018 ; 13 : 444-8.
10) Shuaib A, Butcher K, Mohammad AA, et al. Collateral blood vessels in acute ischaemic stroke : a potential therapeutic target. Lancet Neurol. 2011 ; 10 : 909-21.
11) Shuaib A, Bornstein NM, Diener HC, et al. Partial aortic occlusion for cerebral perfusion augmentation : safety and efficacy of NeuroFlo in Acute Ischemic Stroke trial. Stroke. 2011 ; 42 : 1680-90.
12) Bornstein NM, Saver JL, Diener HC, et al. An injectable implant to stimulate the sphenopalatine ganglion for treatment of acute ischaemic stroke up to 24 h from onset (ImpACT-24B) : an international, randomised, double-blind, sham-controlled, pivotal trial. Lancet. 2019 ; 394 : 219-29.
13) Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1) : a multicentre, double-blind, randomised controlled trial. Lancet. 2020 ; 395 : 878-87.
14) Kitagawa K. Ischemic tolerance in the brain : endogenous adaptive machinery against ischemic stress. J Neurosci Res. 2012 ; 90 : 1043-54.
15) Hess DC, Blauenfeldt RA, Andersen G, et al. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat Rev Neurol. 2015 ; 11 : 698-710.
16) Kitagawa K, Saitoh M, Ishizuka K, et al. Remote limb ischemic conditioning during cerebral ischemia reduces infarct size through enhanced collateral circulation in murine focal cerebral ischemia. J Stroke Cerebrovasc Dis. 2018 ; 27 : 831-8.
17) Hougaard KD, Hjort N, Zeidler D, et al. Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke : a randomized trial. Stroke. 2014 ; 45 : 159-67.
18) Pico F, Lapergue B, Ferrigno M, et al. Effect of in-hospital remote ischemic perconditioning on brain infarction growth and clinical outcomes in patients with acute ischemic stroke : The RESCUE BRAIN Randomized Clinical Trial. JAMA Neurol. 2020 ; 77 : 725-34.
19) Li XQ, Tao L, Zhou ZH, et al. Remote ischemic conditioning for acute moderate ischemic stroke (RICAMIS) : Rationale and design. Int J Stroke. 2020 ; 15 : 454-60.
20) Blauenfeldt RA, Hjort N, Gude MF, et al. A multicentre, randomised, sham-controlled trial on REmote iSchemic conditioning In patients with acute STroke (RESIST) -Rationale and study design. Eur Stroke J. 2020 ; 5 : 94-101.
P.99 掲載の参考文献
1) Demopoulos HB, Flamm ES, Pietronigro DD, et al. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl. 1980 ; 492 : 91-119.
2) Siesjo BK. Cell damage in the brain : a speculative synthesis. J Cereb Blood Flow Metab. 1981 ; 1 : 155-85.
3) Abe K, Yuki S, Kogure K. Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke. 1988 ; 19 : 480-5.
4) Edaravone Acute Infarction Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003 ; 15 : 222-9.
6) Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab. 2009 ; 29 : 715-25.
9) Ehrenreich H, Weissenborn K, Prange H, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009 ; 40 : e647-56.
10) Kono S, Deguchi K, Morimoto N, et al. Tissue plasminogen activator thrombolytic therapy for acute ischemic stroke in 4 hospital groups in Japan. J Stroke Cerebrovasc Dis. 2011 ; 22 : 190-6.
11) Kimura K, Aoki J, Sakamoto Y, et al. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients--a preliminary study. J Neurol Sci. 2011 ; 313 : 132-6.
12) Tanahashi N, Yamaguchi T, Awano H, et al. Outcome of acute ischemic stroke after the treatment with edaravone and 0.6 mg/kg alteplase in Japanese patients with diabetes. J Stroke Cerebrovasc Dis. 2018 ; 27 : 1302-10.
13) Enomoto M, Endo A, Yatsushige H, et al. Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke. 2019 ; 50 : 652-8.
14) Ogasawara K, Inoue T, Kobayashi M, et al. Pretreatment with the free radical scavenger edaravone prevents cerebral hyperperfusion after carotid endarterectomy. Neurosurgery. 2004 ; 55 : 1060-7.
