エビデンスに基づく 皮膚科新薬の治療指針

出版社: 中山書店
著者:
発行日: 2021-06-30
分野: 臨床医学:内科  >  皮膚科
ISBN: 9784521749174
電子書籍版: 2021-06-30 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

9,680 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

9,680 円(税込)

商品紹介

皮膚科領域でこの数年間に上市された新薬の上手な使い方,あるいは今後上市が確実な新薬の情報を伝授する単行本。
疾患別に取り上げる新薬は「どんな薬か」「どこが新しいのか」「対象はどんな患者さんか」をはっきり示し,薬の臨床データのエビデンスや問題点もきっちり記載している。
臨床に役立つのはもちろん,皮膚科疾患における新薬の動向と今後の展望も情報として得られる。

目次

  • 1章 アトピー性皮膚炎
     1.アトピー性皮膚炎 新薬の動向
     2.生物学的製剤
     3.ヤヌスキナーゼ(JAK)阻害薬:外用薬
     4.開発中新薬① ヤヌスキナーゼ(JAK)阻害薬:内服薬
     5.開発中新薬② モノクローナル抗体製剤
     
    2章 乾癬
     1.乾癬治療 新薬の動向
     2.生物学的製剤の使い分け
     3.PDE4阻害薬
     4.モノクローナル抗体製剤(膿疱性乾癬,掌蹠膿疱症)
     5.顆粒球単球吸着除去療法(膿疱性乾癬,乾癬性関節炎)

    3章 悪性黒色腫
     1.悪性黒色腫治療-新薬の動向
     2.免疫チェックポイント阻害薬
     3.BRAF阻害薬,MEK阻害薬

    4章 ヘルペス
     1.帯状疱疹ワクチン
     2.再発性単純疱疹のpatient initiated therapy(PIT)
     3.抗ヘルペスウイルス薬
     4.水痘・帯状疱疹ウイルス抗原キット

    5章 爪白癬
     1.爪白癬治療-新薬の動向
     2.経口抗真菌薬

    6章 蕁麻疹
     1.抗IgEモノクローナル抗体製剤
     2.抗ヒスタミン薬

    7章 その他の疾患
     1.血管肉腫
     2.乳児血管腫
     3.結節性硬化症
     4.表皮水疱症
     5.ピレスロイド抵抗性アタマジラミ
     6.化膿性汗腺炎
     7.Behçet病
     8.強皮症
     9.皮膚リンパ腫
     10.エリテマトーデス
     11.男性型脱毛症

    8章 今後の新薬への期待
     1.重症痤瘡
     2.酒皶

    9章 unmet needsのある皮膚疾患治療薬の開発動向
     1.白斑
     2.伝染性軟属腫
     3.尋常性疣贅
     4.円形脱毛症

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 アトピー性皮膚炎

P.9 掲載の参考文献
1) 日本皮膚科学会, 日本アレルギー学会, アトピー性皮膚炎診療ガイドライン作成委員会 (加藤則人ほか). アトピー性皮膚炎診療ガイドライン 2018. 日皮会誌 2018 ; 128 : 2431-502.
2) Katayama I, et al. Japanese guidelines for atopic dermatitis 2017. Allergol Int 2017 ; 66 : 230-47.
3) Honda T, Kabashima K. Reconciling innate and acquired immunity in atopic dermatitis. J Allergy Clin Immunol 2020 ; 145 : 1136-7.
5) Blauvelt A, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS) : a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017 ; 389 : 2287-303.
6) Guttman-Yassky E, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol 2019 ; 143 : 155-72.
7) Mobus L, et al. Atopic dermatitis displays stable and dynamic skin transcriptome signatures. J Allergy Clin Immunol 2021 ; 147 : 213-23.
9) Guttman-Yassky E, et al. Efficacy and Safety of Lebrikizumab, a High-Affinity Interleukin 13 Inhibitor, in Adults With Moderate to Severe Atopic Dermatitis : A Phase 2b Randomized Clinical Trial. JAMA Dermatol 2020 ; 156 : 411-20.
11) Kabashima K, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis : Randomized, phase II, long-term extension study. J Allergy Clin Immunol 2018 ; 142 : 1121-30.e7.
12) Kabashima K, et al. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N Engl J Med 2020 ; 383 : 141-50.
13) Nakagawa H, et al. Efficacy and safety of topical JTE-052, a Janus kinase inhibitor, in Japanese adult patients with moderate-to-severe atopic dermatitis : a phase II, multicentre, randomized, vehicle-controlled clinical study. Br J Dermatol 2018 ; 178 : 424-32.
14) Nakagawa H, et al. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis : A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J Am Acad Dermatol 2020 ; 82 : 823-31.
15) デルゴシチニブ軟膏 (コレクチム軟膏 0.5%) 安全使用マニュアル作成委員会. 日本皮膚科学会ガイドライン デルゴシチニブ軟膏 (コレクチム軟膏 0.5%) 安全使用マニュアル. 日皮会誌 2020 ; 130 : 1581-8.
16) Nezamololama N, et al. Emerging systemic JAK inhibitors in the treatment of atopic dermatitis : a review of abrocitinib, baricitinib, and upadacitinib. Drugs Context 2020 ; 9 : 2020-8-5.
17) Bissonnette R, et al. Crisaborole and atopic dermatitis skin biomarkers : An intrapatient randomized trial. J Allergy Clin Immunol 2019 ; 144 : 1274-89.
18) Peppers J, et al. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J Am Acad Dermatol 2019 ; 80 : 89-98.e3.
19) Simpson EL, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids : results from two randomized monotherapy phase III trials. Br J Dermatol 2020 ; 183 : 242-55.
P.16 掲載の参考文献
1) Simpson EL, et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Eng J Med 2016 ; 375 : 2335-48.
2) Blauvelt A, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS) : a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017 ; 389 : 2287-303.
3) Gandhi NA, et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 2016 ; 15 : 35-50.
4) Hart TK, et al. Preclinical efficacy and safety of pascolizumab (SB 240683) : a humanized antiinterleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 2002 ; 130 : 93-100.
5) Wenzel S, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients : results of two phase 2a studies. Lancet 2007 ; 370 : 1422-31.
6) Wenzel S, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013 ; 368 : 2455-66.
7) Beck LA, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. E Nngl J Med 2014 ; 371 : 130-9.
8) Castro M, et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. E Nngl J Med 2018 ; 378 : 2486-96.
9) 日本皮膚科学会, 日本アレルギー学会, アトピー性皮膚炎診療ガイドライン作成委員会 (加藤則人ほか). アトピー性皮膚炎診療ガイドライン 2018. 日皮会誌 2018 ; 128 : 2431-502.
10) Wollenberg A, et al. Tralokinumab for moderate-to-severe atopic dermatitis : results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol 2021 ; 184 : 437-49.
11) Silverberg JI, et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J Allergy Clin Immunol 2020 ; 145 : 173-82.
P.29 掲載の参考文献
1) Kabashima K. New concept of the pathogenesis of atopic dermatitis : interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci 2013 ; 70 : 3-11.
5) Simpson EL, et al. Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids : A randomized, placebo-controlled phase II trial (TREBLE). J Am Acad Dermatol 2018 ; 78 : 863-71 e11.
7) Tanimoto A, et al. Improvement of spontaneous locomotor activity with JAK inhibition by JTE-052 in rat adjuvant-induced arthritis. BMC Musculoskelet Disord 2015 ; 16 : 339
8) 鳥居薬品株式会社. 2020年1月. コレクチム(R) 軟膏 0.5%医薬品インタビューフォーム.
9) Amano W, et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol 2015 ; 136 : 667-77 e7.
10) Yamamoto Y, et al. Janus kinase inhibitor delgocitinib suppresses pruritus and nerve elongation in an atopic dermatitis murine model. J Dermatol Sci 2020 ; 97 : 161-4.
11) 日本皮膚科学会, 日本アレルギー学会, アトピー性皮膚炎診療ガイドライン作成委員会 (加藤則人ほか). アトピー性皮膚炎診療ガイドライン 2018. 日皮会誌 2018 ; 128 : 2431-502.
12) 日本アレルギー学会, 日本皮膚科学会, アトピー性皮膚炎診療ガイドライン作成委員会 (加藤則人ほか). アトピー性皮膚炎診療ガイドライン 2018. アレルギー 2018 ; 67 : 1297-367.
13) 加藤則人, 中二常種. デルゴシチニブ軟膏 (コレクチム(R) 軟膏 0.5%) 安全使用マニュアル. 日皮会誌 2020 : 130 : 1581-88.
14) Nakagawa H, et al. Long-term safety and efficacy of delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with atopic dermatitis. J Dermatol 2020 ; 47 : 114-20.
15) Amano W, et al. JAK inhibitor JTE-052 regulates contact hypersensitivity by downmodulating T cell activation and differentiation. J Dermatol Sci 2016 ; 84 : 258-65.
16) Nakagawa H, et al. Efficacy and safety of topical JTE-052, a Janus kinase inhibitor, in Japanese adult patients with moderate-to-severe atopic dermatitis : a phase II, multicentre, randomized, vehicle-controlled clinical study. Br J Dermatol 2018 ; 178 : 424-32.
17) Nakagawa H, et al. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis : A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J Am Acad Dermatol 2020 ; 82 : 823-31.
18) Nakagawa H, et al. Phase 2 clinical study of delgocitinib ointment in pediatric patients with atopic dermatitis. J Allergy Clin Immunol 2019 ; 144 : 1575-83.
19) Worm M, et al. Efficacy and safety of topical delgocitinib in patients with chronic hand eczema : data from a randomized, double-blind, vehicle-controlled phase IIa study. Br J Dermatol 2020 ; 182 : 1103-10.
P.38 掲載の参考文献
1) Gadina M, et al. Janus kinases to jakinibs : from basic insights to clinical practice. Rheumatology (Oxford) 2019 ; 58 : i4-i16.
2) Ghoreschi K, et al. Selectivity and therapeutic inhibition of kinases : to be or not to be? Nat Immunol 2009 ; 10 : 356-60.
3) Ghoreschi K, et al. Janus kinases in immune cell signaling. Immunol Rev 2009 ; 228 : 273-87.
4) Solimani F, et al. Emerging Topical and Systemic JAK Inhibitors in Dermatology. Front Immunol 2019 ; 10 : 2847.
5) Bieber T. Novel therapies based on the pathophysiology of atopic dermatitis. J Dtsch Dermatol Ges 2019 ; 17 : 1150-62.
6) Katoh N. Emerging treatments for atopic dermatitis. J Dermatol 2021 ; 48 : 152-7.
7) 日本皮膚科学会, 日本アレルギー学会, アトピー性皮膚炎診療ガイドライン作成委員会 (加藤則人ほか). アトピー性皮膚炎診療ガイドライン 2018. 日皮会誌 2018 ; 128 : 2431-502.
8) 五十嵐敦之ほか. アトピー性皮膚炎治療におけるシクロスポリンMEPCの使用指針. 臨皮 2009 ; 63 : 1049-54.
9) Sawada E, et al. Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents : an implication for the disrupted barrier mechanism in atopic dermatitis. J Dermatol Sci 2012 ; 68 : 25-35.
11) Morizane S, et al. TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J Allergy Clin Immunol 2012 ; 130 : 259-61.
13) Simpson EL, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids : results from two randomized monotherapy phase III trials. Br J Dermatol 2020 ; 183 : 242-55.
14) Guttman-Yassky E, et al. Upadacitinib in adults with moderate to severe atopic dermatitis : 16-week results from a randomized, placebo-controlled trial. J Allergy Clin Immunol 2020 ; 145 : 877-84.
15) Gooderham MJ, et al. Efficacy and Safety of Oral Janus Kinase 1 Inhibitor Abrocitinib for Patients With Atopic Dermatitis : A Phase 2 Randomized Clinical Trial. JAMA Dermatol 2019 ; 155 : 1371-9.
16) Kubo S, et al. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front Immunol 2018 ; 9 : 1510.
17) Napolitano M, et al. Profile of Baricitinib and Its Potential in the Treatment of Moderate to Severe Atopic Dermatitis : A Short Review on the Emerging Clinical Evidence. J Asthma Allergy 2020 ; 13 : 89-94.
18) Parmentier JM, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol 2018 ; 2 : 23.
19) Norman P. Selective JAK inhibitors in development for rheumatoid arthritis. Expert Opin Investig Drugs 2014 ; 23 : 1067-77.
20) Bissonnette R, et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis : results from a randomized double-blind placebo-controlled study. Br J Dermatol 2019 ; 181 : 733-42.
P.46 掲載の参考文献
1) Kabashima K, et al. Trial of Nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med 2020 ; 383 : 141-50.
3) Kato A, et al. Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J Dermatol Sci 2014 ; 74 : 229-35.
4) Niyonsaba F, et al. Antimicrobial peptides human β-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 2010 ; 184 : 3526-34.
5) Ishii T, et al. Pivotal role of mast cells in pruritogenesis in patients with myeloproliferative disorders. Blood 2009 ; 113 : 5942-50.
6) Raap U, et al. Human basophils are a source of-and are differentially activated by-IL-31. Clin Exp Allergy 2017 ; 47 : 499-508.
7) Hashimoto T, et al. Pruritus in ordinary scabies : IL-31 from macrophages induced by overexpression of thymic stromal lymphopoietin and periostin. Allergy Eur J Allergy Clin Immunol 2019 ; 74 : 1727-37.
8) Sonkoly E, et al. IL-31 : A new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 2006 ; 117 : 411-7.
11) Usoskin D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015 ; 18 : 145-53.
12) Raap U, et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol 2008 ; 122 : 421-3.
13) Otsuka A, et al. Effects of cyclosporine on pruritus and serum IL-31 levels in patients with atopic dermatitis. Eur J Dermatol 2011 ; 21 : 816-7.
14) Kasutani K, et al. Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice. Br J Pharmacol 2014 ; 171 : 5049-58.
15) Feld M, et al. The pruritus-and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol 2016 ; 138 : 500-8.e24.
16) Yamamura K, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun 2017 ; 8 : 13946.
17) Sakata D, et al. Selective role of neurokinin B in IL-31-induced itch response in mice. J Allergy Clin Immunol 2019 ; 144 : 1130-3.e8.
18) Cornelissen C, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 2012 ; 129 : 426-33, 433.e1-8.
20) Singh B, et al. IL-31-driven skin remodeling involves epidermal cell proliferation and thickening that lead to impaired skin-barrier function. PLoS One 2016 ; 11 : e0161877.
21) Hanel KH, et al. Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network. J Immunol 2016 ; 196 : 3233-44.
22) Kabashima K, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis : Randomized, phase II, long-term extension study. J Allergy Clin Immunol 2018 ; 142 : 1121-30.e7.
23) Oetjen LK, et al. Sensory Neurons Co-opt Classical Immune Signaling Pathways to Mediate Chronic Itch. Cell 2017 ; 171 : 217-28.e13.
24) Schulz F, et al. A common haplotype of the IL-31 gene influencing gene expression is associated with nonatopic eczema. J Allergy Clin Immunol 2007 ; 120 : 1097-102.

