Rad Fan 19/6 2021年6月号

出版社: メディカルアイ
発行日: 2021-05-25
分野: 医療技術  >  雑誌
ISSN: 13483498
雑誌名:
特集: 1.核医学画像解析法の新展開 2.JRC2021 HYBRID REPORT
電子書籍版: 2021-05-25
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,547 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,782 円(税込)

目次

  • 特集1 核医学画像解析法の新展開:
        テクスチャ―解析、フラクタル解析、機械学習、深層学習
    特集2 JRC2021 HYBRID REPORT
        ~ミライの学会の在り方がわかる~

    特集1 核医学画像解析法の新展開:
        テクスチャ―解析、フラクタル解析、機械学習、深層学習
     123I-MIBGの心縦隔比の標準化:15年間の取組みと今後の展開
     Wolfram言語/Mathematica?による画像処理・解析
     深層学習による核医学画像再構成について
     フラクタル解析による脳線条体SPECTの診断
     機械学習と核医学画像
     cardioREPOを用いた心臓核医学コンピューター支援診断
     心疾患をテクスチャ解析で評価する試み
     骨転移定量BSI指標の最新動向

    特集2 JRC2021 HYBRID REPORT
        ~ミライの学会の在り方がわかる~


    Rad View これで心臓も安心!SOMATOM go.TOPによる低侵襲な心臓CT検査

    連載 MY BOOK MARK~本当に使いやすい製品がこの中に~

    File No.20 相川良人(山梨大学医学部附属病院放射線部

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

P.3 掲載の参考文献
1) Sakane H et al : Biological effects of low-dose chest CT on chromosomal DNA. Radiology 295 (2) : 439-45, 2020
2) H Park et al : Relationship between lower dose and injection speed of iodinated contrast material for CT and acute hypersensitivity reactions : An observational study. Radiology 293 (3) : 565-572, 2019
3) white paper-Agatston calcium quantification with arbitrary tube voltage. Available via : https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000006813006/c1245cb49101/siemens-healthineers-ct-agatston-scorewhite-paper_1800000006813006.pdf
4) T Stocker et al : Application of Low Tube Potentials in CCTA : Results From the PROTECTION VI Study. JACC : CARDIOVASCULAR IMAGING 13 (2) : 425-34, 2020