15) Sun YY, Li Y, Wali B, et al. Prophylactic edaravone prevents transient hypoxic-ischemic brain injury : implications for perioperative neuroprotection. Stroke. 2015 ; 46 : 1947-55.
16) Aoki M, Ogasawara M, Matsubara Y, et al. Mild ALS in Japan associated with novel SOD mutation. Nat Genet. 1993 ; 5 : 323-4.
17) Miyazaki K, Ohta Y, Nagai M, et al. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res. 2011 ; 89 : 718-28.
18) Ohta Y, Nomura E, Shang J, et al. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res. 2019 ; 97 : 607-19.
19) Edaravone ALSSG. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis : a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017 ; 16 : 505-12.
20) 山下徹, 阿部康二. tPA4.5時間時代の脳保護療法併用の効用. Mebio. 2015 ; 32.
P.113 掲載の参考文献
1) Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem. 2015 ; 22 : 1258-77.
2) Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke. 2018 ; 49 : 1796-802.
3) Solaroglu I, Cahill J, Jadhav V, et al. A novel neuroprotectant granulocyte-colony stimulating factor. Stroke. 2006 ; 37 : 1123-8.
4) Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia : from basic science to clinical applications. J Cereb Blood Flow Metab. 2012 ; 32 : 1317-31.
5) Lee ST, Chu K, Jung KH, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005 ; 1058 : 120-8.
6) Komine-Kobayashi M, Zhang N, Liu M, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006 ; 26 : 402-13.
7) Schabitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003 ; 34 : 745-51.
8) Modi J, Menzie-Suderam J, Xu H, et al. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci. 2020 ; 27 : 19.
9) Sugiyama Y, Yagita Y, Oyama N, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke. 2011 ; 42 : 770-5.
10) Duelsner A, Gatzke N, Glaser J, et al. Granulocyte colony-stimulating factor improves cerebrovascular reserve capacity by enhancing collateral growth in the circle of Willis. Cerebrovasc Dis. 2012 ; 33 : 419-29.
11) Ghahari L, Safari M, Joghataei MT, et al. Effect of combination therapy using hypothermia and granulocyte colony-stimulating factor in a rat transient middle cerebral artery occlusion model. Iran Biomed J. 2014 ; 18 : 239-44.
12) dela Pena IC, Yoo A, Tajiri N, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015 ; 35 : 338-46.
13) Diederich K, Schmidt A, Beuker C, et al. Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats. Front Cell Neurosci. 2014 ; 8 : 411.
14) Shyu WC, Lin SZ, Lee CC, et al. Granulocyte colony-stimulating factor for acute ischemic stroke : a randomized controlled trial. CMAJ. 2006 ; 174 : 927-33.
15) Sprigg N, Bath PM, Zhao L, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke : the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006 ; 37 : 2979-83.
16) Prasad K, Kumar A, Sahu JK, et al. Mobilization of stem cells using G-CSF for acute ischemic stroke : a randomized controlled, pilot study. Stroke Res Treat. 2011 ; 2011 : 283473.
17) Alasheev AM, Belkin AA, Leiderman IN, et al. Granulocyte-colony-stimulating factor for acute ischemic stroke : a randomized controlled trial (STEMTHER). Transl Stroke Res. 2011 ; 2 : 358-65.
18) England TJ, Sprigg N, Alasheev AM, et al. Granulocyte-colony stimulating factor (G-CSF) for stroke : an individual patient data meta-analysis. Sci Rep. 2016 ; 6 : 36567.
19) Schabitz WR, Laage R, Vogt G, et al. AXIS : a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke. 2010 ; 41 : 2545-51.
20) Ringelstein EB, Thijs V, Norrving B, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke : results of the AX200 for Ischemic Stroke trial. Stroke. 2013 ; 44 : 2681-7.
21) Moriya Y, Mizuma A, Uesugi T, et al. Phase I study of intravenous low-dose granulocyte colony-stimulating factor in acute and subacute ischemic stroke. J Stroke Cerebrovasc Dis. 2013 ; 22 : 1088-97.