2章 乾癬

P.57 掲載の参考文献
1) Rapp SR, et al. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 1999 ; 41 : 401-7.
2) 鳥居秀嗣, 中川秀己. 生物学的製剤時代における乾癬患者の治療満足度調査. 日皮会誌 2013 ; 123 : 1935-44.
3) Heydendael VM, et al. Methotrexate versus cyclosporine in moderate-to-severe chronic plaque psoriasis. N Engl J Med 2003 ; 349 : 658-65.
4) Lebwohl MG, et al. Patient perspectives in the management of psoriasis : results from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis Survey. J Am Acad Dermatol 2014 ; 70 : 871-81.
5) Tada Y, et al. Patient preference for biologic treatments of psoriasis in Japan. J Dermatol 2019 ; 46 : 466-77.
6) 梅澤慶紀, 中川秀己. 乾癬治療薬の作用機序. 日本臨牀 2018 ; 76 : 2-7.
7) Kalb RE, et al. Methotrexate and psoriasis : 2009 National Psoriasis Foundation Consensus Conference. J Am Acad Dermatol 2009 ; 60 : 824-37.
8) Papp K, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis : Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol 2015 ; 73 : 37-49.
9) Kavanaugh A, et al. Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol 2015 ; 42 : 479-88.
10) Zaghloul SS, et al. Objective assessment of compliance with psoriasis treatment. Arch Dermatol 2004 ; 140 : 408-14.
11) 江藤隆史ほか (編). 軟膏・クリーム配合変化ハンドブック. 第2版. 東京 : じほう ; 2015. pp.4-9.
12) Kaufmann R, et al. A new calcipotriol/betamethasone dipropionate formulation (Daivobet) is an effective once-daily treatment for psoriasis vulgaris. Dermatology 2002 ; 205 : 389-93.
13) 中川秀己ほか. 日本人尋常性乾癬患者に対するカルシポトリオール/ベタメタゾンジプロピオン酸エステルの配合ゲル剤の有効性および安全性の検討 (国内第III相臨床試験). 日臨皮会誌 2018 ; 35 : 51-62.
14) Koo J, et al. Superior efficacy of calcipotriene and betamethasone dipropionate aerosol foam versus ointment in patients with psoriasis vulgaris--A randomized phase II study. J Dermatolog Treat 2016 ; 27 : 120-7.
15) Poulin Y, et al. Clobetasol propionate shampoo 0.05% is efficacious and safe for long-term control of moderate scalp psoriasis. J Dermatolog Treat 2010 ; 21 : 185-92.
16) Strange A, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010 ; 42 : 985-90.
17) Papp K, et al. Phase 2 Trial of Selective Tyrosine Kinase 2 Inhibition in Psoriasis. N Engl J Med 2018 ; 379 : 1313-21.
18) Blauvelt A, et al. Bimekizumab for patients with moderate to severe plaque psoriasis : 60-week results from BE ABLE 2, a randomized, double-blinded, placebo-controlled, phase 2b extension study. J Am Acad Dermatol 2020 ; 83 : 1367-74.
19) Ritchlin CT, et al. Bimekizumab in patients with active psoriatic arthritis : results from a 48-week, randomised, double-blind, placebo-controlled, dose-ranging phase 2b trial. Lancet 2020 ; 395 : 427-40.
20) Reich K, et al. Efficacy and safety of mirikizumab (LY3074828) in the treatment of moderate-tosevere plaque psoriasis : results from a randomized phase II study. Br J Dermatol 2019 ; 181 : 88-95.
21) Lebwohl MG, et al. Patient perspectives in the management of psoriasis : results from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis Survey. J Am Acad Dermatol 2014 ; 70 : 871-81.
P.72 掲載の参考文献
1) Oh CJ, et al. Treatment with anti-tumor necrosis factor alpha (TNF-alpha) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J Am Acad Dermatol 2000 ; 42 : 829-30.
2) Park JJ, et al. A Case of Tumor Necrosis Factor-alpha Inhibitors-induced Pustular Psoriasis. Ann Dermatol 2010 ; 22 : 212-5.
3) Beigel F, et al. Formation of antinuclear and double-strand DNA antibodies and frequency of lupus-like syndrome in anti-TNF-α antibody-treated patients with inflammatory bowel disease. Inflamm Bowel Dis 2011 ; 17 : 91-8.
4) Armstrong AW, et al. Psoriasis and metabolic syndrome : a systematic review and meta-analysis of observational studies. J Am Acad Dermatol 2013 ; 68 : 654-62.
5) Boehncke WH, et al. The 'psoriatic march' : a concept of how severe psoriasis may drive cardiovascular comorbidity. Exp Dermatol 2011 ; 20 : 303-7.
6) Weaver CT, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007 ; 25 : 821-52.
7) Brembillia NC, et al. The IL-17 Family of Cytokines in Psoriasis : IL-17A and Beyond. Front Immunol 2018 ; 9 : 1682.
8) Johnston A, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol 2013 ; 190 : 2252-62.
9) Russel CB, et al. Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol 2014 ; 192 : 3828-36.
10) Lee E, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004 ; 199 : 125-30.
11) Hue S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 2006 ; 203 : 2473-83.
12) Whibley N, Gaffen SL. Gut-Busters : IL-17 Ain't Afraid of No IL-23. Immunity 2015 ; 43 : 620-2.
13) Annunziato F, Romagnani S. Do studies in humans better depict Th17 cells? Blood 2009 ; 114 : 2213-9.
14) Hoeve MA, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol 2006 ; 36 : 661-70.
15) Singh S, et al. Selective targeting of the IL23 pathway : Generation and characterization of a novel high-affinity humanized anti-IL23A antibody. MAbs 2015 ; 7 : 778-91.
16) Foley P, et al. Efficacy of Guselkumab Compared With Adalimumab and Placebo for Psoriasis in Specific Body Regions : A Secondary Analysis of 2 Randomized Clinical Trials. JAMA Dermatol 2018 ; 154 : 676-83.
17) Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006 ; 116 : 1218-22.
18) 飯塚一. 乾癬治療のピラミッド計画. 日皮会誌 2006 ; 116 : 1285-93.
19) 大槻マミ太郎ほか ; 日本皮膚科学会乾癬生物学的製剤検討委員会. 日本皮膚科学会マニュアル 乾癬における生物学的製剤の使用ガイダンス (2019年版). 日皮会誌 2019 ; 129 : 1845-64.
21) Blauvelt A, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year : Results from the CLEAR study. J Am Acad Dermatol 2017 ; 76 : 60-9.
22) Reich K, et al. Guselkumab versus secukinumab for the treatment of moderate-to-severe psoriasis (ECLIPSE) : results from a phase 3, randomised controlled trial. Lancet 2019 ; 394 : 831-9.
23) van der Heijde D, et al. Infliximab inhibits progression of radiographic damage in patients with active psoriatic arthritis through one year of treatment : Results from the induction and maintenance psoriatic arthritis clinical trial 2. Arthrutis Rheum 2007 ; 56 : 2698-707.
24) Mease PJ, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis : results of a double-blind, randomized, placebo-controlled trial. Arthritis Rhuem 2005 ; 52 : 3279-89.
25) McInnes IB, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2) : a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015 ; 386 : 1137-46.
26) Mease PJ, et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis : results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab) -controlled period of the phase III trial SPIRIT-P1. Ann Rhuem Dis 2017 ; 76 : 79-87.
27) Deodhar A, et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis : a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2018 ; 391 : 2213-24.
28) Menter A, et al. Adalimumab therapy for moderate to severe psoriasis : A randomized, controlled phase III trial. J Am Acad Dermatol 2008 ; 58 : 106-15.
29) Asahina A, et al. Adalimumab in Japanese patients with moderate to severe chronic plaque psoriasis : efficacy and safety results from a Phase II/III randomized controlled study. J Dermatol 2010 ; 37 : 299-310.
30) Gottlieb AB, et al. Infliximab induction therapy for patients with severe plaque-type psoriasis : a randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 2004 ; 51 : 534-42.
31) Reich K, et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis : a phase III, multicentre, double-blind trial. Lancet 2005 ; 366 : 1367-74.
32) Antoni C, et al. Infliximab improves signs and symptoms of psoriatic arthritis : results of the IMPACT 2 trial. Ann Rheum Dis 2005 ; 64 : 1150-7.
33) Gottlieb AB, et al. Certolizumab pegol for the treatment of chronic plaque psoriasis : Results through 48 weeks from 2 phase 3, multicenter, randomized, double-blinded, placebo-controlled studies (CIMPASI-1 and CIMPASI-2). J Am Acad Dermatol 2018 ; 79 : 302-14.e6.
34) Mease PJ, et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis : 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rhuem Dis 2014 ; 73 : 48-55.
35) Langley RG, et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med 2014 ; 371 : 326-38.
36) Mease PJ, et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression : primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann Rhuem Dis 2018 ; 77 : 890-7.
37) Griffiths CEM, et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3) : results from two phase 3 randomised trials. Lancet 2015 ; 386 : 541-51.
38) Gordon KB, et al. Phase 3 Trials of Ixekizumab in Moderate-to-Severe Plaque Psoriasis. N Engl J Med 2016 ; 375 : 345-56.
39) Papp KA, et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br J Dermatol 2016 ; 175 : 273-86.
40) Farahnik B, et al. Brodalumab for the Treatment of Psoriasis : A Review of Phase III Trials. Dermatol Ther (Heidelb) 2016 ; 6 : 111-24.
41) Mease PJ, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med 2014 ; 370 : 2295-306.
42) Umezawa Y, et al. Long-term clinical safety and efficacy of brodalumab in the treatment of Japanese patients with moderate-to-severe plaque psoriasis. J Eur Acad Dermatol Venereol 2016 ; 30 : 1957-60.
43) Leonardi CL, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis : 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008 ; 371 : 1665-74.
44) Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis : 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008 ; 371 : 1675-84.
45) McInnes IB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis : 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 2013 ; 382 : 780-9.
46) Kavanaugh A, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis : results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rhuem Dis 2014 ; 73 : 1000-6.
47) Blauvelt A, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis : Results from the phase III, double-blinded, placebo-and active comparator-controlled VOYAGE 1 trial. J Am Acad Dermatol 2017 ; 76 : 405-17.
48) Reich K, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment : Results from the phase III, double-blind, placebo-and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol 2017 ; 76 : 418-31.
49) Gordon KB, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2) : results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet 2018 ; 392 : 650-61.
50) Reich K, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2) : results from two randomised controlled, phase 3 trials. Lancet 2017 ; 390 : 276-88.
P.82 掲載の参考文献
1) アムジェン株式会社. オテズラ錠添付文書. 2020年7月改定 (第2版).
2) Keating GM. Apremilast : A Review in Psoriasis and Psoriatic Arthritis. Drugs 2017 ; 77 : 459-72.
3) Klein M, Bopp T. Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation. Front Immunol 2016 ; 7 : 315.
4) 飯塚一. アプレミラストと乾癬. Visual Dermatology 2017 ; 16 : 844-9.
5) Ricardo JW, Lipner SR. Considerations for safety in the use of systemic medications for psoriasis and atopic dermatitis during the COVID-19 pandemic. Dermatol Ther 2020 ; 33 : e13687.
6) Kishimoto M, et al. Drug survival of apremilast in a real-world setting. J Dermatol 2019 ; 46 : 615-7.
7) AbuHilal M, et al. Use of Apremilast in Combination With Other Therapies for Treatment of Chronic Plaque Psoriasis : A Retrospective Study. J Cutan Med Surg 2016 ; 20 : 313-6.
8) Papp K, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis : Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol 2015 ; 73 : 37-49.
9) Paul C, et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate-to-severe plaque psoriasis over 52 weeks : a phase III, randomized controlled trial (ESTEEM 2). Br J Dermatol 2015 ; 173 : 1387-99.
10) Ohtsuki M, et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in the treatment of Japanese patients with moderate to severe plaque psoriasis : Efficacy, safety and tolerability results from a phase 2b randomized controlled trial. J Dermatol 2017 ; 44 : 873-84.
11) Sobell JM, et al. Effects of Apremilast on Pruritus and Skin Discomfort/Pain Correlate With Improvements in Quality of Life in Patients With Moderate to Severe Plaque Psoriasis. Acta Derm Venereol 2016 ; 96 : 514-20.
12) Rich P, et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with difficult-to-treat nail and scalp psoriasis : Results of 2 phase III randomized, controlled trials (ESTEEM 1 and ESTEEM 2). J Am Acad Dermatol 2016 ; 74 : 134-42.
13) Kavanaugh A, et al. Long-term experience with apremilast in patients with psoriatic arthritis : 5-year results from a PALACE 1-3 pooled analysis. Arthritis Res Ther 2019 ; 21 : 118.
14) Moon C, et al. Drug-induced secretory diarrhea : A role for CFTR. Pharmacol Res 2015 ; 102 : 107-12.
15) Maloney NJ, et al. Off-label studies on apremilast in dermatology : a review. J Dermatolog Treat 2020 ; 31 : 131-40.
P.92 掲載の参考文献
1) Fujita H, et al. Japanese guidelines for the management and treatment of generalized pustular psoriasis : The new pathogenesis and treatment of GPP. J Dermatol 2018 ; 45 : 1235-70.
2) Sugiura K, et al. The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of interleukin-36 receptor antagonist. J Invest Dermatol 2013 ; 133 : 2514-21.
3) Sugiura K, et al. CARD14 c.526G > C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with psoriasis vulgaris in the Japanese cohort. J Invest Dermatol 2014 ; 134 : 1755-7.
4) Morita A, et al. Adalimumab treatment in Japanese patients with generalized pustular psoriasis : Results of an open-label phase 3 study. J Dermatol 2018 ; 45 : 1371-80.
5) Johnston A, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol 2017 ; 140 : 109-20.
6) Bachelez H, et al. Inhibition of the Interleukin-36 Pathway for the Treatment of Generalized Pustular Psoriasis. N Engl J Med 2019 ; 380 : 981-3.
8) Yamamoto T, et al. Characteristics of Japanese patients with pustulotic arthro-osteitis associated with palmoplantar pustulosis : a multicenter study. Int J Dermatol 2020 ; 59 : 441-4.
9) Murakami M, et al. TLN-58, an Additional hCAP18 Processing Form, Found in the Lesion Vesicle of Palmoplantar Pustulosis in the Skin. J Invest Dermatol 2017 ; 137 : 322-31.
10) Murakami M, et al. Palmoplantar pustulosis : Current understanding of disease definition and pathomechanism. J Dermatol Sci 2020 ; 98 : 13-9.
11) Terui T, et al. Efficacy and Safety of Guselkumab in Japanese Patients With Palmoplantar Pustulosis : A Phase 3 Randomized Clinical Trial. JAMA Dermatol 2019 ; 155 : 1153-61.
12) Yamamoto T, et al. Efficacy of guselkumab in a subpopulation with pustulotic arthro-osteitis through week 52 : an exploratory analysis of a phase 3, randomized, double-blind, placebo-controlled study in Japanese patients with palmoplantar pustulosis. J Eur Acad Dermatol Venereol 2020 ; 34 : 2318-29.
P.98 掲載の参考文献
1) Saniabadi AR, et al. Adacolumn, an adsorptive carrier based granulocyte and monocyte apheresis device for the treatment of inflammatory and refractory diseases associated with leukocytes. Ther Aher Dial 2003 ; 7 : 48-59.
2) Hiraishi K, et al. Studies on the mechanisms of leukocyte adhesion to cellulose acetate beads : an in vitro model to assess the efficacy of cellulose acetate carrier-based granulocyte and monocyte adsorptive apheresis. Ther Aher Dial 2003 ; 7 : 334-40.
3) Kanekura T, et al. Granulocyte and monocyte adsorption apheresis (GCAP) for refractory skin diseases caused by activated neutrophils and psoriatic arthritis : evidence that GCAP removes Mac-1-expressing neutrophils. Ther Aher Dial 2006 ; 10 : 247-56.
4) Kashiwagi N, et al. A role for granulocyte and monocyte apheresis in the treatment of rheumatoid arthritis. Ther Apher 1998 ; 2 : 134-41.
5) Sakanoue M, et al. Inhibition of Inflammatory Cytokines and Induction of Myeloid-Derived Suppressor Cells by the Effects of Granulocyte and Monocyte Adsorption Apheresis. Ther Apher Dial 2017 ; 21 : 628-34.
6) Saniabadi AR, et al. Adacolumn for selective leukocytapheresis as a non-pharmacological treatment for patients with disorders of the immune system : an adjunct or an alternative to drug therapy? J Clin Apher 2005 ; 20 : 171-84.
7) Hanai H, et al. Correlation of serum soluble TNF-alpha receptors I and II levels with disease activity in patients with ulcerative colitis. Am J Gactroenterol 2004 ; 99 : 1532-8.
8) Takeda Y, et al. Adhesion dependent release of hepatocyte growth factor and interleukin-1 receptor antagonist from human blood granulocytes and monocytes : evidence for the involvement of plasma IgG, complement C3 and beta2 integrin. Inflamm Res 2004 ; 53 : 277-83.
9) Kashiwagi N, et al. Immunomodulatory effects of granulocyte and monocyte adsorption apheresis as a treatment for patients with ulcerative colitis. Dig Dis Sci 2002 ; 47 : 1334-41.
10) Yokoyama Y, et al. Demonstration of low-regulatory CD25High+ CD4+ and high-pro-inflammatory CD28- CD4+ T-Cell subsets in patients with ulcerative colitis : modified by selective granulocyte and monocyte adsorption apheresis. Dig Dis Sci 2007 ; 52 : 2725-31.
11) Kanekura T. Clinical and immunological effects of adsorptive myeloid lineage leukocyte apheresis in patients with immune disorders. J Dermatol 2018 ; 45 : 9435-50.
12) Ikeda S, et al. Therapeutic depletion of myeloid lineage leukocytes in patients with generalized pustular psoriasis indicates a major role for neutrophils in the immunopathogenesis of psoriasis. J Am Acad Dermatol 2013 ; 68 : 609-17.
13) Kanekura T, et al. Therapeutic depletion of myeloid lineage leukocytes by adsorptive apheresis for psoriatic arthritis : Efficacy of a non-drug intervention for patients refractory to pharmacologics. J Dermatol 2017 ; 44 : 1353-9.
14) 日本皮膚科学会膿疱性乾癬 (汎発型) 診療ガイドライン作成委員会 (照井 正ほか). 膿疱性乾癬 (汎発型) 診療ガイドライン 2014年度版. 日皮会誌 2015 ; 125 : 2211-57.
15) 中井歩. 顆粒球単球吸着除去療法 (Granulocyte and Monocyte Adsorption Apheresis : GMA) 治療の実際. 日本アフェレシス学会雑誌 2018 ; 37 : 165-7.