【特集1 核医学画像解析法の新展開 : テクスチャー解析、フラクタル解析、機械学習、深層学習】

P.27 掲載の参考文献
1) Okuda K et al : Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol 18 (1) : 82-9, 2011
2) Nakajima K et al : Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol 14 (6) : 843-51, 2007
3) Nakajima K et al : Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom : effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging 39 (1) : 113-9, 2012
4) Nakajima K et al : Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-tomediastinum ratios to overcome cameracollimator variations. J Nucl Cardiol 21 (5) : 970-8, 2014
5) Nakajima K et al : Standardization of 123I-meta-iodobenzylguanidine myocardial sympathetic activity imaging : phantom calibration and clinical applications. Clinical and translational imaging 5 (3) : 255-63, 2017
6) Verschure DO et al : A European myocardial 123I-mIBG cross-calibration phantom study. J Nucl Cardiol 25 (4) : 1191-1197, 2018
7) Okuda K et al : Calibrated scintigraphic imaging procedures improve quantitative assessment of the cardiac sympathetic nerve activity. Sci Rep 10 (1) : 21834, 2020
8) Ljungberg M et al : A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed 29 (4) : 257-72, 1989
P.31 掲載の参考文献
1) https://reference.wolfram.com/language/guide/ImageProcessing.html
2) https://www.wolfram.com/language/12/image-computation-for-microscopy/index.html
3) Nakajima K et al : Machine learning-based risk model using 123I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure. J. Nucl. Cardiol. doi : 10.1007/s12350-020-02173-6, 2020
4) 中嶋憲一 : フーリエ変換と位相の考え方, 日本心臓核医学会誌 Vol. 15-1, 6 (2013)
5) Nakajima K et al : Demystifying dyssynchrony for diagnosis and prognosis : Tips for measuring heterogeneous phase distribution, J. Nucl. Cardiol doi : 10.1007/s12350-019-01855-0, 2019
6) https://www.wolfram.com/language/, https://www.wolfram.com/language/new-in-12/
P.35 掲載の参考文献
1) Kenichi Nakajima et al : Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system : a Japanese multi-center database project.
2) Kikuchi A et al : Automated segmentation of the skeleton in whole-body bone scans : influence of difference in atlas. Nucl Med Commun 33 : 947-953, 2012
3) Horikoshi H et al : Computer-aided diagnosis system for bone scintigrams from Japanese patients : importance of training database. Ann Nucl Med 26 : 622-626, 2012
4) Kenichi Nakajima et al : Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging. Circ J 79 : 1549-1556, 2015
5) Zhu B et al : "Image reconstruction by domain- transform manifold learning," Nature, 555 : 487-495, 2018
6) Yang G et al : "DAGAN : deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction," IEEE Trans. Med. 37 (6) : 1310-1321, 2018
7) Wenyi Shao et al : A Learned Reconstruction Network for SPECT Imaging. IEEE Trans Radiat Plasma Med Sci. 5 (1) : 26-34, 2021
8) Hui Liu et al : Chi Liu Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET, Physics in Medicine&Biology.65 (18) : 1361-6560, 2020
9) Quan TM et al : "Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss," IEEE Trans. Med. Imag37 (6) : 1488-1497, 2018
10) Han Y et al : "Framing U-net via deep convolutional framelets : application to sparse-view CT," IEEE Trans. Med. Imag 37 (6) : 1418-1429, 2018
11) Chen H, et al : "LEARN : learned experts' assessment-based reconstruction network for sparse- data CT," IEEE Trans. Med. Imag 37 (6) : 1333-1347, 2018
12) Gupta H et al : "CNN-based projected gradient descent for consistent CT image reconstruction," IEEE Trans. Med. Imag 37 (6) : 1440-1453, 2018
13) Hwang D et al : "Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning," J. Nucl. Med, 59 (10) : 1624-1629, 2018.
14) Qingsong Yang et al : Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss. IEEE Trans Med Imaging 37 (6) : 1348-1357, 2018
15) Jun-Yan Zhu et al : Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Berkeley AI Research (BAIR) laboratory, UC Berkele, 2017
16) 奥田光一 ほか : Image Jを使用した核医学シミュレーション実験 日本放射線技術学会 75巻10号, 1205-1210, 2019
P.39 掲載の参考文献
1) Iwabuchi Y et al : Quantitative evaluation of the tracer distribution in dopamine transporter SPECT for objective interpretation. Ann Nucl Med 32 : 363-371, 2018
2) Tossici-Bolt L et al : Quantification of [123I] FP-CIT SPECT brain images : an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 33 : 1491-1499, 2006
3) Iwabuchi Y et al : Impact of a combination of quantitative indices representing uptake intensity, shape, and asymmetry in DAT SPECT using machine learn-ing : comparison of different volume of interest settings. EJNMMI doi : 10.1186/s13550-019-0477-x, 2019
