腎臓内科Controversy

出版社: 中外医学社
著者:
発行日: 2021-06-25
分野: 臨床医学:内科  >  腎臓
ISBN: 9784498224742
電子書籍版: 2021-06-25 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

7,480 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

7,480 円(税込)

商品紹介

多くの難題に直面する日々の臨床で本当に役立つ知識とエキスパートの叡智が1冊に! ガイドラインを補完する,専門医ならではの視点や工夫、対応法を伝授.薬の上手な使いかたや尿検査・腎生検でどこまで診断できるのか,ガイドラインで適応外となっている治療の考えかたなど,おわりも正解もない臨床現場で奮闘するあなたに光を照らす1冊.

目次

  • A.総 論
      [1]腎臓病克服に向けた展望は?
      [2]腎臓病に対する新規治療の展望は?

    B.身体所見
      [3]腎臓病で見逃したくない身体所見は何ですか?

    C.尿検査
      [4]尿沈渣からどこまで診断と病態に迫れますか?
      [5]尿生化学検査からどこまで診断と病態に迫れますか?

    D.腎生検
      [6]腎生検の適応を判断する決め手は何ですか?
      [7]腎生検前の情報収集・検査はどこまでするべきでしょうか?
      [8]腎生検後の注意点について教えてください
      [9]腎生検でどこまで病態に迫れますか?

    E.電解質・水分管理・輸液
      [10]あまり遭遇しないが対応に困る電解質異常への対応について教えてください
      [11]見逃したくない微量元素欠乏の症状と上手な補充方法を教えてください
      [12]腎不全患者の中心静脈栄養の組立てのコツは何ですか?

    F.ガス分析
      [13]血液ガス分析のプロフェッショナルになるにはどうすればよいですか?

    G.薬の上手な使いかた
      [14]腎障害時の鎮痛薬はどのように選択したらよいですか?
      [15]ステロイドパルス療法を行う際に気をつけることは何ですか?
      [16]妊娠中,薬物療法を行うときに気をつけることは何ですか?

    H.Onco-nephrology
      [17]腎障害時の化学療法や化学療法に伴い腎臓へのケアで気をつけることは何ですか?

    I.腎炎・ネフローゼ
      [18]扁摘パルス後に再燃したIgA腎症の治療はどのように行いますか?
      [19]ネフローゼ症候群に利尿薬を使う時のコツを教えてください
      [20]小児の特発性ネフローゼ症候群に免疫抑制薬を使用するときのコツを教えてください

    J.糖尿病・膠原病
      [21]糖尿病性腎臓病の診療のコツは何ですか?
      [22]糖尿病の腎生検で何がわかりますか?
      [23]糖尿病性腎臓病における有用なバイオマーカーは何ですか?

    K.急性腎障害(AKI)
      [24]AKIに伴う上手な透析導入と離脱を教えてください
      [25]高齢者でのAKI治療のコツを教えてください

    L.嚢胞性疾患
      [26]腎に多発する嚢胞を認めた場合は多発性嚢胞腎と診断してよいですか?

    M.保存期
      [27]腎障害のある患者で造影剤を使用するときの注意点は何ですか?

    N.食事・運動指導
      [28]腎臓病患者への栄養指導で外せないポイントは何ですか?
           ―たんぱく質制限を中心に―
      [29]腎臓リハビリテーションの具体的なメニューを教えてください
      [30]腎臓病の病態に応じた経腸栄養の選択について教えてください

    O.チーム医療
      [31]腎臓病のチーム医療の構成・役割について教えてください
      [32]腎臓病における共同意思決定の問題と解決策を教えてください

    P.移植・再生
      [33]腎移植後に低リン血症が持続しています.機序と対策を教えてください
      [34]免疫抑制薬は腎移植後いつまで続けたらよいでしょうか?
      [35]2次移植・3次移植を含めた腎移植患者のライフプランはどのように考えますか?
      [36]腎臓の再生医療について,今できることやこれからの展望を教えてください

    Q.遺伝性疾患
      [37]遺伝性腎疾患の診断・治療を進めるうえでの注意点やコツを教えてください

    R.移行期医療
      [38]小児期からの慢性腎臓病患者は,いつ頃から何に注意して内科へ移行しますか?
      [39]移行期医療で小児科から引継ぎ後に注意することなどあれば教えてください

    S.ガイドライン
      [40]ガイドラインに記載されている薬剤の適応外使用についてどう考えたらよいですか?
      [41]実臨床において,ガイドラインのCQとその推奨はどのように利用すればよいですか?

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

A. 総論

P.11 掲載の参考文献
1) Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease : a KDIGO Controversies Conference report. Kidney Int. 2011 ; 80 : 17-28.
4) Saran R, Robinson B, Abbott KC, et al. US renal data system 2019 annual data report : Epidemiology of kidney disease in the United States. Am J Kidney Dis. 2020 ; 75 : A6-7.
5) 柏原直樹, 桑原篤憲, 長州一, 他. 【CKD Big Data】包括的慢性腎臓病データベース (J-CKD-DB). 日本腎臓学会誌. 2017 ; 59 : 1034-41.
6) Nakagawa N, Sofue T, Kanda E, et al. J-CKD-DB : A nationwide multicentre electronic health recordbased chronic kidney disease database in Japan. Scientific Reports. 2020 ; 10 : 7351.
7) 佐々木成, 吉川徳茂, 秋葉隆, 他. エビデンスに基づくCKD診療ガイドライン2009. 日本腎臓学会誌. 2009 ; 51 : 905-1066.
8) 今井圓裕, 井関邦敏, 新田孝作, 他. 【CKD診療ガイド 2012】. 日本腎臓学会誌. 2012 ; 54 : 1031-191.
9) 木村健二郎, 岡田浩一, 今井裕一, 他. 【エビデンスに基づくCKD診療ガイドライン2 013】. 日本腎臓学会誌. 2013 ; 55 : 585-860.
10) 岡田浩一, 安田宜成, 旭浩一, 他. エビデンスに基づくCKD診療ガイドライン 2018. 日本腎臓学会誌. 2018 ; 60 : 1037-193.
11) 井関邦敏, 植木浩二郎, 碓井知子, 他. 腎領域における慢性疾患に関する臨床評価ガイドライン. 日本腎臓学会誌. 2018 ; 60 : 67-100.
13) 南学正臣, 柏原直樹. 【CKD対策の最新動向】腎疾患対策検討会報告書の概要 腎疾患対策の更なる推進を目指して. 日本腎臓学会誌. 2019 ; 61 : 62-7.
14) 柏原直樹, 伊藤孝史, 内田治仁, 他. 【腎臓・高血圧診療・研究のアップデート】日本腎臓病協会設立の目的と展望 腎臓病の克服を目指して. 循環器内科. 2019 ; 85 : 4-10.
P.17 掲載の参考文献
1) 南学正臣. 腎臓病の創薬とエンドポイント. 日腎会誌. 2018 ; 60 : 576.
2) Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993 ; 329 : 1456-62.
4) Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial : clinical implications and limitations. J Am Soc Nephrol. 2005 ; 16 : 3027-37.
5) Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018 ; 137 : 119-29.
9) Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes : a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019 ; 7 : 845-54.
10) Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with chronic kidney disease. N Engl J Med. 2020 ; 383 : 1436-46.
11) Mann JFE, Orsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017 ; 377 : 839-48.
12) Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7) : a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018 ; 6 : 605-17.
14) Groop PH, Cooper ME, Perkovic V, et al. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction : the randomized MARLINA-T2D trial. Diabetes Obes Metab. 2017 ; 19 : 1610-9.
15) Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk : The CARMELINA Randomized Clinical Trial. JAMA. 2019 ; 321 : 69-79.
17) Chin MP, Wrolstad D, Bakris GL, et al. Risk factors for heart failure in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J Card Fail. 2014 ; 20 : 953-8.
18) Nangaku M, Kanda H, Takama H, et al. Randomized clinical trial on the effect of bardoxolone methyl on GFR in diabetic kidney disease patients (TSUBAKI Study). Kidney Int Rep. 2020 ; 5 : 879-90.
19) Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR) : a double-blind, randomised, placebo-controlled trial. Lancet. 2019 ; 393 : 1937-47.
20) Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol. 2010 ; 21 : 527-35.
21) Koomen JV, Stevens J, Mostafa NM, et al. Determining the optimal dose of atrasentan by evaluating the exposure-response relationships of albuminuria and bodyweight. Diabetes Obes Metab. 2018 ; 20 : 2019-22.
22) de Zeeuw D, Heerspink HJL. Unmet need in diabetic nephropathy : failed drugs or trials? Lancet Diabetes Endocrinol. 2016 ; 4 : 638-40.
23) Ito S, Shikata K, Nangaku M, et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria : a randomized, double-blind, placebo-controlled, phase II trial. Clin J Am Soc Nephrol. 2019 ; 14 : 1161-72.
24) Harrison SA, Wong VW, Okanoue T, et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH : Results from randomized phase III STELLAR trials. J Hepatol. 2020.
25) Chertow GM, Pergola PE, Chen F, et al. Effects of selonsertib in patients with diabetic kidney disease. J Am Soc Nephrol. 2019 ; 30 : 1980-90.
26) Fervenza FC, Appel GB, Barbour SJ, et al. Rituximab or cyclosporine in the treatment of membranous Nephropathy. N Engl J Med. 2019 ; 381 : 36-46.
27) Zannad F, Hsu BG, Maeda Y, et al. Efficacy and safety of sodium zirconium cyclosilicate for hyperkalaemia : the randomized, placebo-controlled HARMONIZE-Global study. ESC Heart Fail. 2020 ; 7 : 54-64.
28) Fishbane S, Ford M, Fukagawa M, et al. A Phase 3b, randomized, double-blind, placebo-controlled study of sodium zirconium cyclosilicate for reducing the incidence of predialysis hyperkalemia. J Am Soc Nephrol. 2019 ; 30 : 1723-33.
29) Wesson DE, Mathur V, Tangri N, et al. Veverimer versus placebo in patients with metabolic acidosis associated with chronic kidney disease : a multicentre, randomised, double-blind, controlled, phase 3 trial. Lancet. 2019 ; 393 : 1417-27.