3章 悪性黒色腫

P.104 掲載の参考文献
1) Andtbacka RH, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol 2015 ; 33 : 2780-8.
2) Andtbacka RHI, et al. Final analyses of OPTiM : a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 2019 ; 7 : 145.
3) Louie RJ, et al. Real-World Outcomes of Talimogene Laherparepvec Therapy : A Multi-Institutional Experience. J Am Coll Surg 2019 ; 228 : 644-9.
4) Long GV, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252) : a phase 3, randomised, double-blind study. Lancet Oncol 2019 ; 20 : 1083-97.
5) Maynard A, et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 2020 ; 182 : 1232-51. e22.
6) Gong HZ, et al. The clinical significance of KIT mutations in melanoma : a meta-analysis. Melanoma Res 2018 ; 28 : 259-70.
7) Curtin JA, et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006 ; 24 : 4340-6.
8) Guo J, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 2011 ; 29 : 2904-9.
9) Hodi FS, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 2013 ; 31 : 3182-90.
10) Carvajal RD, et al. Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition. Clin Cancer Res 2015 ; 21 : 2289-96.
11) Guo J, et al. Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma : final results from the global, single-arm, phase II TEAM trial. Ann Oncol 2017 ; 28 : 1380-7.
12) Lezcano C, et al. Primary and Metastatic Melanoma With NTRK Fusions. Am J Surg Pathol 2018 ; 42 : 1052-8.
13) Drilon A, et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 2018 ; 378 : 731-9.
14) Doebele RC, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours : integrated analysis of three phase 1-2 trials. Lancet Oncol 2020 ; 21 : 271-82.
15) Le Tourneau C, et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA) : a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 2015 ; 16 : 1324-34.
16) Sunami K, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting : A hospital-based study. Cancer Sci 2019 ; 110 : 1480-90.
P.119 掲載の参考文献
1) Wang C, et al. In Vitro Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and In Vivo Toxicology in Non-Human Primates. Cancer Immunol Res 2014 ; 2 : 846-56.
2) Read S, et al. Blockade of CTLA-4 on CD4+ CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006 ; 177 : 4376-83.
3) Wing K, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008 ; 322 : 271-5.
4) Selby MJ, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 2013 ; 1 : 32-42.
5) Simpson TR, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 2013 ; 210 : 1695-710.
6) Liakou CI, et al. CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 2008 ; 105 : 14987-92.
7) Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymicnude mice. Science 1974 ; 183 : 534-6.
8) Stutman O. Chemical carcinogenesis in nude mice : comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst 1979 ; 62 : 353-8.
9) Shankaran V, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001 ; 410 : 1107-11.
10) Alfarouk KO, et al. Tumor acidity as evolutionary spite. Cancers (Basel) 2011 ; 3 : 408-14.
11) Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015 ; 348 : 74-80.
12) Spill F, et al. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016 ; 40 : 41-8.
13) Brunet JF, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature 1987 ; 328 : 267-70.
14) Tivol EA, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995 ; 3 : 541-7.
15) Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995 ; 182 : 459-65.
16) Leach DR, et al. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996 ; 271 : 1734-6.
18) Ishida Y, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992 ; 11 : 3887-95.
19) Nishimura H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999 ; 11 : 141-51.
20) Iwai Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002 ; 99 : 12293-7.
21) Iwai Y, et al. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 2005 ; 17 : 133-44.
22) Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012 ; 366 : 2443-54.
23) Rosenberg SA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988 ; 319 : 1676-80.
24) Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol 2011 ; 8 : 577-85.
25) Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015 ; 372 : 320-30.
26) Addeo R, et al. Chemotherapy in the management of brain metastases : the emerging role of fotemustine for patients with mela-noma and NSCLC. Expert Opin Drug Saf 2013 ; 12 : 729-40.
27) Avril MF, et al. Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma : a phase III study. J Clin Oncol 2004 ; 22 : 1118-25.
28) Guida M, et al. The search for a melanoma-tailored chemotherapy in the new era of personalized therapy : a phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale). BMC Cancer 2018 ; 18 : 552.
29) Grob JJ, et al. Patient perception of the benefit of a BRAF inhibitor in metastatic melanoma : quality-of-life analyses of the BREAK-3 study comparing dabrafenib with dacarbazine. Ann Oncol 2014 ; 25 : 1428-36.
30) Michielin O, et al. Cutaneous melanoma : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019 ; 30 : 1884-901.
31) Robert C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011 ; 364 : 2517-26.
33) Ascierto PA, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma : a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2017 ; 18 : 611-22.
34) Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015 ; 372 : 320-30.
35) Yamazaki N, et al. Efficacy and safety of nivolumab in Japanese patients with previously untreated advanced melanoma : A phase II study. Cancer Sci 2017 ; 108 : 1223-30.
36) Robert C, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 2015 ; 372 : 2521-32.
37) Schachter J, et al. Pembrolizumab versus ipilimumab for advanced melanoma : final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 2017 ; 390 : 1853-62.
38) Yamazaki N, et al. Phase 1b study of pembrolizumab (MK-3475 ; anti-PD-1 monoclonal antibody) in Japanese patients with advanced melanoma (KEYNOTE-041). Cancer Chemother Pharmacol 2017 ; 79 : 651-60.
39) バベンチオ(R) 適正使用ガイド http://www.bavencio.jp
40) Weber JS, et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064) : an open-label, randomised, phase 2 trial. Lancet Oncol 2016 ; 17 : 943-55.
41) Zimmer L, et al. Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma. Eur J Cancer 2017 ; 75 : 47-55.
42) Wolchok JD, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med 2017 ; 377 : 1345-56.
43) Hodi FS, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067) : 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 2018 ; 19 : 1480-92.
44) D'Angelo SP, et al. Efficacy and Safety of Nivolumab Alone or in Combination With Ipilimumab in Patients With Mucosal Melanoma : A Pooled Analysis. J Clin Oncol 2017 ; 35 : 226-35.
45) Namikawa K, et al. Efficacy and safety of nivolumab in combination with ipilimumab in Japanese patients with advanced melanoma : An open-label, single-arm, multicentre phase II study. Eur J Cancer 2018 ; 105 : 114-26.
46) Tawbi HA, et al. Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N Engl J Med 2018 ; 379 : 722-30.
47) Long GV, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases : a multicentre randomised phase 2 study. Lancet Oncol 2018 ; 19 : 672-81.
48) Bristol-Myers Squibb. Efficacy Study of Nivolumab Compared to Ipilimumab in Prevention of Recurrence of Melanoma After Complete Resection of Stage IIIb/c or Stage IV Melanoma (CheckMate 238). https://clinicaltrials.gov/ct2/show/NCT02388906
49) Eggermont AMM, et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N Engl J Med 2018 ; 378 : 1789-801.
50) 小野薬品工業株式会社, ブリストル・マイヤーズ スクイブ. オプジーボ適正使用ガイド. https://www.opdivo.jp/
51) Kaplon H, et al. Antibodies to watch in 2020. MAbs 2020 ; 12 : 1703531.
P.129 掲載の参考文献
1) Davies H, et al. Mutations of the BRAF gene in human cancer. Nature 2002 ; 417 : 949-54.
2) Pollock PM, et al. High frequency of BRAF mutations in nevi. Nat Genet 2003 ; 33 : 19-20.
3) 芦田敦子, 宇原久. 日本人におけるMAPK系の遺伝子変異率と遺伝子検査の実際. MB Derma 2015 ; 230 : 63-8.
4) Sakaizawa K, et al. Clinical characteristics associated with BRAF, NRAS and KIT mutations in Japanese melanoma patients. J Dermatol Sci 2015 ; 80 : 33-7.
5) 藤澤康弘ほか. Japanese Melanoma Study 2019年報告. 第36回日本皮膚悪性腫瘍学会学術大会デジタルポスター発表. 2021年1月.
6) 勝見達也ほか. BRAF変異悪性黒色腫における臨床病理学的検討. 第36回日本皮膚悪性腫瘍学会学術大会 一般演題 C-8-2. 2021年1月.
7) Atkinson V, et al. Optimizing combination dabrafenib and trametinib therapy in BRAF mutationpositive advanced melanoma patients : Guidelines from Australian melanoma medical oncologists. Asia Pac J Clin Oncol 2016 ; 12 Suppl 7 : 5-12.
8) Dummer R, et al. Five-Year Analysis of Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma. N Engl J Med 2020 ; 383 : 1139-48.
9) Chapman PB, et al. Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma : final overall survival results of the randomized BRIM-3 study. Ann Oncol 2017 ; 28 : 2581-7.
10) Robert C, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J Med 2019 ; 381 : 626-36.
11) Ascierto PA, et al. Update on tolerability and overall survival in COLUMBUS : landmark analysis of a randomised phase 3 trial of encorafenib plus binimetinib vs vemurafenib or encorafenib in patients with BRAF V600-mutant melanoma. Eur J Cancer 2020 ; 126 : 33-44.
12) Saab KR, et al. Tolerance and efficacy of BRAF plus MEK inhibition in patients with melanoma who previously have received programmed cell death protein 1-based therapy. Cancer 2019 ; 125 : 884-91.
13) Anker CJ, et al. Avoiding Severe Toxicity From Combined BRAF Inhibitor and Radiation Treatment : Consensus Guidelines from the Eastern Cooperative Oncology Group (ECOG). Int J Radiat Oncol Biol Phys 2016 ; 95 : 632-46.
14) Ferrucci PF, et al. KEYNOTE-022 part 3 : a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer 2020 ; 8 : e001806.