4) Iwabuchi Y et al : Impact of the cerebrospinal fluid-mask algorithm on the diag- nostic performance of 123I-Ioflupane SPECT : an investigation of parkinsonian syndromes. EJNMMI Research, doi : 10.1186/s13550-019-0558-x, 2019
5) 亀山征史 : Deep learningによる脳核医学. Rad Fan 17 : 58-61, 2019
6) Iwabuchi Y et al : A diagnostic strategy for parkinsonian syndromes using quantitative indices of dat spect and mibg scintigraphy : an investigation using the classification and regression tree analysis. Eur J Nucl Med Mol Imaging doi : 10.1007/s00259-020-05168-0, 2021
7) Nagao M et al : Quantitative analysis of technegas SPECT : evaluation of regional severity of emphysema. J Nucl Med 41 : 590-595, 2021
8) Nagao M et al : Fractal analysis of cerebral blood flow distribution in Alzheimer's disease. J Nucl Med 42 : 1446-1450, 2001
P.43 掲載の参考文献
1) Nakajima K et al : Creation of mortality risk charts using 123I meta-iodobenzylguanidine heart-to-mediastinum ratio in patients with heart failure : 2- and 5-year risk models. Eur Heart J Cardiovasc Imaging. 17 : 1138-45, 2016
2) Nakajima K et al : Machine learning-based risk model using 123I- metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failureJ Nucl Cardiol, 2020 (Epub ahead of print, doi : 10.1007/s12350-020-02173-6)
3) Nakajima K et al : Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images : a Japanese multicenter study. Eur J Nucl Med Mol Imaging. 44 : 2280-2289, 2017
4) Nakajima K et al : Bone scan index : a new biomarker for bone metastasis in patients with prostate cancer. Int J Urol. 24 (9) : 668-673, 2017
5) Nakajima K et al : Creation of machine learning based classifiers for interpretation of I-123 Ioflupane images. (Abstract) Annual Meeting of Society of Nuclear Medicine, 2021
P.47 掲載の参考文献
1) Kohli M et al : Implementing Machine Learning in Radiology Practice and Research. AJR Am J Roentgenol. 208 (4) : 754-760. doi : 10.2214/ajr.16.17224, 2017
2) Shiraishi J et al : Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 41 (6) : 449-62. doi : 10.1053/j.semnuclmed.2011.06.004, 2011
3) Fujita H et al : Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull's-eye images. J Nucl Med. 33 (2) : 272-6, 1992
4) Germano G et al : Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 36 (11) : 2138-47, 1995
5) Chiba A et al : Usefulness of an artificial neural network for a beginner to achieve similar interpretations to an expert when examining myocardial perfusion images. Int J Cardiovasc Imaging. doi : 10.1007/s10554-021-02209-z, 2021
6) Tagil K et al : Use of neural networks to improve quality control of interpretations in myocardial perfusion imaging. Int J Cardiovasc Imaging. 24 (8) : 841-8. doi : 10.1007/s10554-008-9329-x, 2008
7) Petretta M et al : Assessment of asynchrony by gated myocardial perfusion imaging improves patient management : Pro. J Nucl Cardiol. 25 (2) : 532-535. doi : 10.1007/s12350-017-1021-x, 2018
8) Pazhenkottil AP et al : Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart. 97 (1) : 33-7. doi : 10.1136/hrt.2010.201566, 2011
9) Hida S et al : Diagnostic Value of Left Ventricular Dyssynchrony After Exercise and at Rest in the Detection of Multivessel Coronary Artery Disease on Single-Photon Emission Computed Tomography. Circulation Journal. 76 (8) : 1942-1952. doi : 10.1253/circj.CJ-11-1392, 2012
10) Igarashi Y et al : Usefulness of Phase Analysis to Differentiate Ischemic and Non-Ischemic Etiologies of Left Ventricular Systolic Dysfunction in Patients With Heart Failure. Circulation Journal. 141-150. doi : 10.1253/circj.CJ-13-0137, 2014
11) Myssayev A et al : Can Stress-induced Phase Change be Observed on 99mTc Pharmacological Stress Myocardial Perfusion Imaging? Annals of Nuclear Cardiology. 4 (1) : 34-41. doi : 10.17996/anc.18-00072, 2018
12) Tanaka HC et al : Diagnostic Value of Vasodilator-Induced Left Ventricular Dyssynchrony as Assessed by Phase Analysis to Detect Multivessel Coronary Artery Disease. Original. Annals of Nuclear Cardiology. 1 (1) : 6-17, 2015
P.51 掲載の参考文献
1) Orlhac F et al : Tumor texture analysis in 18F-FDG PET : relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 55 (3) : 414-22, 2014
2) Koiwa H et al : Images in cardiovascular medicine : Imaging of cardiac sarcoid lesions using fasting cardiac 18F-fluorodeoxyglucose positron emission tomography : an autopsy case. Circulation 122 (5) : 535-6, 2010
3) Tahara N et al : Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovascular imaging. 3 (12) : 1219-28, 2010
4) Sperry BW et al : Prognostic Impact of Extent, Severity, and Heterogeneity of Abnormalities on 18F-FDG PET Scans for Suspected Cardiac Sarcoidosis. JACC Cardiovascular imaging. 11 (2 Pt 2) : 336-45, 2018