B. 身体所見

P.24 掲載の参考文献
1) Fawsett RS, Linford S, Stulberg DL. Nail abnormalities : Clues to systemic disease. Am Fam Physician. 2004 ; 69 : 1417-24.
2) Tosti A, Iorizzo M, Maria Piraccini BM, et al. The nail in systemic diseases. Dermatol Clin. 2006 ; 24 : 341-7.
3) 東禹彦. 爪でわかる内科疾患. Medicina. 2006 ; 43 : 1645-7.
4) Terry R. White nails in hepatic cirrhosis. Lancet. 1954 ; 263 : 757-9.
5) Muehrcke RC. The finger-nails in chronic hypoalbuminemia. Br Med J. 1956 ; 1 : 1327.
7) 須藤博. 「一目瞭然! 目で診る症例」問題・解答. 日内学誌. 2012 ; 101 : 2367-9.

C. 尿検査

P.30 掲載の参考文献
2) AKI (急性腎障害) 診療ガイドライン作成委員会, 編. AKI (急性腎障害) 診療ガイドライン 2016. 東京 : 東京医学社. 2016.
3) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社. 2018.
4) 社団法人日本臨床衛生検査技師会, 編. 尿沈渣検査法 2010. 東京 : 日本臨床衛生検査技師会. 2011.
10) Kanbay M, Kasapoglu B, Perazella MA. Acute tubular necrosis and pre-renal acute kidney injury : utility of urine microscopy in their evaluation- a systematic review. Int Urol Nephrol. 2010 ; 42 : 425-33.
11) Almirall J, Campistol JM, Revert L, et al. Blood and graft eosinophilia as a rejection index in kidney transplant. Nephron. 1993 ; 65 : 304-9.
12) Perazella MA, Coca SG, Parikh CR, et al. Diagnostic value of urine microscopy for differential diagnosis of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol. 2008 ; 3 : 1615-9.
13) Perazella MA, Coca SG, Parikh CR, et al. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol. 2010 ; 5 : 402-8.
14) Bagshaw SM, Haase M, Bellomo R, et al. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol Dial Transplant. 2012 ; 27 : 582-8.
15) Varga Z, Flammer AJ, Moch H, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 ; 395 : 1417-8.
16) Katz SM, Lyons PJ. Urinary ultrastructural findings in Fabry disease. JAMA. 1977 ; 237 : 1121-2.
17) 堀田真希. ファブリー病を検出するための尿沈渣における尿中マルベリー小体の有用性 (抄). 日本小児腎臓病学会雑誌. 2019 ; 32 (suppl) : 83.
18) Fogazzi GB, Pallotti F, Garigali G. Atypical/malignant urothelial cells in routine urinary sediment : worth knowing and reporting. Clin Chim Acta. 2015 ; 439 : 107-11.
19) 血尿診断ガイドライン編集委員会. 血尿診断ガイドライン 2013. 東京 : ライフサイエンス出版 : 2013.
20) Szeto CC, Wang G, Li PK, et al. Podocyte mRNA in the urinary sediment of minimal change nephropathy and focal segmental glomerulosclerosis. Clin Nephrol. 2015 ; 84 : 198-205.
21) Zhang X, Jiang L, Lu X, et al. Urine sediment recognition method based on multi-view deep residual learning in microscopic image. J Med Syst. 2019 ; 43 : 325.
22) Sigala JF, Biava CG, Hulter HN. Red blood cell casts in acute interstitial nephritis. Arch Intern Med. 1978 ; 138 : 1419-21.
23) Pusey CD, Saltissi D, Christie JL, et al. Drug associated acute interstitial ne- phritis : clinical and pathological features and the response to high dose steroid therapy. Q J Med. 1983 ; 52 : 194-211.
24) Ferrari B, Fogazzi GB, Messa P, et al. Acute interstitial nephritis after amoxycillin with hematuria, red blood cell casts and hematuria-induced acute tubular injury. Clin Nephrol. 2013 ; 80 : 156-60.
25) Kohler H, Wandel E, Brunck B. Acanthocyturia-a characteristic marker for glomerular bleeding. Kidney Int. 1991 ; 40 : 115-20.
26) Geevasinga N, Coleman PL, Roger SD, et al. Proton pump inhibitors and acute interstitial nephritis. Clin Gastroenterol Hepatol. 2006 ; 4 : 597-604.
P.39 掲載の参考文献
1) 日本腎臓学会, 編. CKD診療ガイド 2012. 東京 : 東京医学社. 2012.
2) 吉本静雄, 岡内里美, 鉦谷久美子. 多剤耐性緑膿菌による尿路感染症アウトブレイクの疫学的検討と感染対策. 環境感染. 2005 ; 20 : 37-43.
3) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版. 2019.
4) 内田俊也. 水電解質異常. 日腎会誌. 2002 ; 44 : 18-28.
5) Kamijo A, Sugaya T, Hikawa A, et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am J Pathol. 2004 ; 165 : 1243-55.
6) Hanlu Ding, Yani He, Kailong Li, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol. 2007 ; 123 : 227-34.
7) Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009 ; 4 : 337-44.
9) Yang Li, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015 ; 125 : 1620-36.
10) Humphreys BD, Xu F, Sabbisetti V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest. 2013 ; 123 : 4023-35.
11) Ogasawara S, Hosojima M, Kaseda R, et al. Significance of urinary full-length and ectodomain forms of megalin in patients with type 2 diabetes. Diabetes Care. 2012 ; 35 : 1112-18.
12) Alge JL, Arthur JM. Biomarkers of AKI : a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015 ; 10 : 147-55.
14) Musch W, Hedeshi A, Decaux G. Low sodium excretion in SIADH patients with low diuresis. Nephron Physiol. 2004 ; 96 : 11-8.
15) 要伸也. 酸塩基平衡異常. 日内会誌. 2015 ; 104 : 938-47.
16) Makris K, Spanou L. Acute kidney injury : Diagnostic approaches and controversies. Clin Biochem Rev. 2016 ; 37 : 153-75.