4章 ヘルペス

P.139 掲載の参考文献
1) Hope-Simpson RE. The nature of herpes zoster : a long-term study and a new hypothesis. Proc R Soc Med 1965 ; 58 : 9-20.
2) Berger R, et al. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged. Infect Immun 1981 ; 32 : 24-7.
3) Burke BL, et al. Immune responses to varicella-zoster in the aged. Arch Intern Med 1982 ; 142 : 291-3.
4) Thomas SL, et al. Contacts with varicella or with children and protection against herpes zoster in adults : a case-control study. Lancet 2002 ; 360 : 678-82.
6) Toyama N, Shiraki K. Epidemiology of herpes zoster and its relationship to varicella in Japan : A 10-year survey of 48, 388 herpes zoster cases in Miyazaki prefecture. J Med Virol 2009 ; 81 : 2053-8.
11) 奥野良信ほか. 帯状疱疹疫学調査 : 水痘抗原「ビケン」を用いた皮内検査による帯状疱疹および帯状疱疹後神経痛のリスク評価. 臨床医薬 2014 ; 30 : 905-15.
12) Imoto K, et al. VZV skin-test reaction, but not antibody, is an important predictive factor for postherpetic neuralgia. J Dermatol Sci 2015 ; 79 : 235-40.
16) Morrison VA, et al. Long-term persistence of zoster vaccine efficacy. Clin Infect Dis 2015 ; 60 : 900-9.
17) Yoshikawa T, et al. Safety profile of the varicella vaccine (Oka vaccine strain) based on reported cases from 2005 to 2015 in Japan. Vaccine 2016 ; 34 : 4943-7.
19) Cunningham AL, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med 2016 ; 375 : 1019-32.
20) 外山望. 帯状疱疹大規模疫学調査「宮崎スタディ (1997-2017) 」アップデート. IASR 2018 ; 39 : 139-41.
21) Toyama N, Shiraki K. Miyazaki Dermatologist Society, et al : Universal varicella vaccination increased the incidence of herpes zoster in the child-rearing generation as its short-term effect. J Dermatol Sci 2018 ; 92 : 89-96.
P.147 掲載の参考文献
1) 渡辺大輔. 臨床講義 単純ヘルペスウイルス感染症の最前線-正しい診断, 治療のために-. 皮膚臨床 2011 ; 53 : 233-39.
2) 川島眞. 再発型単純疱疹患者の患者背景およびQOLに関するアンケート調査. 臨床医薬 2013 ; 29 : 137-49.
3) 渡辺大輔. 性器ヘルペスに対する再発抑制療法 (suppressive therapy) のエビデンス. 皮膚アレルギーフロンティア 2009 ; 7 : 56-9.
4) Honda M, et al. Effect of long-term, low-dose acyclovir suppressive therapy on susceptibility to acyclovir and frequency of acyclovir resistance of herpes simplex virus type 2. Antivir Chem Chemother 2001 ; 12 : 233-9.
5) Corey L. Herpes Simplex Virus Infection. In : Kasper D, et al (eds). Harrison's Principles of Internal Medicine. 19th Edition, vol.2. New York : McGraw-Hill Education ; 2015. pp.1175-83.
6) 川島眞ほか. ファムシクロビルの再発型単純疱疹患者に対する早期短期治療 (1日治療) による第III相臨床試験. 日臨皮会誌 2018 ; 35 : 488-96.
P.157 掲載の参考文献
1) Arvin AM. Varicella-zoster virus. Clin Microbiol Rev 1996 ; 9 : 361-81.
2) Toyama N, et al. Universal varicella vaccination increased the incidence of herpes zoster in the child-rearing generation as its short-term effect. J Dermatol Sci 2018 ; 92 : 89-96.
3) Eizuru Y. Development of new antivirals for herpesviruses. Antivir Chem Chemother 2003 ; 14 : 299-308.
4) アメナリーフ(R) 錠200 mg医薬品インタビューフォーム https://www.maruho.co.jp/medical/dl/pdf/amenalief_if.pdf
5) Chono K, et al. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother 2010 ; 65 : 1733-41.
7) Dworkin RH, et al. Recommendations for the management of herpes zoster. Clin Infect Dis 2007 ; 44 Suppl 1 : S1-26.
8) Kawashima M, et al. Amenamevir, a novel helicase-primase inhibitor, for treatment of herpes zoster : A randomized, double-blind, valaciclovir-controlled phase 3 study. J Dermatol 2017 ; 44 : 1219-27.
9) Blum MR, et al. Overview of acyclovir pharmacokinetic disposition in adults and children. Am J Med 1982 ; 73 (1A) : 186-92.
10) Tsuruoka S, et al. Pharmacokinetics and Dialyzability of a Single Oral Dose of Amenamevir, an Anti-Herpes Drug, in Hemodialysis Patients. Adv Ther 2020 ; 37 : 3234-45.
11) Chono K, et al. Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antiviral Res 2013 ; 97 : 154-60.
12) Katsumata K, et al. Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother 2012 ; 56 : 3587-91.
13) Katsumata K, et al. Effect of ASP2151, a herpesvirus helicase-primase inhibitor, in a guinea pig model of genital herpes. Molecules 2011 ; 16 : 7210-23.
14) Ueda Y, et al. Inhibitory effect of amenamevir on acute herpetic pain and postherpetic neuralgia in mice infected with herpes simplex virus-1. J Dermatol Sci 2020 ; 98 : 50-7.
P.166 掲載の参考文献
1) 渡辺大輔. 帯状疱疹. 宮地良樹ほか (編). エビデンスに基づくQ&Aでわかる皮膚感染症治療. 東京 : 中山書店 ; 2020. pp.198-215.
2) 鈴木道雄ほか. 水痘・帯状疱疹の検査診断. 小児科 2014 ; 55 : 1377-82.
3) Dworkin RH, et al. Prospects for the prevention of postherpetic neuralgia in herpes zoster patient. Clinic J Pain 2000 ; 16 : S90-100.
4) Johnson RW. Herpes zoster in the immunocompetent patient : management of post-herpetic neuralgia. Herpes 2003 ; 10 : 38-45.
5) Kost RG, et al. Postherpetic neuralgia--pathogenesis, treatment, and prevention. N Eng J Med 1996 ; 335 : 32-42.
6) 渡辺大輔. 水痘・帯状疱疹. 産科と婦人科 2020 増 ; 87 : 365-9.
7) 渡辺大輔ほか. 水痘・帯状疱疹ウイルス抗原検出キットの基礎的, 臨床的性能評価. 新薬と臨床 2018 ; 67 : 23-34.
8) Kimura H, et al. Comparison of quantitations of viral load in varicella and zoster. J Clin Microbiol 2000 ; 38 : 2447-9.
9) Mehta SK, et al. Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J Virol Methods 2013 ; 193 : 128-30.
10) Gershon AA, et al. Use of Saliva to Identify Varicella Zoster Virus Infection of the Gut. Clin Infect Dis 2015 ; 61 : 536-44.

5章 爪白癬

P.172 掲載の参考文献
1) 日本皮膚科学会皮膚真菌症診療ガイドライン改訂委員会 (望月隆ほか). 日本皮膚科学会皮膚真菌症診療ガイドライン 2019. 日皮会誌 2019 ; 129 : 2639-73.
2) 渡辺晋一ほか. 本邦における足・爪白癬の疫学調査成績. 日皮会誌 2001 ; 111 : 2101-12.
3) 古江増隆ほか. 本邦における皮膚科受診患者の多施設横断四季別全国調査. 日皮会誌 2009 ; 119 : 1795-809.
4) Watanabe S, et al. Epidemiological survey of foot diseases in Japan : results of 30,000 foot checks by dermatologists. J Dermatol 2010 ; 37 : 397-406.
5) 福山國太郎. 足白癬の感染機序と予防対策. Visual Dermatology 2019 ; 19 : 38-41.
6) 常深祐一郎, 宮地良樹 (編). ファーマナビゲーター 爪白癬治療薬編. 東京 : メディカルレビュー社 ; 2016.
7) Evans EG, Sigurgeirsson B. Double blind, randomized study of continuous terbinafine compared with intermittent itraconazole in treatment of toenail onychomycosis. BMJ 1999 ; 318 : 1031-5.
8) Sigurgeirsson B, et al. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis : a 5-year blinded prospective follow-up study. Arch Dermatol 2002 ; 138 : 353-7.
9) Foley K, et al. Topical and device-based treatments for fungal infections of the toenails. Cochrane Systematic Review. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012093.pub2/full
10) 常深祐一郎, 中野眞. 爪白癬治療の実態把握のためのアンケート調査結果. 日臨皮会誌 2015 ; 32 : 700-9.
11) 常深祐一郎. 爪白癬の病型と重症度ごとの治療薬選択と治療薬に対する評価のアンケート調査. 日臨皮会誌 2016 ; 33 : 630-6.
P.184 掲載の参考文献
1) 槇村浩一. 我が国における病原真菌と健康障害ならびに対策の現状. 日本細菌学雑誌 2007 ; 62 : 295-312.
2) Yamaguchi H. Potential of ravuconazole and its prodrugs as the new oral therapeutics for onychomycosis. Med Mycol J 2016 ; 57 : E93-110.
3) Ueda Y, et al. Phosphonooxymethyl prodrugs of the broad spectrum antifungal azole, ravuconazole : synthesis and biological properties. Bioorg Med Chem Lett 2003 ; 13 : 3669-72.
4) 山口英世ほか. 皮膚真菌症患者検体から分離された皮膚糸状菌およびCandida属菌に対するravuconazoleのin vitro抗真菌活性 皮膚真菌症の治療に適用承認されている2種の経口抗真菌薬との比較. Med Mycol J 2014 ; 55 : J157-63.
5) ネイリン(R) カプセル100 mg 医薬品インタビューフォーム. 2020年3月改訂 (第6版).
6) 常深祐一郎. 経口抗真菌薬の投与前検査と投与中モニタリング・異常発現時の対応 ホスラブコナゾール. 薬局 2020 ; 71 : 2514-7.
7) Ishii Y, et al. Clinical drug-drug interaction potential of BFE1224, prodrug of antifungal ravuconazole, using two types of cocktails in healthy subjects. Clin Transl Sci 2018 ; 11 : 477-86.
8) Watanabe S, et al. Efficacy and safety of fosravuconazole L-lysine ethanolate, a novel oral triazole antifungal agent, for the treatment of onychomycosis : A multicenter, double-blind, randomized phase III study. J Dermatol 2018 ; 45 : 1151-9.
9) 山下直子. 75歳以上の高齢者の趾爪白癬に対するホスラブコナゾールの有効性と安全性の検討. 日臨皮会誌 2020 ; 37 : 674-9.
10) Noguchi H, et al. Fosravuconazole to treat severe onychomycosis in the elderly. J Dermatol 2021 ; 48 : 228-31.
11) 常深祐一郎ほか. 新規アゾール系経口爪白癬治療薬ホスラブコナゾールL-リシンエタノール付加物による肝機能検査値異常 第III相臨床試験データの分析結果. 臨床医薬 2018 ; 34 : 839-46.
12) ネイリン(R) カプセル100 mg 市販直後調査 最終報告 (集計対象期間 : 2018年7月27日~2019年1月26日).
13) 常深祐一郎ほか. 新規アゾール系経口爪白癬治療薬ホスラブコナゾールL-リシンエタノール付加物投与時の肝機能検査アルゴリズム. Prog Med 2019 ; 39 : 347-51.
14) 渡辺晋一ほか. 爪白癬患者における新規経口抗真菌剤ホスラブコナゾール多施設共同用法・用量設定試験. 西日皮膚 2018 ; 80 : 470-8.
15) Evans EG, et al. Double blind, randomised study of continuous terbinafine compared with intermittent itraconazole in treatment of toenail onychomycosis. The LION Study Group. BMJ 1999 ; 318 : 1031-5.
16) 日本皮膚科学会皮膚真菌症診療ガイドライン改訂委員会 (望月隆ほか). 日本皮膚科学会皮膚真菌症診療ガイドライン 2019. 日皮会誌 2019 ; 129 : 2639-73.
17) 五十嵐中ほか. 爪白癬患者に対する新規経口薬ホスラブコナゾールの費用効果分析. 日皮会誌 2021 ; 131 : 719-31.