22) Mizuma A, Yamashita T, Kono S, et al. Phase II trial of intravenous low-dose granulocyte colony-stimulating factor in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2016 ; 25 : 1451-7.
23) Fan ZZ, Cai HB, Ge ZM, et al. The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke. J Stroke Cerebrovasc Dis. 2015 ; 24 : 1701-8.
24) Huang X, Liu Y, Bai S, et al. Granulocyte colony stimulating factor therapy for stroke : a pairwise meta-analysis of randomized controlled trial. PLoS One. 2017 ; 12 : e0175774.
P.126 掲載の参考文献
2) Campbell BC, Mitchell PJ, EXTEND-IA Investigators. Endovascular therapy for ischemic stroke. N Engl J Med. 2015 ; 372 : 2365-6.
5) Saver JL, Goyal M, Diener HC, et al. Stent-retriever thrombectomy for stroke. N Engl J Med. 2015 ; 373 : 1077.
6) Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke : A meta-analysis of individual patient data from five randomised trials. Lancet. 2016 ; 387 : 1723-31.
7) Demopoulos HB, Flamm ES, Pietronigro DD, et al. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl. 1980 ; 492 : 91-119.
8) Siesjo BK. Cell damage in the brain : A speculative synthesis. J Cereb Blood Flow Metab. 1981 ; 1 : 155-85.
9) Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000 ; 17 : 871-90.
11) Ishibashi A, Yoshitake Y, Adachi H. Investigation of effect of edaravone on ischemic stroke. Kurume Med J. 2013 ; 60 : 53-7.
12) Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab. 2009 ; 29 : 715-25.
14) Sydserff SG, Borelli AR, Green AR, et al. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat ; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol. 2002 ; 135 : 103-12.
16) Cheng XR, Zhang L, Hu JJ, et al. Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int. 2007 ; 31 : 438-43.
17) Diener HC, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute stroke : Pooled analysis of the SAINT I and II Trials. Stroke. 2008 ; 39 : 1751-8.
18) Imai T, Iwata S, Miyo D, et al. A novel free radical scavenger, NSP-116, ameliorated the brain injury in both ischemic and hemorrhagic stroke models. J Pharmacol Sci. 2019 ; 141 : 119-26.
19) Izawa H, Shimazawa M, Inoue Y, et al. Protective effects of NSP-116, a novel imidazolyl aniline derivative, against light-induced retinal damage in vitro and in vivo. Free Radic Biol Med. 2016 ; 96 : 304-12.
20) Takagi T, Kitashoji A, Iwawaki T, et al. Temporal activation of Nrf2 in the penumbra and Nrf2 activator-mediated neuroprotection in ischemia-reperfusion injury. Free Radic Biol Med. 2014 ; 72 : 124-33.
21) Imai T, Takagi T, Kitashoji A, et al. Nrf2 activator ameliorates hemorrhagic transformation in focal cerebral ischemia under warfarin anticoagulation. Neurobiol Dis. 2016 ; 89 : 136-46.
22) Yamauchi K, Nakano Y, Imai T, et al. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice. Neuroscience. 2016 ; 333 : 302-10.
24) Sugiyama T, Imai T, Nakamura S, et al. A novel Nrf2 activator, RS9, attenuates secondary brain injury after intracerebral hemorrhage in sub-acute phase. Brain Res. 2018 ; 1701 : 137-45.
25) Zolnourian A, Galea I, Bulters D. Neuroprotective role of the Nrf2 pathway in subarachnoid haemorrhage and its therapeutic potential. Oxid Med Cell Longev. 2019 ; 2019 : 6218239.
26) Daubert MA, Yow E, Dunn G, et al. Novel mitochondria-targeting peptide in heart failure treatment : A randomized, placebo-controlled trial of elamipretide. Circ Heart Fail. 2017 ; 10 : e004389.
27) Kim EH, Tolhurst AT, Szeto HH, et al. Targeting CD36-mediated inflammation reduces acute brain injury in transient, but not permanent, ischemic stroke. CNS Neurosci Ther. 2015 ; 21 : 385-91.