D. 腎生検

P.47 掲載の参考文献
1) Hogan JJ, Mocanu M, Berns JS. The native kidney biopsy : Update and evidence for best practice. Clin J Am Soc Nephrol. 2016 ; 11 : 354-62.
2) 日本腎臓学会腎生検検討委員会. 腎生検ガイドブック-より安全な腎生検を施行するために-. 東京 : 東京医学社. 2004.
3) 日本腎臓学会腎生検ガイドブック改訂委員会. 腎生検ガイドブック 2020. 東京 : 東京医学社, 2020.
4) Iversen P, Brun C. Aspiration biopsy of the kidney. Am J Med. 1951 ; 11 : 324-30.
5) 荒川正昭. 歴史的考察と今後の展望. 腎と透析. 1991 ; 31 : 349-53.
7) 杉山斉. レジストリー研究update J-RBR. 日腎会誌. 2019 ; 61 : 864.
8) 横山仁, 佐藤博. J-RBR/J-KDR の今後の展開. In : 山縣邦弘, 南学正臣, 編. 腎疾患・透析 最新の治療 2020-2022. 東京 : 南江堂 ; 2020. p.42-5.
9) 横山仁. ネフローゼ症候群, 腎疾患の腎組織所見と新しい免疫抑制療法. 日内会誌. 2019 ; 108 : 117-22.
10) Kawaguchi T, Nagasawa T, Tsuruya K, et al. Committee of Practical Guide for Kidney Biopsy 2019. A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan. Clin Exp Nephrol. 2020 ; 24 : 389-401.
11) Rollino C, Beltrame G, Ferro M, et al. Isolated microhematuria : biopsy, yes or no? G Ital Nefrol. 2010 ; 27 : 367-73.
14) 松尾清一, 川村哲也, 安田隆, 他. IgA腎症診療指針 (第3版). 日腎会誌. 2011 ; 53 : 123-35.
16) Kodner C. Nephrotic syndrome in adults : diagnosis and management. Am Fam Physician. 2009 ; 80 : 1129-34.
21) Hiramatsu N, Kuroiwa T, Ikeuchi H, et al. Revised classification of lupus nephritis is valuable in predicting renal outcome with an indication of the proportion of glomeruli affected by chronic lesions. Rheumatology (Oxford). 2008 ; 47 : 702-7.
22) 日本リウマチ学会. 全身性エリテマトーデス診療ガイドライン 2019. 東京 : 南江堂 ; 2019. p.32-67.
24) Gonzalez Suarez ML, Thomas DB, Barisoni L, et al. Diabetic nephropathy : Is it time yet for routine kidney biopsy? World J Diabetes. 2013 ; 4 : 245-55.
30) 加藤元嗣, 上堂文也, 掃本誠治, 他. 抗血栓薬服用者に対する消化器内視鏡診療ガイドライン 直接経口抗凝固薬 (DOAC) を含めた抗凝固薬に関する追補 2017. Gastroenterol Endosc. 2017 ; 59 : 1547-58.
31) Arora K, Punia RS, D'Cruz S. Comparison of diagnostic quality of kidney biopsy obtained using 16G and 18G needles in patients with diffuse renal disease. Saudi J Kidney Dis Transpl. 2012 ; 23 : 88-92.
P.66 掲載の参考文献
1) 日本腎臓学会, 編. 腎生検ガイド 2020. 東京 : 東京医学社. 2020.
2) Classification of Diseases (ICD). World Health Organization. <https://www.who.int/classifications/icd/en/>
3) Gesualdo L, Cormio L, Stallone G, et al. Percutaneous ultrasound-guided renal biopsy in supine antero-lateral position : a new approach for obese and non-obese patients. Nephrol Dial Transplant. 2008 ; 23 : 971-6.
4) Kawaguchi T, Nagasawsa T, Tsuruya K, et al. A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan. Clin Exp Nephrol. 2020 ; 24 : 389-401.
6) L. コーン, J. コリガン, M. ドナルドソン. 人は誰でも間違える-より安全な医療システムを目指して. 日本評論社 ; 2000.
7) Heinrich HW. Industrial accident prevention : A scientific approach. New York : McGraw-Hill. 1931.
8) Reason J. Human error : models and management. BMJ. 2000 ; 320 : 768-70.
9) Peerally MF, Carr S, Waring J, et al. The problem with root cause analysis. BMJ Qual Saf. 2017 ; 26 : 417-22.
10) Landrigan CP, Parry GJ, Bones CB, et al. Temporal trends in rates of patient harm resulting from medical care. N Engl J Med. 2010 ; 363 : 2124-34.
11) Hollnagel E. Safety I and Safety II : the past and future of safety management. Farnharm : Ashgate ; 2014.
12) 中島和江, 編. レジリエント・ヘルスケア入門. 東京 : 医学書院. 2019.
13) Wu AW, Connors C, Everly GS, et al. COVID-19 : Peer support and crisis communication strategies to promote institutional resilience. Ann Intern Med. 2020. Online ahead of print.
14) 日本小児腎臓病学会. アルポート症候群 診療ガイドライン 2017. 東京 : 診断と治療社. 2017.
16) Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986 ; 1 : 1077-81.
17) Luychx VA, Brenner BM. Birth wight, malnutrition and kidney-associated outcomes-a global concern. Nat Rev Nephrol. 2015 ; 11 : 135-49.
18) Bucaloiu ID, Kirchner HL, Norfolk ER, et al. Increased risk of death and de novo chronic kidney disease following reversivle acute kidney injury. Kidney Int. 2012 ; 81 : 477-85.
19) Mannisto T, Mendola P, Vaarasmaki M, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013 ; 127 : 681-90.
20) Ollero M, Sahali D. Inhibition of the VEGF signaling pathway and glomerular disorders. Nephrol Dial Transplant. 2015 ; 30 : 1449-55.
21) Shingarev R, Glezerman IG. Kidney complications of immune checkpoint inhibitors : a review. Am J Kidney Dis. 2019 ; 74 : 529-37.
22) 日本循環器学会, 他. 入血栓塞栓症および深部静脈血栓症の診断, 治療, 予防に対するガイドライン (2017年改訂版).
23) Ogi M, Yokoyama H, Tomosugi N, et al. Risk factors for infection and immunoglobulin replacement therapy in adult nephrotic syndrome. Am J Kidney Dis. 1994 ; 24 : 427-36.
24) Laurent J, C Philippon, G Lagrue, et al. Proteinuria selectivity index-prognostic value in lipoid nephrosis and related diseases. Nephron. 1993 ; 65 : 185-9.
25) Hogan JJ, Weiss BM. Bridging the devide : an onco-nephrologic approach to the monoclonal gammopathies of renal significance. Clin J Am Soc Nephrol. 2016 ; 11 : 1681-91.
26) 日本骨髄腫学会. 多発性骨髄腫の診療指針 第4版. 東京 : 文光堂. 2016.
27) Hogan JJ, Alexander MP, Leung N. Dysproteinemia and the kidney : core curriculum 2019. Am J Kidney Dis. 2019 ; 74 : 822-36.
28) Peralta CA, Lerman LO. The metabolic syndrome and chronic kidney disease. Curr Opin Nephrol Hypertens. 2006 ; 15 : 361-5.
29) Nasr SH, Radhakrishnan J, Agati VD. Bacterial infection-related glomerulonephritis in adults. Kidney Int. 2013 ; 83 : 792-803.
30) Lai AS, Lai KN. Viral nephropathy. Nat Clin Pract Nephrol. 2006 ; 2 : 254-62.
31) Kotton CN, Fishman JA. Viral infection in the renal transplant recipient. J Am Soc Nephrol. 2005 ; 16 : 1758-74.
32) Eckardt KUU, Olinger E, Weber S, et al. Autosomal dominant tubulointerstitial kidney disease : diagnosis, classification, and management-a KDIGO consensus report. Kidney Int. 2015 ; 88 : 676-83.
33) Beck LH, Bonegio RGB, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009 ; 361 : 11-21.
34) Tomas NM, LH, Schwesinger CM, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014 ; 371 : 2277-87.
35) Du Y, Li J, He F, et al. The diagnosis accuracy of PLA2R-AB in the diagnosis of idiopathic membranous nephropathy : a meta-analysis. PLoS One. 2014 ; 9 : e104936.
36) 日本腎臓学会. エビデンスに基づくネフローゼ症候群診療ガイドライン 2020. 東京 : 東京医学社 ; 2020.
37) Floege J, Barbour SJ, Cattran DC, et al. Management and treatment of glomerular diseases (part 1) : conclusions from Kidney Disease : Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019 ; 95 : 268-80.
38) Akiyama S, Akiyama M, Imai E, et al. Prevalence of anti-phospholipase A2 receptor antibodies in Japanese patients with membranous nephropathy. Clin Exp Nephrol. 2015 ; 19 : 653.
P.73 掲載の参考文献
1) Iversen P, Brun C. Aspiration biopsy of the kidney. Am J Med. 1951 ; 11 : 324-30.
2) Kark RM, Muehrcke RC. Biopsy of kidney in prone position. Lancet. 1954 ; 266 : 1047-9.
3) Brachemi S, Bollee G. Renal biopsy practice : What is the gold standard? World J Nephrol. 2014 ; 3 : 287-94.
4) Corapi KM, Chen JL, Balk EM, et al. Bleeding complications of native kidney biopsy : A systematic review and meta-analysis. Am J Kidney Dis. 2012 ; 60 : 62-73.
5) Mejia-Vilet JM, Marquez-Martinez MA, Cordova-Sanchez BM, et al. Simple risk score for prediction of hemorrhagic complications after a percutaneous renal biopsy. Nephrology (Carlton). 2018 ; 23 : 523-9.
6) Chikamatsu Y, Matsuda K, Takeuchi Y, et al. Quantification of bleeding volume using computed tomography and clinical complications after percutaneous renal biopsy. Clin Kidney J. 2017 ; 10 : 9-15.
7) Takeuchi Y, Ojima Y, Kagaya S, et al. Manual compression and reflex syncope in native renal biopsy. Clin Exp Nephrol. 2018 ; 22 : 1100-7.
8) Ishikawa E, Nomura S, Obe T, et al. How long is strict bed rest necessary after renal biopsy? Clin Exp Nephrol. 2009 ; 13 : 594-7.
9) 日本腎臓学会・腎生検検討委員会, 編. 腎生検ガイドブックより安全な腎生検を施行するために. 東京 : 東京医学社. 2004.
10) Whittier WL, Korbet SM. Indications for and complications of renal biopsy. UpToDate. 2018.
11) Whittier WL, Korbet SM. Timing of complications in percutaneous renal biopsy. J Am Soc Nephrol. 2004 ; 15 : 142-7.
12) Manno C, Bonifati C, Torres DD, et al. Desmopressin acetate in percutaneous ultrasound-guided kidney biopsy : a randomized controlled trial. Am J Kidney Dis. 2011 ; 57 : 850-5.
13) Khajehdehi P, Junaid SM, Salinas-Madrigal L, et al. Percutaneous renal biopsy in the 1990s : safety, value, and implications for early hospital discharge. Am J Kidney Dis. 1999 ; 34 : 92-7.
14) Waldo B, Korbet SM, Freimanis MG, et al. The value of post-biopsy ultrasound in predicting complications after percutaneous renal biopsy of native kidneys. Nephrol Dial Transplant. 2009 ; 24 : 2433-9.
15) Ishikawa E, Nomura S, Hamaguchi T, et al. Ultrasonography as a predictor of overt bleeding after renal biopsy. Clin Exp Nephrol. 2009 ; 13 : 325-31.
16) Biondi-Zoccai GG, Lotrionte M, Agostoni P, et al. A systematic review and meta-analysis on the hazards of discontinuing or not adhering to aspirin among 50,279 patients at risk for coronary artery disease. Eur Heart J. 2006 ; 27 : 2667-74.
17) 加藤元嗣, 上堂文也, 掃本誠治, 他. 抗血栓薬服用者に対する消化器内視鏡診療ガイドライン 直接経口抗凝固薬 (DOAC) を含めた抗凝固薬に関する追補 2017. 日本消化器内視鏡学会雑誌. 2017 ; 59 : 1547-58.
18) Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy : Antithrombotic Therapy and Prevention of Thrombosis, 9th ed : American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 ; 141 : e326S-50S.
19) Whittier WL, Sayeed K, Korbet SM. Clinical factors influencing the decision to transfuse after percutaneous native kidney biopsy. Clin Kidney J. 2016 ; 9 : 102-7.
20) Hu T, Liu Q, Xu Q, et al. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma. Medicine (Baltimore). 2016 ; 95 : e4754.
21) Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS One. 2018 ; 13 : e0190923.
22) Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018 ; 33 : 138-48.
23) 和田隆志, 湯澤由紀夫, 監修, 佐藤博, 他, 編. 糖尿病性腎症と高血圧性腎硬化症の病理診断への手引き. 東京 : 東京医学社. 2015.
24) Moriya T, Omura K, Matsubara M, et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese patients with type 2 diabetes. Diabetes Care. 2017 ; 40 : 1373-8.
25) Mazzucco G, Bertani T, Fortunato M, et al. Different patterns of renal damage in type 2 diabetes mellitus : a multicentric study on 393 biopsies. Am J Kidney Dis. 2002 ; 39 : 713-20.
P.85 掲載の参考文献
1) Kobayashi A, Goto Y, Nagata M, et al. Granular swollen epithelial cells : a histologic and diagnostic marker for mitochondrial nephropathy. Am J Surg Pathol. 2010 ; 34 : 262-70.
2) 北村博司. 髄質嚢胞性腎疾患の遺伝子異常と形態変化. 日本腎臓学会誌. 2018 ; 60 : 1239-43.
5) Tomas NM, Beck LH Jr, Meyer-Schwesinger C, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014 ; 371 : 2277-87.
6) Sethi S, Debiec H, Madden B, et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020 ; 97 : 163-74.
7) Uchida T, Oda T. Glomerular deposition of nephritis-associated plasmin receptor (NAPlr) and related plasmin activity : Key diagnostic biomarkers of bacterial infection-related glomerulonephritis. Int J Mol Sci. 2020 ; 21 : 2595.
8) Nasr SH, Vrana JA, Dasari S, et al. DNAJB9 is a specific immunohistochemical marker for fibrillary glomerulonephritis. Kidney Int Rep. 2017 ; 3 : 56-64.
9) Sudo M, Sakamaki Y, Hosojima M, et al. Cryofibrinogen-associated glomerulonephritis diagnosed by mass spectrometry and immunoelectron microscopy. Human Pathology : Case Reports. 2019 ; 15 : 83-7.
10) Fukunaga M, Nagahama K, Aoki M, et al. Membranous nephropathy-like apolipoprotein E deposition disease with apolipoprotein E Toyonaka (Ser197Cys) and a homozygous apolipoprotein E2/2. Case Rep Nephrol Dial. 2018 ; 8 : 45-55.
11) Sethi S, Theis JD. Pathology and diagnosis of renal non-AL amyloidosis. J Nephrol. 2018 ; 31 : 343-50.
12) Mengel M, Loupy A, Haas M, et al. Banff 2019 Meeting report : Molecular diagnostics in solid organ transplantation-consensus for the banff human organ transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant. 2020 doi : 10.1111/ajt.16059.