6章 蕁麻疹

P.193 掲載の参考文献
1) ゾレア(R) 皮下注用75 mg ゾレア(R) 皮下注用150 mg添付文書
2) 日本皮膚科学会蕁麻疹診療ガイドライン改定委員会 (秀道広ほか). 蕁麻疹診療ガイドライン 2018. 日皮会誌 2018 ; 128 : 2503-624.
3) Hide M, et al. Autoantibodies against the high-affinity IgE receptor as a cause of histamine release in chronic urticaria. N Engl J Med 1993 ; 328 : 1599-604.
4) Kolkhir P, et al. Autoimmune chronic spontaneous urticaria : What we know and what we do not know. J Allergy Clin Immunol 2017 ; 139 : 1772-81.
5) 森田栄伸. 蕁麻疹. Progress in Medicine 2007 ; 8 : 47-51.
6) Yanase Y, et al. Coagulation factors induce human skin mast cell and basophil degranulation via activation of complement 5 and the C5a receptor. J Allergy Clin Immunol 2020 ; S0091-6749 (20) 31222-7.
7) Itakura A, et al. Impact of chronic urticaria on quality of life and work in Japan : Results of a real-world study. J Dermatol 2018 ; 45 : 963-70.
8) Ertas R, et al. The clinical response to omalizumab in chronic spontaneous urticaria patients is linked to and predicted by IgE levels and their change. Allergy 2018 ; 73 : 705-12.
9) Marzano AV, et al. Predictors of response to omalizumab and relapse in chronic spontaneous urticaria : a study of 470 patients. JADEV 2019 ; 33 : 918-24.
10) Hide M, et al. Efficacy and safety of omalizumab in Japanese and Korean patients with refractory chronic spontaneous urticaria. J Dermatol Sci 2017 ; 87 : 70-8.
11) Tharp MD, et al. Benefits and harms of omalizumab treatment in adolescent and adult patients with chronic (spontaneous) urticaria. JAMA Dermatology 2019 ; 155 : 29-38.
12) Koikhir P, et al. New drugs for chronic urticaria. Ann Allergy Asthma Immunology 2020 ; 124 : 1-12.
P.202 掲載の参考文献
1) 田辺三菱製薬株式会社. ルパフィン(R) 錠10 mg医薬品インタビューフォーム. 2018年12月.
2) Benveniste J, et al. Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med 1972 ; 136 : 1356-77.
3) Vadas P, et al. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J Allergy Clin Immunol 2013 ; 131 : 144-9.
4) Mullol J, et al. Update on rupatadine in the management of allergic disorders. Allergy 2015 ; 70 Suppl 100 : 1-24.
5) Hide M, et al. Efficacy and safety of rupatadine in Japanese adult and adolescent patients with chronic spontaneous urticaria : A double-blind, randomized, multicenter, placebo-controlled clinical trial. Allergol Int 2019 ; 68 : 59-67.
6) Dubertret L, et al. Once-daily rupatadine improves the symptoms of chronic idiopathic urticaria : a randomised, double-blind, placebo-controlled study. Eur J Dermatol 2007 ; 17 : 223-8.
7) Hide M, et al. Long-term safety and efficacy of rupatadine in Japanese patients with itching due to chronic spontaneous urticaria, dermatitis, or pruritus : A 12-month, multicenter, open-label clinical trial. J Dermatol Sci 2019 ; 94 : 339-45.
8) 杏林製薬株式会社. デザレックス(R) 錠5 mg医薬品インタビューフォーム. 2019年10月.
9) 秀道広ほか. デスロラタジンの日本人慢性蕁麻疹患者を対象とした第III相臨床試験-ランダム化比較試験. 臨床医薬 2016 ; 32 : 891-903.
10) 古江増隆ほか. デスロラタジンの日本人湿疹・皮膚炎および皮膚そう痒患者を対象とした第III相臨床試験-非盲検長期投与試験. 臨床医薬 2016 ; 32 : 877-89.
11) 大鵬薬品工業株式会社. ビラノア(R) 錠20 mg医薬品インタビューフォーム. 2018年6月.
12) Yanai K, et al. The clinical pharmacology of non-sedating antihistamines. Pharmacol Ther 2017 ; 178 : 148-56.
13) Hide M, et al. Efficacy and safety of bilastine in Japanese patients with chronic spontaneous urticaria : A multicenter, randomized, double-blind, placebo-controlled, parallel-group phase II/III study. Allergol Int 2017 ; 66 : 317-25.
14) Yagami A, et al. One-year safety and efficacy study of bilastine treatment in Japanese patients with chronic spontaneous urticaria or pruritus associated with skin diseases. J Dermatol 2017 ; 44 : 375-85.