28) Imai T, Mishiro K, Takagi T, et al. Protective effect of bendavia (SS-31) against oxygen/glucose-deprivation stress-induced mitochondrial damage in human brain microvascular endothelial cells. Curr Neurovasc Res. 2017 ; 14 : 53-9.
29) Takizawa S, Izuhara Y, Kitao Y, et al. A novel inhibitor of advanced glycation and endoplasmic reticulum stress reduces infarct volume in rat focal cerebral ischemia. Brain Res. 2007 ; 1183 : 124-37.
30) Yang D, Lin M, Wang S, et al. Primary angioplasty and stenting may be superior to thrombectomy for acute atherosclerotic large-artery occlusion. Interv Neuroradiol. 2018 ; 24 : 412-20.
31) Zhong H, Song R, Pang Q, et al. Propofol inhibits parthanatos via ros-er-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018 ; 9 : 932.
32) Xiaohong W, Jun Z, Hongmei G, et al. Cflar is a critical regulator of cerebral ischaemia-reperfusion injury through regulating inflammation and endoplasmic reticulum (ER) stress. Biomed Pharmacother. 2019 ; 117 : 109155.
33) Nakka VP, Gusain A, Raghubir R. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res. 2010 ; 17 : 189-202.
34) Lin YW, Chen TY, Hung CY, et al. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int J Mol Med. 2018 ; 42 : 182-92.
35) Takashima N, Arima H, Kita Y, et al. Incidence, management and short-term outcome of stroke in a general population of 1.4 million Japanese- shiga stroke registry. Circ J. 2017 ; 81 : 1636-46.
P.141 掲載の参考文献
1) Chamorro A, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke : targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016 ; 15 : 869-81.
2) Iadecola C, Anrather J. The immunology of stroke : from mechanisms to translation. Nat Med. 2011 ; 17 : 796-808.
3) Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral inerleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. Nat Med. 2009 ; 15 : 946-50.
4) Liesz A, Suri-Payer E, Veltkamp C, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009 ; 15 : 192-9.
5) Shchita T, Ito M, Morita R, et al. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat Med. 2017 ; 23 : 723-32.
6) Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016 : 22 : 516-23.
7) Singh V, Roth S, Llovera G, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci. 2016 ; 36 : 7428-40.
8) Kurita N, Yamashiro K, Kuroki T, et al. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J Cereb Blood Flow Metab. 2020 ; 40 : 2505-20.
9) Bauer RB, Tellez H. Dexamethasone as treatment in cerebrovascular disease. 2. A controlled study in acute cerebral infarction. Stroke. 1973 : 4 : 547-55.
10) Nighoghossian N, Berthezene Y, Mechtouff L, et al. Cyclosporine in acute ischemic stroke. Neurology. 2015 ; 84 : 2216-23.
11) Naderi Y, Panahi Y, Barreto GE, et al. Neuroprotective effects of minocycline on focal cerebral ischemia injury : a systematic review. Neural Regen Res. 2020 ; 15 : 773-82.
12) Malhotra K, Chang JJ, Khunger A, et al. Minocycline for acute stroke treatment : a systematic review and meta-analysis of randomized clinical trials. J Neurol. 2018 ; 265 : 1871-9.
13) Hasegawa Y, Suzuki H, Sozen T, et al. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010 ; 41 : 368-74.
14) Liu J, Zhang C, Tao W, et al. Systematic review and meta-analysis of the efficacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 (fingolimod) in animal models of stroke. Int J Neurosci. 2013 ; 123 : 163-9.
15) Zhu Z, Fu Y, Tian D, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke : a pilot trial. Circulation. 2015 ; 132 : 1104-12.
16) Llovera G, Hofmann K, Roth S, et al. Results of a preclinical randomized controlled multicenter trial (pRCT) : Anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 2015 ; 7 : 299ra121.
17) Elkins J, Veltkamp R, Montaner J, et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION) : a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2017 ; 16 : 217-26.
18) Tatlisumak T. Can natalizumab be beneficial in acute ischaemic stroke? Lancet Neurol. 2017 ; 16 : 176-7.