E. 電解質・水分管理・輸液

P.91 掲載の参考文献
2) Qu X, Jin F, Hao Y, et al. Magnesium and the risk of cardiovascular events : a meta-analysis of prospective cohort studies. PloS One. 2013 ; 8 : e57720.
3) Sakaguchi Y, Shoji T, Hayashi T, et al. Hypomagnesemia in type 2 diabetic nephropathy : a novel predictor of end-stage renal disease. Diabetes Care. 2012 ; 35 : 1591-7.
4) Sakaguchi Y, Iwatani H, Hamano T, et al. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease. Kidney Int. 2015.
5) Torralbo A, Portoles J, Perez AJ, et al. Hypomagnesemic hypocalcemia in chronic renal failure. Am J kidney Dis. 1993 ; 21 : 167-71.
6) Ferre S, Hoenderop JG, Bindels RJ. Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney Int. 2012 ; 82 : 1157-66.
7) Mennes P, Rosenbaum R, Martin K, et al. Hypomagnesemia and impaired parathyroid hormone secretion in chronic renal disease. Ann Intern Med. 1978 ; 88 : 206-9.
9) Maesaka JK, Imbriano LJ, Ali NM, et al. Is it cerebral or renal salt wasting? Kidney Int. 2009 ; 76 : 934-8.
10) Oh MS, Carroll HJ. Cerebral salt-wasting syndrome. We need better proof of its existence. Nephron. 1999 ; 82 : 110-4.
11) Ishikawa S, Fujita N, Fujisawa G, et al. Involvement of arginine vasopressin and renal sodium hand ling in pathogenesis of hyponatremia in elderly patients. Endocrine Journal. 1996 ; 43 : 101-8.
12) Ailabouni W, Eknoyan G. Nonsteroidal anti-inflammatory drugs and acute renal failure in the elderly. A risk-benefit assessment. Drugs & Aging. 1996 ; 9 : 341-51.
13) Clark BA, Shannon RP, Rosa RM, et al. Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol. 1994 ; 5 : 1106-11.
14) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2014. 東京 : 日本高血圧学会. 2014.
15) Wang W, Li C, Summer SN, et al. Molecular analysis of impaired urinary diluting capacity in glucocorticoid deficiency. American journal of physiology Renal physiology. 2006 ; 290 : F1135-42.
16) Sun J, Sun H, Cui M, et al. The use of anti-ulcer agents and the risk of chronic kidney disease : a meta-analysis. Int Urol and Nephrol. 2018 ; 50 : 1835-43.
17) Park CH, Kim EH, Roh YH, et al. The association between the use of proton pump inhibitors and the risk of hypomagnesemia : a systematic review and meta-analysis. PloS One. 2014 ; 9 : e112558.
18) Perazella MA. Proton pump inhibitors and hypomagnesemia : a rare but serious complication. Kidney Int. 2013 ; 83 : 553-6.
19) Xie Y, Bowe B, Li T, et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 2017 ; 91 : 1482-94.
P.98 掲載の参考文献
1) 高松悠樹, 伊藤公人, 脇田充史. 長期経管栄養中にネフローゼ症候群を合併し, 銅欠乏により貧血および白血球数減少を来した1例. 日内会誌. 2009 ; 98 : 855-8.
2) Pedraza-Chaverri J, Torres-Rodriguez GA, Cruz C, et al. Copper and zinc metabolism in aminonucleoside-induced nephrotic syndrome. Nephron. 1994 ; 66 : 87-92.
3) 中野素子, 鎌田真理子, 古谷昌子, 他. 銅欠乏による汎血球減少症とESA療法低反応性を呈した維持血液透析患者の1例. 透析会誌. 2014 ; 47 : 85-90.
4) Yaldizli O, Johansson U, Gizewski ER, et al. Copper deficiency myelopathy induced by repetitive parenteral zinc supplementation during chronic hemodialysis. J Neurol. 2006 ; 253 : 1507-9.
5) Yang CY, Wu ML, Chou YY, et al. Essential trace element status and clinical outcomes in long-term dialysis patients : a two-year prospective observational cohort study. Clin Nutr. 2012 ; 31 : 630-6.
6) Tonelli M, Wiebe N, Hemmelgarn B, et al. Trace elements in hemodialysis patients : a systematic review and meta-analysis. BMC Med. 2009 ; 7 : 25.
7) 日本人の食事摂取基準 (2020年版). 「日本人の食事摂取基準」策定検討会報告書. 2020 : 311-73.
8) 日本臨床栄養学会. 亜鉛欠乏症の診療指針 2016. 2016.
9) Makhlough A, Makhlough M, Shokrzadeh M, et al. Comparing the levels of trace elements in patients with diabetic nephropathy and healthy individuals. Nephrourol Mon. 2015 ; 7 : e28576.
10) 永野伸郎, 伊藤恭子, 大石裕子, 他. 透析患者の血清亜鉛濃度分布の実態-低亜鉛血症と関連する因子-. 透析会誌. 2018 ; 51 : 369-77.
11) 日本透析医学会. 慢性腎臓病患者における腎性貧血治療のガイドライン. 2015年版. 透析会誌. 2016 ; 49 : 89-158.
12) 筒井貴朗, 伊藤恭子, 角田千恵, 他. 慢性腎臓病患者において亜鉛は鉄よりもESA抵抗性と強く関連する. 日腎会誌. 2018 ; 60 : 609-18.
13) Willis MS, Monaghan SA, Miller ML, et al. Zinc-induced copper deficiency : a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol. 2005 ; 123 : 125-31.
P.104 掲載の参考文献
1) Yazawa M, Kido R, Ohira S, et al. Early mortality was highly and strongly associated with functional status in incident Japanese hemodialysis patients : A Cohort study of the large national dialysis registry. PLoS ONE. 2016 ; 11 : e0156951.
2) 東別府直紀, 他, 編. 特集 栄養療法アップ-デート前編. INTENSIVIST. 2019 ; 11 : 243-369.
3) Rice TW, Wheeler AP, Thompson BT, et al. Initial trophic vs full enteral feeding in patients with acute lung injury : the EDEN randomized trial. JAMA. 2012 ; 307 : 795-803.
4) Arabi YM, Tamim HM, Dhar GS, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients : a randomized controlled trial. Am J Clin Nutr. 2011 ; 93 : 569-77.
6) Chapman M, Peake SL, Bellomo R : TARGET Investigators for the ANZICS Clinical Trials Group, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018 ; 379 : 1823-34.
7) Knight EL, Stampfer MJ, Hankinson SE, et al. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003 ; 138 : 460-7.
8) Lew QJ, Jafar TH, Koh HWL, et al. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017 ; 28 : 304-12.
9) Neyra R, Chen KY, Sun M, et al. Increased resting energy expenditure in patients with end-stage renal disease. JPEN. 2003 ; 27 : 36-42.
10) Hirshberg E, Larsen G, Van Duker H, et al. Alterations in glucose homeostasis in the pediatric intensive care unit : hyperglycemia abd glucose variability are associated with increased mortality and morbidity. Pediatr Crit Care Med. 2008 ; 9 : 361-6.
11) Schetz M, Vanhorebeek I, Wouters PJ, et al. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol. 2018 ; 19 : 571-8.