7章 その他の疾患

P.211 掲載の参考文献
1) Fata F, et al. Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. Cancer 1999 ; 86 : 2034-7.
2) Penel N, et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma : the ANGIOTAX Study. J Clin Oncol 2008 ; 26 : 5269-74.
3) Smith JA, et al. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010 ; 49 : 1331-7.
4) Kuznetsov G, et al. Antiproliferative effects of halichondrin B analog eribulin mesylate (E7389) against paclitaxel-resistant human cancer cells in vitro. Proc Am Assoc Cancer Res 2007 ; 275.
5) Schoffski P, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma : a randomised, open-label, multicentre, phase 3 trial. Lancet 2016 ; 387 : 1629-37.
6) Sonpavde G, Hutson TE. Pazopanib : a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep 2007 ; 9 : 115-9.
7) van der Graaf WT, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE) : a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012 ; 379 : 1879-86.
8) Italiano A, et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. Cancer 2012 ; 118 : 3330-6.
9) Balcerzak SP, et al. A phase II trial of paclitaxel in patients with advanced soft tissue sarcomas. A Southwest Oncology Group study. Cancer 1995 ; 76 : 2248-52.
10) Schoffski P, et al. Activity of eribulin mesylate in patients with soft-tissue sarcoma : a phase 2 study in four independent histological subtypes. Lancet Oncol 2011 ; 12 : 1045-52.
11) Brown LF, et al. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi's sarcoma and cutaneous angiosarcoma. Am J Pathol 1996 ; 148 : 1065-74.
12) Itakura E, et al. Detection and characterization of vascular endothelial growth factors and their receptors in a series of angiosarcomas. J Surg Oncol 2008 ; 97 : 74-81.
13) Ogata D, et al. Pazopanib treatment slows progression and stabilizes disease in patients with taxane-resistant cutaneous angiosarcoma. Med Oncol 2016 ; 33 : 116.
14) Tomita H, et al. Angiosarcoma of the scalp successfully treated with pazopanib. J Am Acad Dermatol 2014 ; 70 : e19-21.
15) Fujisawa Y, et al. The efficacy of eribulin mesylate for patients with cutaneous angiosarcoma previously treated with taxane : a multicentre prospective observational study. Br J Dermatol 2020 ; 183 : 831-9.
16) Kitamura S, et al. Pazopanib does not bring remarkable improvement in patients with angiosarcoma. J Dermatol 2017 ; 44 : 64-7.
17) Fujisawa Y, et al. Cutaneous Angiosarcoma : The Possibility of New Treatment Options especially for Patients with Large Primary Tumor. Front Oncol 2018 ; 8 : 46.
18) Fujisawa Y, et al. Chemoradiotherapy with taxane is superior to conventional surgery and radiotherapy in the management of cutaneous angiosarcoma : a multicentre, retrospective study. Br J Dermatol 2014 ; 171 : 1493-500.
19) Tamura K, et al. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma : Multicenter, open-label phase 2 trial. Cancer Sci 2019 ; 110 : 2894-904.
20) Florou V, et al. Angiosarcoma patients treated with immune checkpoint inhibitors : a case series of seven patients from a single institution. J Immunother Cancer 2019 ; 7 : 213.
21) Honda Y, et al. Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 2016 ; 6 : e1253657.
22) Painter CA, et al. The Angiosarcoma Project : enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat Med 2020 ; 26 : 181-7.
P.219 掲載の参考文献
2) 平成26-28年度厚生労働科学研究費補助金難治性疾患等政策研究事業「難治性血管腫・血管奇形・リンパ管腫・リンパ管腫症および関連疾患についての調査研究」班. 血管腫・血管奇形・リンパ管奇形診療ガイドライン 2017. 2017.
3) Storch CH, Hoeger PH. Propranolol for infantile haemangiomas ; insights into the molecular mechanisms of action. Br J Dermatol 2010 ; 163 : 269-74.
4) Drolet BA, et al. Initiation and use of propranolol for infantile hemangioma : report of a consensus conference. Pediatrics 2013 ; 131 : 128-40.
5) Leaute-Labreze C, et al. A Randomized,Controlled Trial of Oral Propranolol in Infantile Hemangioma. N Engl J Med 2015 ; 372 : 735-46.
6) マルホ製薬株式会社. 乳児血管腫治療剤 ヘマンジオル(R) シロップ小児用0.375% 適正使用ガイド. https://www.maruho.co.jp/
7) 桑野嘉弘. 乳児血管腫の治療. 皮膚病診療 2019 ; 41 : 900-6.
8) 馬場直子, 南 由紀恵. 低出生体重児・早産児に対する乳児血管腫のプロプラノロール治療. 日小皮会誌 2020 ; 39 : 111-9.
P.228 掲載の参考文献
1) Wataya-Kaneda M. Mammalian target of rapamycin and tuberous sclerosis complex. J Dermatol Sci 2015 ; 79 : 93-100.
2) 「結節性硬化症の診断基準及び治療ガイドライン」改訂委員会 (金田眞理ほか). 結節性硬化症の診断基準及び治療ガイドライン-改訂版-. 日皮会誌 2018 ; 128 : 1-16.
3) Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management : recommendation of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013 ; 49 : 255-65.
4) Northrup H, Krueger DA ; International Tuberous Sclerosis Complex Consensus Group.Tuberous sclerosis complex diagnostic criteria update : recommendation of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013 ; 49 : 243-54.
7) Tee AR, et al. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003 ; 13 : 1259-68.
8) Inoki K, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003 ; 17 : 1829-34.
9) Tee AR, et al. Inactivation of tuberous sclerosis complex-1 and-2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and-independent phosphorylation of tuberin. J Biol Chem 2003 ; 278 : 37288-96.
10) Kwiatkowski DJ, et al (eds). Tuberous Sclerosis Complex : Genes, Clinical Features and Therapeutics. Hoboken : WILLY-BLACKWELL Press ; 2010.
11) Ishii R, et al. Everolimus improves behavioral deficits in a patient with autism associated with tuberous sclerosis : a case report. Neuropsychiatric Electrophysiology 2015 ; 1 : 6.
12) Kitayama K, et al. Efficiency of sirolimus delivery to the skin is dependent on delivery route and formulation. J Dermatol Sci 2019 ; 94 : 350-3.
13) Wataya-Kaneda M, et al. Clinical and Histologic Analysis of the Efficacy of Topical Rapamycin Therapy Against Hypomelanotic Macules in Tuberous Sclerosis Complex. JAMA Dermatol 2015 ; 151 : 722-30.
14) Wataya-Kaneda M, et al. Safety and Efficacy of the Sirolimus Gel for TSC Patients With Facial Skin Lesions in a Long-Term, Open-Label, Extension, Uncontrolled Clinical Trial. Dermatol Ther (Heidelb) 2020 ; 10 : 635-50.
15) Wataya-Kaneda M, et al. Efficacy and Safety of Topical Sirolimus Therapy for Facial Angiofibromas in the Tuberous Sclerosis Complex : A Randomized Clinical Trial. JAMA Dermatol 2017 ; 153 : 39-48.
16) Wataya-Kaneda M, et al. Sirolimus Gel Treatment vs Placebo for Facial Angiofibromas in Patients With Tuberous Sclerosis Complex : A Randomized Clinical Trial. JAMA Dermatol 2018 ; 154 : 781-8.
P.235 掲載の参考文献
1) Has C, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 2020 ; 183 : 614-27.
2) Nanba D. Human keratinocyte stem cells : From cell biology to cell therapy. J Dermatol Sci 2019 ; 96 : 66-72.
3) Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes : the formation of keratinizing colonies from single cells. Cell 1975 ; 6 : 331-43.
4) Gallico GG 3rd, et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984 ; 311 : 448-51.
5) O'Connor NE, et al. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1981 ; 1 : 75-8.
6) De Rosa L, et al. Laminin 332-Dependent YAP Dysregulation Depletes Epidermal Stem Cells in Junctional Epidermolysis Bullosa. Cell Rep 2019 ; 27 : 2036-49 e6.
7) De Rosa L, et al. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports 2013 ; 2 : 1-8.
8) Mavilio F, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 2006 ; 12 : 1397-402.
9) Hirsch T, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017 ; 551 : 327-32.
10) Eichstadt S, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight 2019 ; 4 : e130554.
11) Siprashvili Z, et al. Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients With Recessive Dystrophic Epidermolysis Bullosa. JAMA 2016 ; 316 : 1808-17.
12) Nomura T. Recombination-induced revertant mosaicism in ichthyosis with confetti and loricrin keratoderma. J Dermatol Sci 2020 ; 97 : 94-100.
13) Jonkman MF, Pasmooij AMG. Revertant mosaicism--patchwork in the skin. N Engl J Med 2009 ; 360 : 1680-2.
14) Matsumura W, et al. Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2019 ; 139 : 2115-24 e11.
15) Gostynski A, et al. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol 2009 ; 161 : 444-7.
P.240 掲載の参考文献
1) Tebruegge M, et al. What's bugging you? An update on the treatment of head lice infestation. Arch Dis Child Educ Prac Ed 2011 ; 96 : 2-10.
2) Chosidow O, et al. Controlled study of malathion and d-phenothrin lotions for Pediculus humanus var capitis-infested schoolchildren. Lancet 1994 ; 344 : 1724-7.
3) Hodgdon HE, et al. Determination of knockdown resistance allele frequencies in global human head louse populations using the serial invasive signal amplification reaction. Pest Manag Sci 2010 ; 66 : 1031-40.
4) SupYoon K, et al. Three mutations identified in the voltage-sensitive sodium channel α-subunit gene of permethrin-resistant human head lice reduce the permethrin sensitivity of house fly Vssc1 sodium channels expressed in Xenopus oocytes. Insect Biochem Mol Biol 2008 ; 38 : 296-306.
5) 冨田隆史ほか. アタマジラミのピレスロイド系駆除剤抵抗性. 厚生労働科学研究費補助金 (新興・再興感染症研究事業) 分担研究 2011年度報告書.
6) Kasai S, et al. Prevalence of kdr-like mutations associated with pyrethroid resistance in human head louse populations in Japan. J Med Entomol 2009 ; 46 : 77-82.
7) Gholizadeh S, et al. Molecular Detection of Knockdown Resistance (kdr) in Blattella germanica (Blattodea : Blattellidae) From Northwestern Iran. J Med Entomol 2014 ; 51 : 976-9.
8) Baraka GT, et al. Susceptibility Status of Bedbugs (Hemiptera : Cimicidae) Against Pyrethroid and Organophosphate Insecticides in Dar es Salaam, Tanzania. J Med Entomol 2020 ; 57 : 524-8.
9) SupYoon K, et al. Knockdown resistance allele frequencyes in North American head louse (Anoplura : Pediculidae) populations. J Med Entomol 2014 ; 51 : 450-7.
10) Currie MJ, et al. A pilot study of the use of oral ivermectin to treat head lice in primary school students in Australia. Pediatr Dermatol 2010 ; 27 : 595-9.
11) Pariser DM, et al. Topical 0.5% ivermectin lotion for treatment of head lice. N Engl J Med 2012 ; 367 : 1687-93.
P.246 掲載の参考文献
1) Zouboulis CC, et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol 2015 ; 29 : 619-44.
2) 化膿性汗腺炎診療の手引き策定委員会 (葉山惟大ほか). 日本皮膚科学会ガイドライン 化膿性汗腺炎診療の手引き 2020. 日皮会誌 2021 ; 131 : 1-28.
3) Frew JW. Hidradenitis suppurativa is an autoinflammatory keratinization disease : A review of the clinical, histologic, and molecular evidence. JAAD International 2020 ; 1 : 62-72.
4) Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa : an approach to pathogenesis by evidence from translational biology. Exp Dermatol 2013 ; 22 : 172-7.
5) Pink AE, et al. γ-Secretase mutations in hidradenitis suppurativa : new insights into disease pathogenesis. J Invest Dermatol 2013 ; 133 : 601-7.
6) Nomura Y, et al. A novel splice site mutation in NCSTN underlies a Japanese family with hidradenitis suppurativa. Br J Dermatol 2013 ; 168 : 206-9.
7) Frew JW, Navrazhina K. In silico Analysis of Gamma-Secretase-Complex Mutations in Hidradenitis Suppurativa Demonstrates Disease-Specific Substrate Recognition and Cleavage Alterations. Front Med (Lausanne) 2019 ; 6 : 206.
8) Frew JW, Navrazhina K. No evidence that impaired Notch signalling differentiates hidradenitis suppurativa from other inflammatory skin diseases. Br J Dermatol 2020 ; 182 : 1042-3.
9) Pan Y, et al. gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 2004 ; 7 : 731-43.
10) アダリムマブ・化膿性汗腺炎診療の手引き策定委員会 (照井正ほか). 化膿性汗腺炎におけるアダリムマブの使用上の注意/化膿性汗腺炎の診療の手引き. 日皮会誌 2019 ; 129 : 325-9.
11) Gulliver W, et al. Evidence-based approach to the treatment of hidradenitis suppurativa/acne inversa, based on the European guidelines for hidradenitis suppurativa. Rev Endocr Metab Disord 2016 ; 17 : 343-51.
12) Kimball AB, et al. Two Phase 3 Trials of Adalimumab for Hidradenitis Suppurativa. N Engl J Med 2016 ; 375 : 422-34.
13) Kimball AB, et al. Assessing the validity, responsiveness and meaningfulness of the Hidradenitis Suppurativa Clinical Response (HiSCR) as the clinical endpoint for hidradenitis suppurativa treatment. Br J Dermatol 2014 ; 171 : 1434-42.
14) Zouboulis CC, et al. Long-term adalimumab efficacy in patients with moderate-to-severe hidradenitis suppurativa/acne inversa : 3-year results of a phase 3 open-label extension study. J Am Acad Dermatol 2019 ; 80 : 60-9.
15) Marzano AV, et al. Evidence for a 'window of opportunity' in hidradenitis suppurativa treated with adalimumab : a retrospective, real-life multicentre cohort study. Br J Dermatol 2021 ; 184 : 133-40.
16) Morita A, et al. Twenty-four-week interim analysis from a phase 3 open-label trial of adalimumab in Japanese patients with moderate to severe hidradenitis suppurativa. J Dermatol 2019 ; 46 : 745-51.
17) Morita A, et al. Long-term analysis of adalimumab in Japanese patients with moderate to severe hidradenitis suppurativa : Open-label phase 3 results. J Dermatol 2021 ; 48 : 3-13.
18) Prussick L, et al. Open-label, investigator-initiated, single-site exploratory trial evaluating secukinumab, an anti-interleukin-17A monoclonal antibody, for patients with moderate-to-severe hidradenitis suppurativa. Br J Dermatol 2019 ; 181 : 609-11.
P.253 掲載の参考文献
1) 岩田洋平. ベーチェット病の皮膚病変. 現代医学 2017 ; 65 : 27-32.
2) 岩田洋平. ベーチェット病. Clinical Derma 2020 ; 22 : 3-6.
3) 中村晃一郎ほか. 日本皮膚科学会ガイドライン ベーチェット病の皮膚粘膜病変診療ガイドライン. 日皮会誌 2018 ; 128 : 2087-101.
4) Greco A, et al. Behcet's disease : New insights into pathophysiology, clinical features and treatment options. Autoimmun Rev 2018 ; 17 : 567-75.
5) Tong B, et al. Immunopathogenesis of Behcet's Disease. Front Immunol 2019 ; 10 : 665.
6) 天野宏一. 生物学的製剤 TNF阻害薬. 日内会誌 2011 ; 100 : 2966-71.
7) Mitoma H, et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells : comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum 2008 ; 58 : 1248-57.
8) Marchesoni A, et al. TNF-alpha antagonist survival rate in a cohort of rheumatoid arthritis patients observed under conditions of standard clinical practice. Ann N Y Acad Sci 2009 ; 1173 : 837-46.
9) Weinblatt ME, et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate : the ARMADA trial. Arthritis Rheum 2003 ; 48 : 35-45.