19) McCann SK, Cramond F, Macleod MR, et al. Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke : an update. Transl Stroke Res. 2016 ; 7 : 395-406.
20) Emsley HC, Smith CJ, Georgiou RF, et al ; Acute Stroke Investigators. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry. 2005 ; 76 : 1366-72.
21) Galea J, Ogungbenro K, Hulme S, et al. Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid haemorrhage : results of the Subcutaneous Interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg. 2017 ; 24 : 1-9.
22) Smith CJ, Hulme S, Vail A, et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) : a randomized controlled phase 2 trial. Stroke. 2018 ; 49 : 1210-6.
P.154 掲載の参考文献
1) van der Worp HB, Sena ES, Donnan GA, et al. Hypothermia in animal models of acute ischaemic stroke : a systematic review and meta-analysis. Brain. 2007 ; 130 : 3063-74.
2) Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci. 2012 ; 13 : 267-78.
3) Kurisu K, Yenari MA. Therapeutic hypothermia for ischemic stroke ; pathophysiology and future promise. Neuropharmacology. 2018 ; 134 : 302-9.
4) Maier CM, Ahern KV, Cheng ML, et al. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia : effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke. 1998 ; 29 : 2171-80.
5) Zhao H, Wang JQ, Shimohata T, et al. Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion. J Neurosurg. 2007 ; 107 : 636-41.
6) Lee SM, Zhao H, Maier CM, et al. The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. J Cereb Blood Flow Metab. 2009 ; 29 : 1589-600.
7) Kurisu K, Abumiya T, Nakamura H, et al. Transarterial regional brain hypothermia inhibits acute aquaporin-4 surge and sequential microvascular events in ischemia/reperfusion injury. Neurosurgery. 2016 ; 79 : 125-34.
8) Diestel A, Roessler J, Berger F, et al. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells. Cryobiology. 2008 ; 57 : 216-22.
9) Park YH, Lee YM, Kim DS, et al. Hypothermia enhances induction of protective protein metallothionein under ischemia. J Neuroinflammation. 2013 ; 10 : 21.
10) Awad EM, Khan SY, Sokolikova B, et al. Cold induces reactive oxygen species production and activation of the NF-kappa B response in endothelial cells and inflammation in vivo. J Thromb Haemost. 2013 ; 11 : 1716-26.
11) Kurisu K, Abumiya T, Ito M, et al. Transarterial regional hypothermia provides robust neuroprotection in a rat model of permanent middle cerebral artery occlusion with transient collateral hypoperfusion. Brain Res. 2016 ; 1651 : 95-103.
12) Su Y, Fan L, Zhang Y, et al. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. Stroke. 2016 ; 47 : 457-63.
13) Hemmen TM, Raman R, Guluma KZ, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L) : final results. Stroke. 2010 ; 41 : 2265-70.
14) Lyden P, Hemmen T, Grotta J, et al. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). Stroke. 2016 ; 47 : 2888-95.
15) van der Worp HB, Macleod MR, Bath PM, et al. Therapeutic hypothermia for acute ischaemic stroke. Results of a European multicentre, randomised, phase III clinical trial. Eur Stroke J. 2019 ; 4 : 254-62.
16) Neugebauer H, Schneider H, Bosel J, et al. Outcomes of hypothermia in addition to decompressive hemicraniectomy in treatment of malignant middle cerebral artery stroke : a randomized clinical trial. JAMA Neurol. 2019 ; 76 : 571-9.
17) Hong JM, Lee JS, Song HJ, et al. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. Stroke. 2014 ; 45 : 134-40.
18) Choi JH, Marshall RS, Neimark MA, et al. Selective brain cooling with endovascular intracarotid infusion of cold saline : a pilot feasibility study. AJNR Am J Neuroradiol. 2010 ; 31 : 928-34.
19) Chen J, Liu L, Zhang H, et al. Endovascular hypothermia in acute ischemic stroke : Pilot study of selective Intra-arterial cold saline infusion. Stroke. 2016 ; 47 : 1933-5.