F. ガス分析

P.111 掲載の参考文献
1) Arnold L, Stern DT. What is medical professionalism? In : Stern DT, editor. Measuring medical proffesionalism. New York : Oxford university press ; 2006. p.15-37.
2) Henderson LJ. Concerning the relationship between the strength of acids and their capacity to preserve neutrality (Abstract). Am J Physiol. 1908 ; 21 : 173-9.
3) Hasselbalch KA. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensaure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift. 1917 ; 78 : 112-44.
4) Schwartz WB, Relman AS. A critique of the parameters used in the evaluation of acid-base disorders. "Whole-blood buffer base" and "standard bicarbonate" compared with blood pH and plasma bicarbonate concentration. N Engl J Med. 1963 ; 268 : 1382-8.
5) Adrogue HJ, Gennari FJ, Galla JH, et al. Assessing acid-base disorders. Kidney Int. 2009 ; 76 : 1239-47.
6) Astrup P, Gotzche H, Neukirch F. Laboratory investigations during treatment of patients with poliomyelitis and respiratory paralysis. Br Med J. 1954 ; 1 : 780-6.
7) Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983 ; 61 : 1444-61.
8) Bloom BM, Grundlingh J, Bestwick JP. The role of venous blood gas in the emergency department : A Systematic review and meta-analysis. Eur J Emerg Med. 2014 ; 21 : 81-8.
9) Mehta AN, Emmett JB, Emmett M. GOLD MARK : an anion gap mnemonic for the 21st century. Lancet. 2008 ; 372 : 892.
10) 今井裕一. 酸塩基平衡, 水・電解質が好きになる. 東京 : 羊土社. 2007.
12) Kasagi T, Imai H, Miura N, et al. Acid-base disturbances in nephrotic syndrome : analysis using the CO2/HCO3 method (traditional Boston model) and the physicochemical method (Stewart model). Clin Exp Nephrol. 2017 ; 21 : 866-76.

G. 薬の上手な使いかた

P.117 掲載の参考文献
1) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社. 2018.
2) Praga M, Gonzalez E. Acute interstitial nephritis. Kidney Int. 2010 ; 77 : 956-61.
3) Douros A, Bronder E, Klimpel A, et al. A large case series from the Berlin Case-Control Surveillance Study. Clinical Nephrology. 2018 ; 89 : 18-26.
4) Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs : physiologic foundations and clinical implications. Am J Med. 1999 ; 106 : 13S-24S.
5) Muriithi AK, Leung N, Valeri AM, et al. Biopsy-proven acute interstitial nephritis, 1993-2011 : a case series. Am J Kidney Dis. 2014 ; 64 : 558-66.
6) Perazella MA, Marcowitz GS. Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010 ; 6 : 461-70.
7) Gooch K, Culleton BF, Manns BJ et al. NSAID use and progression of chronic kidney disease. Am J Med. 2007 ; 120 : 280. e1-7.
8) 薬剤性腎障害の診療ガイドライン作成委員会, 編. 薬剤性腎障害診療ガイドライン 2016. 日腎会誌. 2016 ; 58 : 477-555.
9) Zhang X, Donnan PT, Bell S, et al. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease : systematic review and meta-analysis. BMJ Nephrol. 2017 ; 18 : 256.
10) Henrich WL, Agodoa LE, Barrett B, et al. Analgesics and the kidney : summary and recommendations to the Scientific advisory Board of the National Kidney Foundation from an Ad Hoc Committee of the National Kidney Foundation. Am J Kidney Dis. 1996 ; 27 : 162-5.
11) Graham GG, Davies MJ, Day RO, et al. The modern pharmacology of paracetamol : therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013 ; 21 : 201-32.
12) Prescott LF, Speirs GC, Critchley JA, et al. Paracetamol disposition and metabolite kinetics in patients with chronic renal failure. Eur J Clin Pharmacol. 1989 ; 36 : 291-7.
13) Fored CM, Ejerblad E, Lindblad P, et al. Acetaminophen, aspirin, and chronic renal failure. N Engl J Med. 2001 ; 345 : 1801-8.
14) Elsviers MM, De Broe ME. Combination analgesic involvement in the pathogenesis of analgesic nephropathy the European perspective. Am J Kidney Dis. 1996 ; 28 : S48-55.
15) Zhan M, Doerfler RM, Xie D, et al. Association of opioids and nonsteroidal anti-inflammatory drugs with outcomes in CKD : findings from the CRIC (chronic renal insufficiency cohort) study. Am J Kidney Dis. 2020 ; S0272-6386 (20) 30042-1
16) Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993 ; 54 : 158-67.
17) 日本緩和医療学会緩和医療ガイドライン委員会. がん疼痛の薬物療法に関するガイドライン 2014年版 第2版. 東京 ; 金原出版. 2014. p.56.
18) シオノギ製薬, オキノーム散(R) インタビューフォーム (第13版).
19) 日本新薬株式会社, ファイザー株式会社 : トラマール(R) OD錠医薬品インタビューフォーム, 2018年9月改訂 (第13版), 2018.
20) ヤンセンファーマ株式会社 : トラムセット(R) 配合錠医薬品インタビューフォーム, 2018年12月 (第11版), 2018.
21) ファイザー株式会社, 日本新薬株式会社 : ワントラム(R) 錠添付文書, 2019年7月改訂 (第4版). 2019.
22) 越智靖夫, 原田拓真, 鈴木美咲, 他. 末梢性神経障害性疼痛治療薬プレガバリン (リリカ(R) カプセル) の薬理作用機序および臨床効果. 日緩和医療薬誌. 2011 ; 4 : 53-64.
23) ファイザー株式会社, エーザイ株式会社 : リリカ(R) カプセル医薬品インタビューフォーム, 2020年1月改訂 (第13版), 2020.
24) 成末まさみ, 杉本悠花, 柴田龍二郎, 他. プレガバリンは腎機能を考慮した推奨用量でも腎機能低下患者の有害事象発生率が高い. 透析会誌. 2015 ; 48 : 155-61.
26) Abraham PA, Keane WF. Glomerular and interstitial disease induced by nonsteroidal anti-inflammatory drugs. Am J Nephrol. 1984 ; 4 : 1-6.
P.123 掲載の参考文献
1) Kountz SL, Cohn R. Initial treatment of renal allografts with large intrarenal doses of immunosuppressive drugs. Lancet. 1969 ; 1 : 338-40.
2) Cathcart ES, Idelson BA, Scheinberg MA, et al. Beneficial effects of methylprednisolone "pulse" therapy in diffuse proliferative lupus nephritis. Lancet. 1976 ; 1 : 163-6.
3) 酒井糾, 河西紀昭, 沼尻志信, 他. 腎疾患に対するメチールプレドニン大量静注療法 (pulse-therapy) の効果. 医学のあゆみ. 1976 ; 98 : 791-6.
4) 市川陽一, 斎藤栄造, 阿部好文, 他. ステロイド剤のパルス療法. 最新医学. 1980 ; 35 : 1379-86.
5) 川合眞一, 編. ステロイド療法の極意. 東京 : じほう. 2017.
6) Badsha H, Kong KO, Lian TY, et al. Low-dose pulse methylprednisolone for systemic lupus erythematosus flares is efficacious and has a decreased risk of infectious complications. Lupus. 2002 ; 11 : 508-13.
7) Wada T, Hara A, Arimura Y, et al. Risk factors associated with relapse in Japanese patients with microscopic polyangiitis. J Rheumatol. 2012 ; 39 : 545-51.
8) Walsh M, Merkel PA, Mahr A, Jayne D. Effects of duration of glucocorticoid therapy on relapse rate in antineutrophil cytoplasmic antibody-associated vasculitis : A meta-analysis. Arthritis Care Res (Hoboken). 2010 ; 62 : 1166-73.
9) 本間光夫, 恒松徳五郎. SLEの臨床経過と治療. 厚生省特定疾患膠原病治療調査研究班 昭和56年度研究業績 (班長 : 本間光夫). 1982. p.301-13.
10) Chen Y, Zeng C, Zeng H, et al. Comparative serum proteome expression of the steroid-induced femoral head osteonecrosis in adults. Exp Ther Med. 2015 ; 9 : 77-83.
11) Cao F, Liu G, Wang W, et al. Combined Treatment with an Anticoagulant and a Vasodilator Prevents Steroid-Associated Osteonecrosis of Rabbit Femoral Heads by Improving Hypercoagulability. Biomed Res Int. 2017 : 1624074, 2017.
12) Granfeldt A, Hvas CL, Graversen JH, et al. Targeting dexamethasone to macrophages in a porcine endotoxemic model. Crit Care Med. 2013 ; 41 : e309-18.
13) Albiston AL, Obeyesekere VR, Smith RE, et al. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994 ; 105 : R11-7.
P.129 掲載の参考文献
1) Watanabe K, Matsubara K, Nakamoto O, et al. New definition and classification of "Hypertensive Disorders of Pregnancy (HDP)" Hypertension Research in Pregnancy (2187-5987) 52 : 39-40.
2) 日本妊娠高血圧学会. 妊娠高血圧症候群新定義・分類運用上のポイント. 2019年
3) Li De-Kun, Yang C, Andrade S, et al. Ferber maternal exposure to angiotensin converting enzyme inhibitors in the first trimester and risk of malformations in offspring : A retrospective cohort study BMJ. 2011 ; 343 : d5931.
4) Porta M, Hainer JW, Jansson S-O, et al. DIRECT study group exposure to candesartan during the first trimester of pregnancy in type 1 diabetes : experience from the Placebo-Controlled DIabetic REtinopathy Candesartan Trials. Diabetologia. 2011 ; 54 : 1298-303.
5) 腎疾患患者の妊娠診療ガイドライン 2017. 日本腎臓学会. 2017.
6) Magee LA, von Dadelszen P, Rey E, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015 ; 372 : 407-17.
7) Brown MA, Magee LA, Kenny LC, et al. International society for the study of hypertension in pregnancy (ISSHP). Hypertensive disorders of pregnancy : ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018 ; 72 : 24-43.
8) 日本高血圧学会. 高血圧診療ガイド 2020. 2020.
9) 日本妊娠高血圧学会. 妊娠高血圧症候群の診療指針 2015. 2015.
10) Magee LA, Cham C, Waterman EJ, et al. Hydralazine for treatment of severe hypertension in pregnancy : meta-analysis. BMJ. 2003 ; 327 (7421) : 955-60.
11) Smyth A, Oliveira GH, Lahr BD, et al. A Systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol. 2010 ; 5 : 2060-8.
12) 末次靖子, 徳留悟朗, 菅野直希, 他. IgA腎症患者における加重型妊娠高血圧腎症の発症予測因子の検討. 日腎会誌. 2011 ; 53 : 1139-49.
13) 日本リウマチ学会. 全身性エリテマトーデス診療ガイドライン 2019. 2019.
14) Gonzalez Suarez ML, Kattah A, Grande JP, et al. Renal disorders in pregnancy : core curriculum 2019. Am J Kidney Dis. 2019 ; 73 : 119-30.
15) Jain A, Venkataramanan R, Fung JJ, et al. Pregnancy after liver transplantation under tacrolimus. transplantation. 1997 ; 64 : 559-65.
16) 厚生労働省. 免疫抑制剤の妊婦等に関する禁忌の見直しについて. <https://www.mhlw.go.jp/content/11120000/000342778.pdf>
17) Oshima M, Kitajima S, Toyama T, et al. Successful delivery in a patient with antineutrophil cytoplasmic antibody-associated glomerulonephritis. Intern Med. 2013 ; 52 : 1605-9.