10) Melikoglu M, et al. Short-term trial of etanercept in Behcet's disease : a double blind, placebo controlled study. J Rheumatol 2005 ; 32 : 98-105.
11) Perra D, et al. Adalimumab for the treatment of Behcet's disease : experience in 19 patients. Rheumatology 2012 ; 51 : 1825-31.
12) Almoznino G, Ben-Chetrit E. Infliximab for the treatment of resistant oral ulcers in Behcet's disease : a case report and review of the literature. Clin Exp Rheumatol 2007 ; 25 : S99-102.
13) Kasugai C, et al. Infliximab treatment of severe genital ulcers associated with Behcet disease. J Am Acad Dermatol 2010 ; 62 : 162-4.
14) Olivieri I, et al. Successful treatment of recalcitrant genital ulcers of Behcet's disease with adalimumab after failure of infliximab and etanercept. Clin Exp Rheumatol 2009 ; 27 : S112.
15) Atzeni F, et al. Successful treatment of leg ulcers in Behcet's disease using adalimumab plus methotrexate after the failure of infliximab. Clin Exp Rheumatol 2010 ; 28 : S94.
16) Hatemi G, et al. Apremilast for Behcet's syndrome--a phase 2, placebo-controlled study. N Engl J Med 2015 ; 372 : 1510-8.
17) Hatemi G, et al. Trial of Apremilast for Oral Ulcers in Behcet's Syndrome. N Engl J Med 2019 ; 381 : 1918-28.
P.261 掲載の参考文献
1) Yamane K, et al. Elevated plasma levels of endothelin-1 in systemic sclerosis. Arthritis Rheum 1991 ; 34 : 243-4.
2) Vancheeswaran R, et al. Circulating endothelin-1 levels in systemic sclerosis subsets--a marker of fibrosis or vascular dysfunction? J Rheumatol 1994 ; 21 : 1838-44.
3) Penn H, et al. Targeting the endothelin axis in scleroderma renal crisis : rationale and feasibility. Q J Med 2013 ; 106 : 839-48.
4) 浅野善英. ボセンタンによる潰瘍治療. 皮膚病診療 2015 ; 37 : 1011-7.
5) Motegi S. Endothelin. In : Takehara K, et al (eds). Systemic sclerosis. Basic and Translational Research. Berlin : Springer ; 2016. pp.155-72.
6) Van Giersbergen PLM, et al. Comparative investigation of the pharmacokinetics of bosentan in Caucasian and Japanese healthy subjects. J Clin Pharmacol 2005 ; 45 : 42-7.
7) 全身性強皮症 診断基準・重症度分類・診療ガイドライン委員会 (浅野善英ほか). 日本皮膚科学会ガイドライン 全身性強皮症 診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 1831-96.
8) 茂木精一郎. 全身性強皮症の診断から治療まで. Derma 2016 ; 250 : 1-15.
9) 茂木精一郎. 難治性指尖潰瘍の評価とその管理. リウマチ科 2020 ; 63 : 493-9.
10) Guiducci S, et al. Bosentan fosters microvascular de-remodelling in systemic sclerosis. Clin Rheumatol 2012 ; 31 : 1723-5.
11) Korn JH, et al. Digital ulcers in systemic sclerosis : prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 2004 ; 50 : 3985-93.
12) Matucci-Cerinic M, et al. Bosentan treatment of digital ulcers related to systemic sclerosis : results from the RAPIDS-2 randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 2011 ; 70 : 32-8.
13) Hamaguchi Y, et al. Safety and tolerability of bosentan for digital ulcers in Japanese patients with systemic sclerosis : Prospective, multicenter, open-label study. J Dermatol 2017 ; 44 : 13-7.
14) Channick R, et al. Endothelin receptor antagonists in pulmonary arterial hypertension. J Am Coll Cardiol 2004 ; 43 : 62S-67S
15) Black SM, et al. Emergence of smooth muscle cell endothelin B-mediated vasoconstriction in lambs with experimental congenital heart disease and increased pulmonary blood flow. Circulation 2003 ; 108 : 1646-54.
16) Bauer M, et al. Selective upregulation of endothelin B receptor gene expression in severe pulmonary hypertension. Circulation 2002 ; 105 : 1034-6.
17) Cardillo C, et al. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertension 1999 ; 33 : 753-8.
18) Yang Z, et al. Endothelin-1 potentiates human smooth muscle cell growth to PDGF : effects of ETA and ETB receptor blockade. Circulation 1999 ; 100 : 5-8.
19) Cambrey AD, et al. Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro. Am J Respir Cell Mol Biol 1994 ; 11 : 439-45.
20) 浅野善英. 全身性強皮症の手指潰瘍 : ボセンタン. Visual Dermatology 2017 ; 16 : 874-5.
21) Motegi S, et al. Beneficial effect of botulinum toxin A on Raynaud's phenomenon in Japanese patients with systemic sclerosis : A prospective, case series study. J Dermatol 2016 ; 43 : 56-62.
22) Motegi S, et al. Efficacy of Botulinum Toxin B Injection for Raynaud's Phenomenon and Digital Ulcers in Patients with Systemic Sclerosis. Acta Derm Venereol 2017 ; 97 : 843-50.
23) Hachulla E, et al. Efficacy of sildenafil on ischaemic digital ulcer healing in systemic sclerosis : the placebo-controlled SEDUCE study. Ann Rheum Dis 2016 ; 75 : 1009-15.
24) Abou-Raya A, et al. Statins : potentially useful in therapy of systemic sclerosis-related Raynaud's phenomenon and digital ulcers. J Rheumatol 2008 ; 35 : 1801-8.
P.271 掲載の参考文献
1) Fujii K, et al. Cutaneous lymphoma in Japan, 2012-2017 : A nationwide study. J Dermatol Sci 2020 ; 97 : 187-93.
2) 皮膚悪性腫瘍診療ガイドライン改訂委員会皮膚リンパ腫診療ガイドライングループ (大塚幹夫ほか). 日本皮膚科学会ガイドライン 皮膚悪性腫瘍ガイドライン 第3版 皮膚リンパ腫診療ガイドライン 2020. 日皮会誌 2020 ; 130 : 1347-423.
3) Duvic M, et al. Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch Dermatol 2001 ; 137 : 581-93.
4) Hamada T, et al. Phase I/II study of the oral retinoid X receptor agonist bexarotene in Japanese patients with cutaneous T-cell lymphomas. J Dermatol 2017 ; 44 : 135-42.
5) Duvic M, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma : multinational phase II-III trial results. J Clin Oncol 2001 ; 19 : 2456-71.
6) Richon VM, et al. Development of vorinostat : current applications and future perspectives for cancer therapy. Cancer Letters 2009 ; 208 : 201-10.
7) Olsen EA, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007 ; 25 : 3109-15.
8) Wada H, et al. Phase I and pharmacokinetic study of the oral histone deacetylase inhibitor vorinostat in Japanese patients with relapsed or refractory cutaneous T-cell lymphoma. J Dermatol 2012 ; 39 : 823-8.
9) Sugaya M, et al. CCR4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol 2015 ; 42 : 613-5.
10) Ogura M, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol 2014 ; 32 : 1157-63.
11) Fuji S, et al. Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J Clin Oncol 2016 ; 34 : 3426-33.
12) Sugio T, et al. Mogamulizumab treatment prior to allogeneic hematopoietic stem cell transplantation induces severe acute graft-versus-host disease. Biol Blood Marrow Transplant 2016 ; 22 : 1608-14.
13) Duvic M, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood 2015 ; 125 : 1883-9.
14) Kim YH, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC) : an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol 2018 ; 19 : 1192-204.
15) Piekarz RL, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009 ; 27 : 5410-7.
16) Whittaker SJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 2010 ; 28 : 4485-91.
17) Zinzani PL, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma : experience in 44 patients. J Clin Oncol 2000 ; 18 : 2603-6.
18) Marchi E, et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma : phase II study of 32 patients. Cancer 2005 ; 104 : 2437-41.
19) Duvic M, et al. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma 2006 ; 7 : 51-8.
20) O'Connor OA, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma : results from the pivotal PROPEL study. J Clin Oncol 2011 ; 29 : 1182-9.
21) Foss F, et al. Pralatrexate is an effective treatment for relapsed or refractory transformed mycosis fungoides : a subgroup efficacy analysis from the PROPEL study. Clin Lymphoma Myeloma Leuk 2012 ; 12 : 238-43.
22) Horwitz SM, et al. Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 2012 ; 119 : 4115-22.
23) Maruyama D, et al. Phase I/II study of pralatrexate in Japanese patients with relapsed or refractory peripheral T-cell lymphoma. Cancer Sci 2017 ; 108 : 2061-8.
24) Duvic M, et al. Results of a phase II Trial of brentuximab vedotin for CD30+ cutaneous T-cell lymphoma and lymphomatoid papulosis. J Clin Oncol 2015 ; 33 : 3759-65.
25) Kim YH, et al. Phase II investigator-initiated study of brentuximab vedotin in mycosis fungoides and Sezary syndrome with variable CD30 expression level : a multi-institution collaborative project. J Clin Oncol 33 : 3750-8.
26) Prince HM, et al. Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA) : an international, open-label, randomised, phase 3, multicentre trial. Lancet 2017 ; 390 : 555-66.
P.279 掲載の参考文献
1) Okon LG, Werth VP. Cutaneous lupus erythematosus : Diagnosis and treatment. Best Pract Res Clin Rheumatol 2013 ; 27 : 391-404.
2) 古川福実ほか. ヒドロキシクロロキン適正使用の手引き. 日皮会誌 2015 ; 125 : 2049-60.
3) 古川福実. 総説 紫外線と皮膚 ループスエリテマトーデスから探る光線過敏. 日本美容皮膚科学会雑誌 2018 ; 28 : 297-306.
4) Furukawa F, et al. Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clin Exp Immunol 1999 ; 118 : 164-70.
5) Gerl V, et al. The intracellular 52-kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor α via tumor necrosis factor receptor I. Arthritis Rheum 2005 ; 52 : 531-8.
6) Furukawa F, et al. Relationship between heat shock protein induction and the binding of antibodies to the extractable nuclear antigens on cultured human keratinocytes. J Invest Dermatol 1993 ; 101 : 191-5.
7) Mikita N, et al. Recent advances in cytokines in cutaneous and systemic lupus erythematosus. J Dermatol 2011 ; 38 : 839-49.
8) Mendez-Flores S, et al. Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine 2019 ; 119 : 95-112.
9) Wenzel J. Cutaneous lupus erythematosus : new insights into pathogenesis and therapeutic strategies. Nat Rev Rheumatol 2019 ; 15 : 519-32.
10) Sim JH, et al. Immune cell-stromal circuitry in lupus photosensitivity. J Immunol 2021 ; 206 : 302-9.
11) Inaba Y, et al. Antinuclear antibodies in Nakajo-Nishimura syndrome. A bridge with research on refractory autoimmune diseases. Trends Immunother 2018 ; 2 : 1078.
12) 古川福実. 光線によって悪化する疾患 SLE (systemic lupus erythematosus 全身性エリテマトーデス). 臨床光皮膚科学. 東京 : 南江堂 ; 2021.
13) Furukawa F. Hydroxychloroquine in lupus erythematosus, a new horizon of the old drug. Trends Immunother 2017 ; 1 : 99-100.
14) Barton GM, Kagan JC. A cell biological view of Toll-like receptor function : regulation through compartmentalization. Nat Rev Immunol 2009 ; 9 : 535-42.
15) Yokogawa N, et al. Effects of hydroxychloroquine in patients with cutaneous lupus erythematosus : A multi-center, double blind randomized, parallel-group trial. Arthritis Rheumatol 2017 ; 69 : 791-9.
16) 山田真由美ほか. 日本人皮膚エリテマトーデスおよび全身性エリテマトーデス患者を対象とするヒドロキシクロロキンの実臨床下における安全性と有効性-ヒドロキシクロロキン使用成績調査の中間解析. Therapeutic Research 2020 ; 41 : 297-319.
17) サノフィ株式会社. ヒドロキシクロロキンの使用に関する情報-プラケニル(R) 錠200 mg使用成績調査 中間解析結果. https://e-mr.sanofi.co.jp/-/media/EMS/Conditions/eMR/products/plaquenil/downloads/MATJP-2000621-2006.pdf
18) Sharma AN, et al. Characterizing the adverse dermatologic effects of hydroxychloroquine : A systematic review. J Am Acad Dermatol 2020 ; 83 : 563-78.
19) Matsuda T, et al. Early cutaneous eruptions after oral hydroxychloroquine in a lupus erythematosus patient : A case report and review of the published work. J Dermatol 2018 ; 45 : 344-8.
20) Hirakawa Y, et al. Hydroxychloroquine enhanced urticarial reaction in a patient with discoid lupus erythematosus. Trends Immunother 2017 ; 1 : 121-3.
21) Petri M, et al. Hydroxychloroquine blood levels predict hydroxychloroquine retinopathy. Arthritis Rheumatol 2020 ; 72 : 448-53.
22) Yokogawa N, et al. Early-onset hydroxychloroquine retinopathy and a possible relationship to blood levels : comment on the article by Petri et al. Arthritis Rheumatol 2021 ; 73 : 358-9.
23) Lenfant T, et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus : a case-control study with hydroxychloroquine blood-level analysis. Rheumatology (Oxford) 2020 ; 59 : 3807-16.
24) Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020 ; 30 : 269-71.
25) Chen C, et al. Safety of hydroxychloroquine in COVID-19 and other diseases : a systematic review and meta-analysis of 53 randomized trials. Eur J Clin Pharmacol 2021 ; 77 : 13-24.
26) WHO. WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. in 4 July 2020 News release. https://www.google.com/search?client=safari&rls=en&q=WHO+discontinues+hydroxychloroquine+and+lopinavir/ritonavir+treatment+arms+for+COVID-19&ie=UTF-8&oe=UTF-8
27) 日本版敗血症診療ガイドライン2020特別委員会 COVID-19対策タスクフォース. 日本版敗血症診療ガイドライン 2020 (J-SSCG2020) 特別編 COVID-19薬物療法に関するRapid/Living recommendations 第二版. https://www.jsicm.org/news/upload/J-SSCG2020_COVID-19_1_ver.2.2.0.pdf
28) 日本医学会連合. COVID-19 expert opinion 第2版 2021年1月4日版. https://www.jmsf.or.jp/uploads/media/2021/01/20210104093651.pdf
29) 横川直人. ヒドロキシクロロキン上市-その歴史. Visual Dermatology 2017 ; 16 : 106-10.
30) 池田高治. ヒドロキシクロロキンが有効な皮疹, 無効な皮疹. Visual Dermatology 2017 ; 16 : 112-7.
31) Yan D, et al. Candidate drug replacements for quinacrine in cutaneous lupus erythematosus. Lupus Sci Med 2020 ; 7 : e000430.
32) Matyskiela ME, et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem 2018 ; 61 : 535-42.
P.285 掲載の参考文献
5) Roberts JL, et al. Clinical dose ranging studies with finasteride, a type 2 5alpha-reductase inhibitor, in men with male pattern hair loss. J Am Acad Dermatol 1999 ; 41 : 555-63.
8) Stough DB, et al. Finasteride improves male pattern hair loss in a randomized study in identical twins. Eur J Dermatol 2002 ; 12 : 32-7.
9) Whiting DA, et al. Efficacy and tolerability of finasteride 1 mg in men aged 41 to 60 years with male pattern hair loss. Eur J Dermatol 2003 ; 13 : 150-60.
10) Price VH, et al. Changes in hair weight in men with androgenetic alopecia after treatment with finasteride (1 mg daily) : three-and 4-year results. J Am Acad Dermatol 2006 ; 55 : 71-4.
11) Kawashima M, et al. Finasteride in the treatment of Japanese men with male pattern hair loss. Eur J Dermatol 2004 ; 14 : 247-54.
12) 川島眞ほか. 男性型脱毛症 (AGA) に対するフィナステリドの長期投与 (3年間) 試験成績 多施設共同オープン試験. 臨皮 2006 ; 60 : 521-30.
15) Gubelin Harcha W, et al. A randomized, active-and placebo-controlled study of the efficacy and safety of different doses of dutasteride versus placebo and finasteride in the treatment of male subjects with androgenetic alopecia. J Am Acad Dermatol 2014 ; 70 : 489-98.
19) Kim H, et al. Low-level light therapy for androgenetic alopecia : a 24-week, randomized, doubleblind, sham device-controlled multicenter trial. Dermatol Surg 2013 ; 39 : 1177-83.