20) Wu C, Zhao W, An H, et al. Safety, feasibility, and potential efficacy of intraarterial selective cooling infusion for stroke patients treated with mechanical thrombectomy. J Cereb Blood Flow Metab. 2018 ; 38 : 2251-60.
21) Peng X, Wan Y, Liu W, et al. Protective roles of intra-arterial mild hypothermia and arterial thrombolysis in acute cerebral infarction. Springerplus. 2016 ; 5 : 1988.
P.164 掲載の参考文献
1) Kanazawa M, Takahashi T, Nishizawa M, et al. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 2017 ; 24 : 240-53.
2) 下畑享良, 西澤正豊. tPA療法後の脳出血合併症防止を目指した治療戦略. 脳循環代謝. 2012 ; 23 : 166-74.
3) Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000 ; 2 : 737-44.
4) Gamble JR, Drew J, Trezise L, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res. 2000 ; 87 : 603-7.
5) Okubo S, Igarashi H, Kanamatsu T, et al. FK-506 extended the therapeutic time window for thrombolysis without increasing the risk of hemorrhagic transformation in an embolic rat stroke model. Brain Res. 2007 ; 1143 : 221-7.
6) Kanazawa M, Igarashi H, Kawamura K, et al. Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. J Cereb Blood Flow Metab. 2011 ; 31 : 1461-74.
7) Kawamura K, Takahashi T, Kanazawa M, et al. Effects of angiopoietin-1 on hemorrhagic transformation and cerebral edema after tissue plasminogen activator treatment for ischemic stroke in rats. PLoS One. 2014 ; 9 : e98639.
8) Jickling GC, Liu D, Stamova B, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014 ; 34 : 185-99.
9) Howells DW, Sena ES, Macleod MR. Bringing rigour to translational medicine. Nat Rev Neurol. 2014 ; 10 : 37-43.
10) Animal Models 2.0 : co-morbid conditions, optogenetics and other new directions. Internatonal stroke conference 2014. Pre-conference symposium II.
11) Carlson CR, Wilmot WW. It's as simple as NABC : how Liz got her job. In : Innovation : The five disciplines for creating what customers want. Crown Business ; 2006. p.85-100.

IV. 神経再生療法

P.186 掲載の参考文献
1) Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Natl Acad Sci U S A. 1998 ; 95 : 3908-13.
2) Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017 ; 9 : eaam7828.
3) Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008 ; 8 : 1193-201.
5) Osanai T, Houkin K, Uchiyama S, et al. Treatment evaluation of acute stroke for using in regenerative cell elements (TREASURE) trial : rationale and design. Int J Stroke. 2018 ; 13 : 444-8.
6) Prasad K, Mohanty S, Bhatia R, et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke : a pilot study. Indian J Med Res. 2012 ; 136 : 221-8.
8) Jaillard A, Hommel M, Moisan A, et al. Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke : a randomized clinical trial. Transl Stroke Res. 2020 ; 11 : 910-23.
9) Rosado-de-Castro PH, Schmidt Fda R, Battistella V, et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013 ; 8 : 145-55.
10) Bhatia V, Gupta V, Khurana D, et al. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke. AJNR Am J Neuroradiol. 2018 ; 39 : 899-904.
11) Savitz SI, Yavagal D, Rappard G, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-Stroke). Circulation. 2019 ; 139 : 192-205.
12) Ghali AA, Yousef MK, Ragab OA, et al. Intra-arterial infusion of autologous bone marrow mononuclear stem cells in subacute ischemic stroke patients. Front Neurol. 2016 ; 7 : 228.
13) Shichinohe H, Kawabori M, Iijima H, et al. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW) : a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol. 2017 ; 17 : 179.
14) Chen DC, Lin SZ, Fan JR, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients : a randomized phase II study. Cell Transplant. 2014 ; 23 : 1599-612.
15) Rabinovich SS, Seledtsov VI, Banul NV, et al. Cell therapy of brain stroke. Bull Exp Biol Med. 2005 ; 139 : 126-8.
P.203 掲載の参考文献
1) Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005 ; 80 : 836-42.