H. Onco - nephrology

P.137 掲載の参考文献
1) Finkel KW, Foringer JR. Renal disease in patients with cancer. Nat Clin Pract Nephrol. 2007 ; 3 : 669-78.
2) Magee C. Kidney disease and death from cancer. Am J Kidney Dis. 2014 ; 63 : 7-9.
4) Francis KK, Kalyanam N, Terrell DR, et al. Disseminated malignancy misdiagnosed as thrombotic thrombocytopenic purpura : A report of 10 patients and a systematic review of published cases. Oncologist. 2007 ; 12 : 11-9.
6) Humphreys BD, Soiffer RJ, Magee CC. Renal failure associated with cancer and its treatment : an update. J Am Soc Nephrol. 2005 ; 16 : 151-61.
7) Izzendine H, Perazella MA. Thrombotic microangiopathy, cancer, and cancer drugs. Am J Kidney Dis. 2015 ; 66 : 857-68.
9) Seethapathy H, Zhao S, Chute DF, et al. The Incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol. 2019 ; 14 : 1692-700.
10) Eremina V, Jefferson JA, Kowalewska J, et al. VEGF Inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008 ; 358 : 1129-36.
11) Zhu X, Wu S, Dahut WL, et al. Risks of Proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor : systematic review and meta-analysis. Am J Kidney Dis. 2007 ; 49 : 186-93.

I. 腎炎・ネフローゼ

P.143 掲載の参考文献
1) Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol. 2003 ; 23 : 194-9.
2) Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration : definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012 ; 8 : 293-300.
9) Xu W, He B, Chiu A, et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol. 2007 ; 8 : 294-303.
12) Han SS, Yang SH, Choi M, et al. The role of TNF superfamily member 13 in the progression of IgA nephropathy. J Am Soc Nephrol. 2016 ; 27 : 3430-9.
14) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎疾患に関する調査研究班, 編. 丸山彰一, 監. エビデンスに基づくIgA腎症診療ガイドライン 2017. 東京 : 東京医学社. 2017.
15) Tatematsu M, Yasuda Y, Morita Y, et al. Complete remission within 2 years predicts a good prognosis after methylprednisolone pulse therapy in patients with IgA nephropathy. Clin Exp Nephrol. 2012 ; 16 : 883-91.
16) Hwang HS, Kim BS, Shin YS, et al. Predictors for progression in immunoglobulin A nephropathy with significant proteinuria. Nephrology (Carlton). 2010 ; 15 : 236-41.
17) 末野康, 山田洋, 永沼正. 扁桃摘出後遺残組織による病巣感染. 耳鼻咽喉科臨床. 1990 ; 83 : 255-60.
18) Haas M. Thin glomerular basement membrane nephropathy : incidence in 3471 consecutive renal biopsies examined by electron microscopy. Arch Pathol Lab Med. 2006 ; 130 : 699-706.
19) Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int. 1997 ; 51 : 2-15.
P.150 掲載の参考文献
1) 丸山彰一, 他. 疾患概念・定義・構成疾患・病態生理. In : 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業). 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくネフローゼ症候群診療ガイドライン 2017. 1版. 東京 : 東京医学社. 2017. p.1-5.
2) Bockenhauer D. Over- or underfill : Not all nephritic states are created equal. Pediatr Nephrol. 2013 ; 28 : 1153-56.
3) Vande Walle JG, Donckerwolcke RA, Koomans HA. Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. J Am Soc Nephrol. 1999 ; 10 : 323.
4) Usberti M, Federico S, Meccariello S, et al. Role of plasma vasopressin in the impairment of water excretion in nephrotic syndrome. Kidney Int. 1984 ; 25 : 422-9.
5) Hammond TG, Whitworth JA, Saines D et al. Renin-angiotensin-aldosterone system in nephrotic syndrome. Am J Kidney Dis. 1984 ; 4 : 18-23.
6) Brown EA, Markandu ND, Sagnella GA, et al. Evidence that some mechanism other than the renin system causes sodium retention in nephrotic syndrome. Lancet. 1982 ; 2 : 1237-40.
7) Brown EA, Markandu N, Sagnella GA, et al. Sodium retention in nephrotic syndrome is due to an intrarenal defect : evidence from steroid-induced remission. Nephron. 1985 ; 39 : 290-5.
8) Ichikawa, I, Rennke, HG, Hoyer, JR, et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983 ; 71 : 91-103.
9) Feraille E, Vogt B, Rousselot M, et al. Mechanism of enhanced Na-K-ATPase activity in cortical collecting duct from rats with nephrotic syndrome. J Clin Invest. 1993 ; 91 : 1295.
10) Valentin JP, Ying WZ, Sechi LA, et al. Phosphodiesterase inhibitors correct resistance to natriuretic peptides in rats with Heymann Nephritis. J Am Soc Nephrol. 1996 ; 7 : 582.
11) Lee EY, Humphreys MH. Phosphodiesterase activity as a mediator of renal resistance to ANP in pathological salt retention. Am J Physiol. 1996 ; 271 : F3.
12) Svenningsen P, Bistrup C, Friis UG, et al. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009 ; 20 : 299.
13) Vande Walle JG, Donckerwolcke RA, Koomans HA. Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. J Am Soc Nephrol. 1999 ; 10 : 323-31.
14) Murray MD, Haag KM, Black PK, et al. Variable furosemide absorption and poor predictability of response in elderly patients. Pharmacotherapy. 1997 ; 17 : 98-106.
15) Jenter JC, DeWald TA, Hermandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Cell Cardiol. 2010 ; 56 : 1527-34.
16) Leung AA, Wright A, Pazo V, et al. Risk of thiazide-induced hyponatremia in patients with hypertension. Am J Med. 2011 ; 124 : 1064-72.
17) Shankar SS, Brater DC. Loop diuretics : from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003 ; 284 : F11-21.
18) Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002 ; 13 : 798-805.
19) Nakahama H, Orita Y, Yamazaki M, et al. Pharmacokinetic and pharmacodynamic interactions between furosemide and hydrochlorothiazide in nephrotic patients. Nephron. 1988 ; 49 : 223-7.
20) Brater DC. Diuretic therapy. N Engl J Med. 1988 ; 339 : 387-95.
21) Effectivenesss of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the randomized Aldactone evaluation study [RALES]). Am J Cardiol. 1996 ; 78 : 902-7.
22) Hoom EJ, Ellison DH. Diuretic resistance. Am J Kidney Dis. 2017 ; 69 : 136-42.
23) Ellison DH, Velazquez H, Wright FS. Adaptation of distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest. 1989 ; 83 : 113-26.
24) Ng KT, Yap JLL. Continuous infusion vs. intermittent bolus injection of furosemide in acute decompensated heart failure : systematic review and meta-analysis of randomized controlled trials. Anaesthesia. 2018 ; 73 : 238-47.
25) Vaslo MR, Carwright DB, Knochel JP, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985 ; 102 : 314-8.
26) Ellison DH. Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol. 2019 ; 14 : 1248-57.
28) Duffy M, Jain S, Harrell N, et al. Albumin and furosemide combination for management of edema in nephrotic syndrome : A review of clinical studies. Cells. 2015 ; 4 ; 622-30.
29) Fallahzadeh MA, Dormanesh B, Fallahzadeh MK, et al. Acetazolamide and hydrochlorothiazide followed by furosemide versus durosemide and hydrochlorothiazide followed by furosemide for the treatment of adults with nephrotic edema : a randomized trial. Am J Kidney Int. 2017 ; 69 : 420-7.
P.156 掲載の参考文献
1) 服部元史. ネフローゼ症候群治療の進歩-小児領域. 日腎会誌. 2007 ; 49 : 103-7.
2) Durkan AM, Hodson EM, Willis NS, et al. Immunosuppressive agents in childhood nephrotic syndrome : A meta-analysis of randomized controlled trials. Kidney Int. 2001 ; 59 : 1919-27.
3) Latta K, von Schnakenburg C, Ehrich JHH. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. Pediatr Nephrol. 2001 ; 16 : 271-82.
4) Yoshioka K, Ohashi T, Sakai T, et al. A multicenter trial of mizoribine compared with placebo in children with frequently relapsing nephrotic syndrome. Kidney Int. 2000 ; 58 : 317-24.
5) Kawasaki Y, Hosoya M, Kobayashi S, et al. Oral mizoribine pulse therapy for patients with steroid-resistant and frequently relapsing steroid-dependent nephrotic syndrome. Nephrol Dial Transplant. 2005 ; 20 : 2243-7.
6) Hogg RJ, Fitzgibbons L, Bruick J, et al. Mycophenolate mofetil in children with frequently relapsing nephrotic syndrome : A report from the Southwest Pediatric Nephrology Study Group. Clin J Am Soc Nephrol. 2006 ; 1 : 1173-8.
7) Benz K, Dotsch J, Rascher W, et al. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol. 2004 ; 19 : 794-7.
8) Guigonis V, Dallocchio A, Baudouin V, et al. Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome : a multicentric series of 22 cases. Pediatr Nephrol. 2008 ; 23 : 1269-79.
9) Iijima K, Sako M, Nozu K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome : a multicenter, double-blind, randomized, placebo-controlled trial. Lancet. 2014 ; 384 : 1273-81.
10) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班, 編. 腎疾患の移行期医療支援ガイド-IgA腎症・微小変化型ネフローゼ症候群-. 東京 : 東京医学社. 2019.
11) van Husen M, Kemper MU. New therapies in steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome. Pediatr Nephrol. 2011 ; 26 : 881-92.
12) Tarshish P, Tobin JN, Bernstein J, et al. Prognostic significance of the early course of minimal change nephrotic syndrome : Report of the International Study of Kidney Disease in Children. J Am Soc Nephrol. 1997 ; 8 : 769-76.