8章 今後の新薬への期待

P.292 掲載の参考文献
1) Nast A, et al. European evidence-based (S3) guideline for the treatment of acne-update 2016-short version. J Eur Acad Dermatol Venereol 2016 ; 30 : 1261-8.
2) Zaenglein AL, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol 2016 ; 74 : 945-73.
3) 林伸和 ほか. 日本皮膚科学会ガイドライン 尋常性ざ瘡治療ガイドライン 2017. 日皮会誌 2017 ; 127 : 1261-302.
4) Dessinioti C, et al. Comparison of guidelines and consensus articles on the management of patients with acne with oral isotretinoin. J Eur Acad Dermatol Venereol 2020 ; 34 : 2229-40.
5) Peck GL, et al. Prolonged remissions of cystic and conglobate acne with 13-cis-retinoic acid. N Engl J Med 1979 ; 300 : 329-33.
6) Peck GL, et al. Isotretinoin versus placebo in the treatment of cystic acne, a randomized double-blind study. J Am Acad Dermatol 1982 ; 6 : 735-45.
7) Nelson AM, et al. 13-scis retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol 2006 ; 126 : 2178-89.
8) Nelson AM, et al. Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol 2009 ; 1 : 177-87.
9) Nelson AM, et al. Early gene changes induced by isotretinoin in the skin provide clues to its mechanism of action. Dermatoendocrinol 2009 ; 1 : 100-1.
10) King K, et al. Double-blind study of the effects of 13-cis retinoic acid on acne, sebum excretion rate and microbial population. Br J Dermatol 1987 ; 107 : 583-90.
11) Leyden JJ, et al. Effect of 13-cis retinoic acid on sebum production and Propionibacterium acnes in severe nodulocystic acne. Arch Dermatol Res 1982 ; 272 : 331-7.
12) Dalziel K, et al. The effects of isotretinoin on follicular and sebaceous gland differentiation. Br J Dermatol 1987 ; 117 : 317-23.
13) Leyden JJ, et al. Qualitative and quantitative changes in cutaneous bacteria associated with systemic isotretinoin therapy for acne conglobata. J Invest Dermatol 1986 ; 86 : 390-3.
14) Falcon RH, et al. In vitro effect of isotretinoin on monocyte chemotaxis. J Invest Dermatol 1987 ; 86 : 550-2.
15) Vallerand IA, et al. Efficacy and adverse events of oral isotretinoin for acne : a systematic review. Br J Dermatol 2018 ; 178 : 76-85.
16) Tan J, et al. A treatment for severe nodular acne : a randomized investigator-blinded, controlled, noninferiority trial comparing fixed-dose adapalene/benzoyl peroxide plus doxycycline vs. oral isotretinoin. Br J Dermatol 2014 ; 171 : 1508-16.
17) Goldstein JA, et al. Comparative effect of isotretinoin and etretinate on acne and sebaceous gland secretion. J Am Acad Dermatol 1982 ; 6 (4 Pt 2 Suppl) : 760-5.
18) Dai WS, et al. Epidemiology of isotretinoin exposure during pregnancy. J Am Acad Dermatol 1992 ; 26 : 599-606.
19) Webster GF, et al. Comparative pharmacokinetic profiles of a novel isotretinoin formulation (isotretinoin-Lidose) and the innovator isotretinoin formulation : A randomized, 4-treatment, crossover study. J Am Acad Dermatol 2013 ; 69 : 762-7.
20) Webster GF, et al. Results of a phase III, double-blind, randomized, parallel-group, non-inferiority study evaluating the safety and efficacy of isotretinoin-lidose in patients with severe recalcitrant nodular acne. J Drugs Dermatol 2014 ; 13 ; 665-70.
21) Madan S, et al. Comparative pharmacokinetic profiles of a novel low-dose micronized-isotretinoin 32 mg formulation and lidose-isotretinoin 40 mg in fed and fasted conditions : two open-label, randomized, crossover studies in healthy adult participants. Acta Derm Venereol 2020 ; 100 : adv00049.
22) 厚生労働省. アキュテイン (ACCUTANE) (わが国で未承認の難治性ニキビ治療薬) に関する注意喚起について. https://www.mhlw.go.jp/topics/bukyoku/iyaku/kojinyunyu/050609-1b.html (2021年4月15日閲覧)
P.298 掲載の参考文献
1) 今村貞夫ほか. Metronidazoleによる酒さの治療とその奏効機序. 皮膚科紀要 1986 ; 81 : 37-43.
2) 山崎研志. 赤ら顔と自然免疫. 香粧会誌 2016 ; 40 : 20-3.
3) 林伸和ほか. 日本皮膚科学会ガイドライン 尋常性ざ瘡治療ガイドライン 2017. 日皮会誌 2017 ; 127 : 1261-302.
4) van Zuuren EJ, et al. Interventions for rosacea. Cochrane Database Syst Rev 2011 ; 16 (3) : CD003262.
5) Del Rosso JQ, et al. Consensus Recommendations From the American Acne & Rosacea Society on the Management of Rosacea, Part 2 : A Status Report on Topical Agents. Cutis 2013 ; 92 : 277-84.
6) Reinholz M, et al. Rosacea-S1 Guideline. J Dtsch Dermatol Ges 2013 ; 11 : 768-80.

9章 unmet needsのある皮膚疾患治療薬の開発動向

P.306 掲載の参考文献
1) Ooiso N, et al. Guidelines for the diagnosis and treatment of vitiligo in Japan. J Dermatol 2013 ; 40 : 344-54.
2) Speeckaert R,et al. Biomarkers of disease activity in vitiligo : A systematic review. Autoimmun Rev 2017 ; 16 : 937-45.
3) Li S, et al. Oxidative stress drives CD8+T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol 2017 ; 140 : 177-89.
4) Biswas KB, et al. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 2020 ; 10 : 4930.
5) Boukhedoun N, et al. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. JCI Insight 2020 ; 5 : e133772.
6) Richmond JM, et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Trans Med 2018 ; 10 (450) : eaam7710.
7) Nakagawa H, et al. Delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with moderate to severe atopic dermatitis : A phase 3, randomized, double-blind, vehicle-controlled study and an open-label, long-term extension study. J Am Acad Dermatol 2020 ; 82 : 823-31.
8) Howell MD, et al. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front Immunol 2019 ; 10 : 2342.
9) Azzolino V, et al. Jak inhibitors reverse vtiligo in mice but do not deplete skin resident memory T cells. J Invest Dermatol 2021 ; 141 : 182-4. e1.
10) Rothstein B, et al. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol 2017 ; 76 : 1054-60.
12) Rosmarin D, et al. Ruxolitinib cream for treatment of vitiligo : a ramdomised, controlled, phase 2 trial. Lancet 2020 ; 396 : 110-20.
13) Bhardwaj S, et al. Role of IL-17A receptor blocking in melanocyte survival : A strategic intervention against vitiligo. Exp Dermatol 2019 ; 28 : 682-9.
14) Speeckaert R, et al. IL-17A is not a treatment target in progressive vitiligo. Pigment Cell Melanoma Res 2019 ; 32 : 842-7.
15) Kotobuki Y, et al. Dysregulation of melanocyte function by Th17-related cytokines : significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res 2012 ; 25 : 219-30.
16) Wataya-Kaneda M, et al. Clinical and Histologic Analysis of the Efficacy of Topical Rapamycin Therapy Against Hypomelanotic Macules in Tuberous Sclerosis Complex. JAMA Dermatol 2015 ; 151 : 722-30.
17) 木下真直ほか. シロリムス外用薬が有効であった結節性硬化症に伴う葉状白斑と血管線維腫. 皮膚病診療 2019 ; 41 : 1017-20.
18) Yang F, et al. Dysregulation of autophagy in melanocytes contributes to hypopigmented macules in tuberous sclerosis complex. J Dermatol Sci 2018 ; 89 : 155-64.
19) Yang L, et al. 4- (4-hydroroxyphenyl) -2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes : insights into the mechanisms of rhododendrol-induced leukoderma. J Dermatol Sci 2015 ; 77 : 182-5.
20) Oiso N, et al. Nevus depigmentosus following the Blaschko lines with the robustly activated mTOR pathway. J Eur Acad Dermatol Venereol 2020 ; 34 : e410-2.
21) Cao J, et al. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activatio. J Clin Invest 2017 ; 127 : 349-64.
P.311 掲載の参考文献
1) Croen K. Evidence for antiviral effect of nitric oxide : inhibition of herpes simplex virus type 1 replication. J Clin Invest 1993 ; 91 : 2446-52.
2) Karupiah G, et al. Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science 1993 ; 261 : 1445-8.
3) Bi Z, et al. IL-12 promotes enhanced recovery from vesicular stomatitis virus infection of the central nervous system. J Immunol 1995 ; 155 : 5684-9.
4) Akaike T, et al. Pathogenesis of influenza virus-induced pneumonia : Involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996 ; 93 : 2448-53.
5) Omerod A, et al. Evaluation of the efficacy, safety, and tolerability of 3 dose regimens of topical sodium nitrite with citric acid in patients with anogenital warts : a randomized clinical trial. JAMA Dermatol 2015 ; 151 : 854-61.
6) Herbert AA, et al. Efficacy and tolerability of an investigational nitric oxide-releasing topical gel in patients with molluscum contagiosum : A randomized clinical trial. J Am Acad Dermatol 2020 ; 82 : 887-94.
7) Tyring SK, et al. A phase 2 controlled study of SB206, a topical nitric oxide-releasing drug for extragenital wart treatment. J Drugs Dermatol 2018 ; 17 : 1100-5.
8) van der Wouden JC, et al. Interventions for cutaneous molluscum contagiosum. Cochrane Data-base Syst Rev 2017 ; 5 : CD004767.
P.319 掲載の参考文献
1) 日本皮膚科学会尋常性疣贅診療ガイドライン策定委員会 (渡辺大輔ほか). 尋常性疣贅診療ガイドライン 2019 (第1版). 日皮会誌 2019 ; 129 : 1265-92.
2) 川島眞. ウイルス性疣贅における治療実態調査. 臨床医薬 2012 ; 28 : 1101-10.
3) 江川清文. 尋常性疣贅 (1) 概念・定義の変遷と基本的臨床像. 江川清文 (編). 疣贅 (いぼ) のみかた, 治療のしかた. 東京 : 学研メディカル秀潤社 ; 2017. pp.56-63.
4) Yamamoto M, et al. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses. J Clin Invest 2014 ; 124 : 3479-88.
5) Ajiro M, et al. CDK9 Inhibitor FIT-039 Suppresses Viral Oncogenes E6 and E7 and Has a Therapeutic Effect on HPV-Induced Neoplasia. Clin Cancer Res 2018 ; 24 : 4518-28.
6) Nomura T, et al. The efficacy of a cyclin dependent kinase 9 (CDK9) inhibitor, FIT039, on verruca vulgaris : study protocol for a randomized controlled trial. Trials 2019 ; 20 : 489.
7) Sumi E, et al. Safety and Plasma Concentrations of a Cyclin-dependent Kinase 9 (CDK9) Inhibitor, FIT039, Administered by a Single Adhesive Skin Patch Applied on Normal Skin and Cutaneous Warts. Clin Drug Investig 2019 ; 39 : 55-61.
8) Nomura T, et al. Safety and efficacy of the cyclin dependent kinase 9 (CDK9) inhibitor FIT039 for verruca vulgaris : a placebo-controlled, phase I/II randomized controlled trial. JID Innovations 2021 (in press)
P.326 掲載の参考文献
1) Xing L, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 2014 ; 20 : 1043-9.
2) Hoffmann R, et al. Cytokine mRNA levels in Alopecia areata before and after treatment with the contact allergen diphenylcyclopropenone. J Invest Dermatol 1994 ; 103 : 530-3.
3) Freyschmidt-Paul P, et al. Interferon-gamma-deficient mice are resistant to the development of alopecia areata. Br J Dermatol 2006 ; 155 : 515-21.
4) Nakamura M, et al. Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model. Am J Pathol 2008 ; 172 : 650-8.
5) Schwartz DM, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017 ; 16 : 843-62.
6) Howell MD, et al. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Front Immunol 2019 ; 10 : 2342.
7) ClinicalTrials.Gov. The U.S. National Library of Medicine (NLM) at the National Institutes of Health (NIH). Last update date : 2020/12/13. https://clinicaltrials.gov (Access date : 2021/4/15)
8) Mackay-Wiggan J, et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight 2016 ; 1 : e89790.
10) Bayart CB, et al. Topical Janus kinase inhibitors for the treatment of pediatric alopecia areata. J Am Acad Dermatol 2017 ; 77 : 167-70.
11) Olsen EA, et al. Ruxolitinib cream for the treatment of patients with alopecia areata : A 2-part, double-blind, randomized, vehicle-controlled phase 2 study. J Am Acad Dermatol 2020 ; 82 : 412-9.
12) Kennedy Crispin M, et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight 2016 ; 1 : e89776.
13) Shin JW, et al. Comparison of the Treatment Outcome of Oral Tofacitinib with Other Conventional Therapies in Refractory Alopecia Totalis and Universalis : A Retrospective Study. Acta Derm Venereol 2019 ; 99 : 41-6.
14) Guo L, et al. Benefit and risk profile of tofacitinib for the treatment of alopecia areata : a systemic review and meta-analysis. J Eur Acad Dermatol Venereol 2020 ; 34 : 192-201.
15) Craiglow BG, et al. Topical Ruxolitinib for the Treatment of Alopecia Universalis. JAMA Dermatol 2016 ; 152 : 490-1.
16) Olamiju B, et al. Treatment of severe alopecia areata with baricitinib. JAAD Case Rep 2019 ; 5 : 892-4.
17) Jabbari A, et al. Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib. EBioMedicine 2015 ; 2 : 351-5.
18) Phase 2 Results in Patients with Moderate to Severe Alopecia Areata. CoNCERT Pharmaceuticals Inc. Press Release Details. Last update date : 2019/10/12. https://ir.concertpharma.com/newsreleases/news-release-details/concert-pharmaceuticals-presents-positive-phase-2-data-alopecia (Access date : 2021/4/15)
19) Strand V, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther 2015 ; 17 : 362.
20) Gilhar A, et al. JAK inhibitors and alopecia areata. Lancet 2019 ; 393 : 318-9.
21) Mirzoyev SA, et al. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990-2009. J Invest Dermatol 2014 ; 134 : 1141-2.
22) Furue M, et al. Prevalence of dermatological disorders in Japan : a nationwide, cross-sectional, seasonal, multicenter, hospital-based study. J Dermatol 2011 ; 38 : 310-20.
23) Dainichi T, Kabashima K. Alopecia areata : What's new in epidemiology, pathogenesis, diagnosis, and therapeutic options? J Dermatol Sci 2017 ; 86 : 3-12.
24) Happle R, et al. Contact allergy as a therapeutic tool for alopecia areata : application of squaric acid dibutylester. Dermatologica 1980 ; 161 : 289-97.

最近チェックした商品履歴

Loading...