2) Nosrat IV, Smith CA, Mullally P, et al. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro ; implications for tissue engineering and repair in the nervous system. Eur J Neurosci. 2004 ; 19 : 2388-98.
3) Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000 ; 97 : 13625-30.
4) Rajendran R, Gopal S, Masood H, et al. Regenerative potential of dental pulp mesenchymal stem cells harvested from high caries patient's teeth. J Stem Cells. 2013 ; 8 : 25-41.
5) Ponnaiyan D, Jegadeesan V. Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. Eur J Dent. 2014 ; 8 : 307-13.
6) Inoue T, Sugiyama M, Hattori H, et al. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A. 2013 ; 19 : 24-9.
7) Leong WK, Lewis MD, Koblar SA, et al. Concise review : preclinical studies on human cell-based therapy in rodent ischemic stroke models : where are we now after a decade? Stem Cells. 2013 ; 31 : 1040-3.
8) Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012 ; 122 : 80-90.
9) Leong WK, Henshall TL, Arthur A, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012 ; 1 : 177-87.
10) Song M, Lee JH, Bae J, et al. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in Cerebral Ischemic Injury. Cell Transplant. 2017 ; 26 : 1001-16.
11) Kumasaka A, Kanazawa K, Ohke H, et al. Post-ischemic intravenous administration of allogeneic dental pulp-derived neurosphere cells ameliorated outcomes of severe forebrain ischemia in rats. Neurocritical Care. 2017 ; 26 : 133-42.
12) Nito C, Sowa K, Nalkajima M, et al. Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomed Pharmacother. 2018 ; 108 : 1005-14.
13) Sowa K, Nito C, Nakajima M, et al. Impact of dental pulp stem cells overexpressing hepatocyte growth factor after cerebral ischemia/reperfusion in rats. Mol Ther Methods Clin Dev. 2018 ; 10 : 281-90.
14) Zhang X, Zhou Y, Li H, et al. Transplanted dental pulp stem cells migrate to injured area and express neural markers in a rat model of cerebral ischemia. Cell Physiol Biochem. 2018 ; 45 : 258-66.
15) Zhang X, Zhou Y, Li H, et al. Intravenous administration of DPSCs and BDNF improves neurological performance in rats with focal cerebral ischemia. Int J Mol Med. 2018 ; 41 : 3185-94.
16) Jin K, Sun Y, Xie L, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis. 2005 ; 18 : 366-74.
17) Walczak P, Zhang J, Gilad AA, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008 ; 39 : 1569-74.
18) Ge J, Guo L, Wang S, et al. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Rev. 2014 ; 10 : 295-303.
19) Savitz SI. Developing cellular therapies for stroke. Stroke. 2015 ; 46 : 2026-31.
20) Kalladka D, Muir KW. Stem cell therapy in stroke : designing clinical trials. Neurochem Int. 2011 ; 59 : 367-70.
21) Ribeiro TB, Duarte AS, Longhini AL, et al. Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion. Sci Rep. 2015 ; 5 : 16167.
22) Lee JA, Kim BI, Jo CH, et al. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res. 2010 ; 67 : 42-6.
23) Martire A, Bedada FB, Uchida S, et al. Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res Cardiol. 2016 ; 111 : 54.
24) Shichita T, Ago T, Kamouchi M, et al. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem. 2012 ; 123 (Suppl 2) : 29-38.
25) Ajmo CT Jr, Vernon DO, Collier L, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008 ; 86 : 2227-34.
26) Nosrat IV, Widenfalk J, Olson L, et al. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001 ; 238 : 120-32.
27) Matsushita K, Motani R, Sakuta T, et al. The role of vascular endothelial growth factor in human dental pulp cells : induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res. 2000 ; 79 : 1596-603.
28) Liu X, Ye R, Yan T, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014 ; 115 : 92-115.
29) Liesz A, Bauer A, Hoheisel JD, et al. Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation : an experimental microarray study. Neurosci Lett 2014 ; 579 : 18-23.
30) Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000 ; 106 : 829-38.
31) Kiraly M, Kadar K, Horvathy DB, et al. Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int. 2011 ; 59 : 371-81.

最近チェックした商品履歴

Loading...