J. 糖尿病・膠原病

P.163 掲載の参考文献
1) 新田孝作, 政金生人, 花房規男, 他. わが国の慢性透析療法の現況 (2018年12月31日現在). 日本透析医学会雑誌. 2019 ; 52 : 679-754.
2) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社. 2018.
4) Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease : a propensity score-matched analysis of a nationwide, biopsy-based cohort study. Diabetes Care. 2019 ; 42 : 891-902.
5) Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus : a randomized prospective 6-year study. Diabetes Research and Clinical Practice. 1995 ; 28 : 103-17.
6) Inzucchi SE, Lipska KJ, Mayo H, et al. Metformin in patients with type 2 diabetes and kidney disease : a systematic review. JAMA. 2014 ; 312 : 2668-75.
7) Hung S-C, Chang Y-K, Liu J-S, et al. Metformin use and mortality in patients with advanced chronic kidney disease : national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015 ; 3 : 605-14.
8) 日本糖尿病学会, 編. 糖尿病診療ガイドライン 2019. 東京 : 南江堂. 2016.
9) Ueki K, Sasako T, Okazaki Y, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3) : an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017 ; 5 : 951-64.
11) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2013. 東京 : 東京医学社. 2013.
12) Neuen BL, Ohkuma T, Neal B, et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria : data from the CANVAS Program. J Am Soc Nephrol. 2019 ; 30 : 2229-42.
13) Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease : a systematic review and meta-analysis. Diabetes Obes Metab. 2019 ; 21 : 1237-50.
14) Toyama T, Neuen LB, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease : a systematic review and meta-analysis. Diabetes Obes Metab. in press, 2019.
15) Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in Type 2 diabetes. N Engl J Med. 2016 ; 375 : 311-22.
16) Kristensen SL, Rorth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes : a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019 ; 7 : 776-85.
17) Pollock C, Stefansson B, Reyner D, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT) : a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019 ; 7 : 429-41.
20) Group SR, Wright JT, Jr., Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015 ; 373 : 2103-16.
21) Oshima M, Toyama T, Haneda M, et al. Estimated glomerular filtration rate decline and risk of end-stage renal disease in type 2 diabetes. PLoS One. 2018 ; 13 : e0201535.
22) Oshima M, Jun M, Ohkuma T, et al. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes : the ADVANCE-ON study. Diabetologia. 2019 ; 62 : 1988-97.
23) Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease : a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019 ; 7 : 128-39.
P.173 掲載の参考文献
1) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018 第16章 糖尿病性腎臓病 (DKD) 前文. 日腎会誌. 2018 ; 60 : 1164-5.
3) Sugiyama H, Yokoyama H, Sato H, et al. Japan Renal Biopsy Registry and Japan Kidney Disease Registry : Committee Report for 2009 and 2010. Clin Exp Nephrol. 2013 ; 17 : 155-73.
4) Katayama S, Moriya T, Tanaka S, et al. Low transition rate from normo- and low microalbuminuria to proteinuria in Japanese type 2 diabetic individuals : the Japan Diabetes Complications Study (JDCS). Diabetologia. 2011 ; 54 : 1025-31.
6) 厚生労働科学研究費補助金 [難治性疾患等克服研究事業〔難治性疾患等実用化研究事業 (腎疾患実用化研究事業) 〕] 糖尿病性腎症ならびに腎硬化症の診療水準向上と重症化防止にむけた調査・研究 研究班. 糖尿病性腎症と高血圧性腎硬化症の病理診断への手引き. 日腎会誌. 2015 ; 57 : 649-725.
7) Mauer SM, Steffes MW, Ellis EN, et al. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984 ; 74 : 1143-55.
8) Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996 ; 39 : 1569-76.
10) Moriya T, Omura K, Matsubara M, et al. Arteriolar hyalinosis predicts increase in albuminuria and GFR decline in normo- and microalbuminuric Japanese patients with type 2 diabetes. Diabetes Care. 2017 ; 40 : 1373-8.
11) Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018 ; 33 : 138-48.
12) Yamanouchi M, Hoshino J, Ubara Y, et al. Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One. 2018 ; 13 : e0190930.
13) Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS One. 2018 ; 13 : e0190923.
14) Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease : a report from an ADA Consensus Conference. Diabetes Care. 2014 ; 37 : 2864-83.
17) Tanaka N, Yamamoto Y, Yokoyama Y, et al. Temporal trends in the prevalence of albuminuria and reduced eGFR in Japanese patients with type 2 diabetes. Diabetol Int. 2019 ; 10 : 279-87.
18) Yokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes : the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009 ; 24 : 1212-9.
19) Yokoyama H, Araki SI, Kawai K, et al. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diabetes Res Care. 2018 ; 6 : e000521.
23) Yokoyama H, Araki SI, Kawai K, et al. The prognosis of patients with type 2 diabetes and nonalbu minuric diabetic kidney disease is not always poor : Implication of the effects of coexisting macrovascular complications (JDDM 54). Diabetes Care. 2020 ; 43 : 1102-10.
25) 糖尿病性腎症合同委員会. 委員会報告 糖尿病性腎症病期分類2014の策定 (糖尿病性腎症病期分類改訂) について. 日腎会誌. 2014 ; 56 : 547-52.
26) Furuichi K, Shimizu, Yuzawa Y, et al. Clinicopathological analysis of biopsy-proven diabetic nephropathy based on the Japanese classification of diabetic nephropathy. Clin Exp Nephrol. 2018 ; 22 : 570-82.
27) 清水美保, 和田隆志. DKDの病理学的特徴. 日内会誌. 2019 ; 108 : 907-15.
29) 清水美保, 和田隆志. 糖尿病性腎症ならびに糖尿病に合併するネフローゼ症候群. 日腎会誌. 2014 ; 56 : 500-9.
30) Fiorentino M, Bolignano D, Tesar V, et al. Renal biopsy in patients with diabetes : a pooled meta-analysis of 48 studies. Nephrol Dial Transplant. 2017 ; 32 : 97-110.
31) Furuichi K, Shimizu M, Toyama T, et al. Japan Diabetic Nephropathy Cohort Study : study design, methods, and implementation. Clin Exp Nephrol. 2013 ; 17 : 819-26.
33) Nakagawa N, Sofue T, Kanda E, et al. J-CKD-DB : A nationwide multicentre electronic health record-based chronic kidney disease database in Japan. Sci Rep. 2020 ; 10 : 7351.
34) Pavkov ME, Knowler WC, Lemley KV, et al. Early renal function decline in type 2 diabetes. Clin J Am Soc Nephrol. 2012 ; 7 : 78-84.
35) Krolewski AS. Progressive renal decline : The new paradigm of diabetic nephropathy in type 1 Diabetes. Diabetes Care. 2015 ; 38 : 954-62.
36) Yoshida Y, Kashiwabara K, Hirakawa Y, et al. Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Res Care. 2020 : e000902.
P.180 掲載の参考文献
4) Gaede P, Tarnow L, Vedel P, et al. Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol Dial Transplant. 2004 ; 19 : 2784-8.
5) de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy : lessons from RENAAL. Kidney Int. 2004 ; 65 : 2309-20.
6) Budhiraja P, Thajudeen B, Popovtzer M. Absence of albuminuria in type 2 diabetics with classical diabetic nephropathy : Clinical pathological study. J Biomed Sci Eng. 2013 ; 6 : 20-5.
7) Kanauchi M, Nishioka H, Hashimoto T, et al. Diagnostic significance of urinary transferrin in diabetic nephropathy. Nihon Jinzo Gakkai shi. 1995 ; 37 : 649-54.
8) Araki S, Haneda M, Koya D, et al. Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care. 2010 ; 33 : 1805-10.
9) Kamijo A, Kimura K, Sugaya T, et al. Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J Lab Clin Med. 2004 ; 143 : 23-30.
10) Kamijo-Ikemori A, Sugaya T, Yasuda T, et al. Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care. 2011 ; 34 : 691-6.
11) Nielsen SE, Sugaya T, Hovind P, et al. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care. 2010 ; 33 : 1320-4.
12) Araki S, Haneda M, Koya D, et al. Predictive effects of urinary liver-type fatty acid-binding protein for deteriorating renal function and incidence of cardiovascular disease in type 2 diabetic patients without advanced nephropathy. Diabetes Care. 2013 ; 36 : 1248-53.
14) Gohda T, Niewczas MA, Ficociello LH, et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012 ; 23 : 516-24.
15) Niewczas MA, Gohda T, Skupien J, et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J Am Soc Nephrol. 2012 ; 23 : 507-15.
16) Omote K, Gohda T, Murakoshi M, et al. Role of the TNF pathway in the progression of diabetic nephropathy in KK-A (y) mice. Am J Physiol Renal Physiol. 2014 ; 306 : F1335-47.
17) DiPetrillo K, Coutermarsh B, Gesek FA. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol-Renal Physiol. 2003 ; 284 : F113-F21.
18) Pavkov ME, Weil EJ, Fufaa GD, et al. Tumor necrosis factor receptors 1 and 2 are associated with early glomerular lesions in type 2 diabetes. Kidney Int. 2016 ; 89 : 226-34.
19) Bleyer AJ, Kmoch S. Tamm Horsfall glycoprotein and uromodulin : it is all about the tubules! Clin J Am Soc Nephrol. 2016 ; 11 : 6-8.
20) Bjornstad P, Wiromrat P, Johnson RJ, et al. Serum uromodulin predicts less coronary artery calcification and diabetic kidney disease over 12 years in adults with type 1 diabetes : The CACTI Study. Diabetes Care. 2019 ; 42 : 297-302.
21) Mollsten A, Torffvit O. Tamm-Horsfall protein gene is associated with distal tubular dysfunction in patients with type 1 diabetes. Scand J Urol Nephrol. 2010 ; 44 : 438-44.