5) Collins SM et al : Quantitative echocardiographic image texture : normal contractionrelated variability. IEEE transactions on medical imaging. 4 (4) : 185-92, 1985
6) Histace A et al : Segmentation of myocardial boundaries in tagged cardiac MRI using active contours : a gradient-based approach integrating texture analysis. International journal of biomedical imaging. 2009 : 983794, 2009
7) Larroza A et al : Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. European journal of radiology. 92 : 78-83, 2017
8) Baessler B et al : Subacute and Chronic Left Ventricular Myocardial Scar : Accuracy of Texture Analysis on Nonenhanced Cine MR Images. Radiology. 286 (1) : 103-12, 2018
9) Gibbs T et al : Quantitative assessment of myocardial scar heterogeneity using cardiovascular magnetic resonance texture analysis to risk stratify patients post-myocardial infarction. Clinical radiology. 73 (12) : 1059.e17-e26, 2018
10) Amano Y : Relationship between Extension or Texture Features of Late Gadolinium Enhancement and Ventricular Tachyarrhythmias in Hypertrophic Cardiomyopathy. BioMed research international. 2018 : 4092469, 2018
11) Baessler B et al : Cardiac MRI Texture Analysis of T1 and T2 Maps in Patients with Infarctlike Acute Myocarditis. Radiology. 289 (2) : 357-65, 2018
12) Baessler B et al : Cardiac MRI and Texture Analysis of Myocardial T1 and T2 Maps in Myocarditis with Acute versus Chronic Symptoms of Heart Failure. Radiology. 292 (3) : 608-17, 2019
13) Hinzpeter R et al : Texture analysis of acute myocardial infarction with CT : First experience study. PloS one. 12 (11) : e0186876, 2017
14) Mannil M et al : Texture analysis of myocardial infarction in CT : Comparison with visual analysis and impact of iterative reconstruction. European journal of radiology. 113 : 245-50, 2019
15) Manabe O et al : Use of 18F-FDG PET/CT texture analysis to diagnose cardiac sarcoidosis. European journal of nuclear medicine and molecular imaging. 46 (6) : 1240-7, 2019
16) Tsuneta S et al : Texture analysis of delayed contrast-enhanced computed tomography to diagnose cardiac sarcoidosis. Japanese journal of radiology. 2021
17) Gould J et al : Mean entropy predicts implantable cardioverter-defibrillator therapy using cardiac magnetic resonance texture analysis of scar heterogeneity. Heart rhythm. 16 (8) : 1242-50, 2019
18) Gould J et al : High mean entropy calculated from cardiac MRI texture analysis is associated with antitachycardia pacing failure. Pacing and clinical electrophysiology. 43 (7) : 737-45, 2020
19) Cheng S et al : LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction : preliminary results. European radiology. 28 (11) : 4615-24, 2018
20) Matsuda H : [Neuroimaging for patients with Alzheimer disease in routine practice]. Brain and nerve = Shinkei kenkyu no shinpo. 62 (7) : 743-55, 2010
21) Orlhac F et al : A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 59 (8) : 1321-8, 2018
P.55 掲載の参考文献
1) Erdi YE et al : Quantitative bone metastases analysis based on image segmentation.J Nucl Med 38 : 1401-1406, 1997
2) Imbriaco M et al : A new parameter for measuring metastatic bone involvement by prostate cancer : the Bone Scan Index. Clin Cancer Res 4 : 1765-1772, 1998
3) Dennis ER et al : Bone scan index : a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 30 : 519-524, 2012
4) Shimizu A et al : Automated measurement of bone scan index from a whole-body bone scintigram.Int J Comput Assist Radiol Surg 15 (3) : 389-400, 2020
5) Aoki Y et al : The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer.Ann Nucl Med 34 : 926-931, 2020
6) Horikoshi H et al : Computer-aided diagnosis system for bone scintigrams from Japanese patients : importance of training database. Ann Nucl Med 26 : 622-626, 2012
7) Nakajima K et al : Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system : a Japanese multi-center database project EJNMMI Research 3 (83) : 1-9, 2013
8) Takahashi Y et al : Assessment of bone scans in advanced prostate carcinoma using fully automated and semi-automated bone scan index methods.Ann Nucl Med. 26 : 586-93, 2012
9) Miyoshi Y et al : Prognostic value of automated bone scan index in men with metastatic castration-resistant prostate cancer treated with enzalutamide or abiraterone acetate.Clin Genitourin Cancer. 15 (4) : 472-478, 2017

【ITEM in JRC 2021】

P.73 掲載の参考文献
1) 越野沙織 : RSNA 2018 新年の抱負from USA.Rad Fan 17 (2) : 26-27, 2019
2) 越野沙織 : 脳動脈瘤の診断をAIがサポート EIRL aneurysm. Rad Fan 19 (2) : 81-83, 2021

最近チェックした商品履歴

Loading...