K. 急性腎障害 ( AKI )

P.187 掲載の参考文献
1) Miyamoto Y, Iwagami M, Aso S, et al. Temporal change in characteristics and outcomes of acute kidney injury on renal replacement therapy in intensive care units : analysis of a nationwide administrative database in Japan, 2007-2016. Crit Care. 2019 ; 23 : 172.
2) Wald R, McArthur E, Adhikari NK, et al. Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults : a population-based cohort study. Am J Kidney Dis. 2015 ; 65 : 870-7.
3) Carlson N, Hommel K, Olesen JB, et al. Trends in one-year outcomes of dialysis-requiring acute kidney injury in denmark 2005-2012 : a population-based nationwide study. PLoS One. 2016 ; 11 : e0159944.
5) Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically Ill patients with acute kidney injury : The ELAIN randomized clinical trial. JAMA. 2016 ; 315 : 2190-9.
7) Bagshaw SM, Wald R, Adhikari NKJ, et al : Canadian Critical Care Trials Group : Australian and New Zealand Intensive Care Society Clinical Trials Group : United Kingdom Critical Care Research Group : Canadian Nephrology Trials Network : Irish Critical Care Trials Group. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury STARRT-AKI Investigators. N Engl J Med. 2020 ; 383 : 240-51.
8) Chawla LS, Davison DL, Brasha-Mitchell E, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit. Care. 2013 ; 17 : R207.
10) Uchino S, Bellomo R, Morimatsu H, et al. Discontinuation of continuous renal replacement therapy : a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009 ; 37 : 2576-82.
11) Frohlich S, Donnelly A, Solymos O, et al. Use of 2-hour creatinine clearance to guide cessation of continuous renal replacement therapy. J Crit Care. 2012 ; 27 : 744 e1-5.
12) Aniort J, Ait Hssain A, Pereira B, et al. Daily urinary urea excretion to guide intermittent hemodialysis weaning in critically ill patients. Crit Care. 2016 ; 20 : 43.
13) Katulka RJ, Al Saadon A, Sebastianski M, et al. Determining the optimal time for liberation from renal replacement therapy in critically ill patients : a systematic review and meta-analysis (DOnE RRT). Crit Care. 2020 ; 24 : 50.
14) Yoshida T, Matsuura R, Komaru Y, et al. Kinetic estimated glomerular filtration rate as a predictor of successful continuous renal replacement therapy discontinuation. Nephrology (Carlton). 2019 ; 24 : 287-93.
P.193 掲載の参考文献
2) AKI (急性腎障害) 診療ガイドライン作成委員会. AKI (急性腎障害) 診療ガイドライン 2016. 東京 : 東京医学社. 2016.
3) Rule AD, Amer H, Cornell D, et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med. 2010 ; 152 : 561-7.
4) Samiy AH. Renal disease in the elderly. Med Clin North Am. 1983 ; 67 : 463-80.
5) Chaumont M, Pourcelet A, van Nuffelen M, et al. Acute kidney injury in elderly patients with chronic kidney disease : do angiotensin-converting enzyme inhibitors carry a risk? J CIin Hypertens (Greenwich). 2016 ; 18 : 514-21.
6) Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention : development and initial validation. J Am Coll Cardiol. 2004 ; 44 : 1393-9.
7) The Kidney Disease Improving Global Outcomes (KDIGO) Working Group : Summary of Recommendation Staternents. Kidney Int Suppl. 2012 ; (2011) 2 : 8-12.
8) Liu S, Cheng QL, Zhang XY, et al. Application of continuous renal replacement therapy for acute kidney injury in elderly patients. Int J CIin Exp Med. 2015 ; 8 : 9973-8.
9) Chima-Melton C, Murphy TE, Araujo KLB, et al. The impact of race on intensity of care provided to older adults in the medical intensive care unit. J Racial Ethn Health Disparities. 2016 ; 3 : 365-72.
10) Wilson FP, Yang W, Carlos A, et al. Dialysis versus nondialysis in patients with AKI : apropensity-matched cohort study. Clin J Am Soc Nephrol. 2014 ; 9 : 673-81.
11) 日本腎臓学会. 腎障害患者におけるヨード造影剤使用に関するガイドライン 2018, 東京 : 東京医学社. 2018.

L. 嚢胞性疾患

P.201 掲載の参考文献
1) 神田祥一郎, 服部元史. 嚢胞性腎疾患の分類と繊毛病. In : 東原英二, 編. 多発性嚢胞腎~進化する治療最前線~. 東京 : 医薬ジャーナル社 ; 2015. p.278-81.
2) Arts HH, Knoers NV. Current insights into renal ciliopathies : what can genetics teach us? Pediatr Nephrol. 2013 ; 28 : 863-74.
3) Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019 ; 393 : 919-35.
4) 土谷健, 真壁志帆, 片岡浩史, 他. 多発性嚢胞腎の診断・治療の進歩. 人間ドック. 2017 ; 32 : 444-55.
5) 武藤智. 診断. 東原英二, 編. 多発性嚢胞腎~進化する治療最前線~. 東京 : 医薬ジャーナル社 ; 2015. p.69.
6) 望月俊雄, 真壁志帆. 常染色体優性多発性嚢胞腎 (ADPKD) に対するトルバプタンの使用法. 医学のあゆみ. 2017 ; 263 : 856-62.
7) Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007 ; 369 : 1287-301.
8) 奴田原紀久雄. 多発性嚢胞腎の薬物療法. 腎と透析. 2014 ; 77 : 735-9.
9) Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Eng J Med. 2012 ; 367 : 2407-18.
10) Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Eng J Med. 2017 ; 377 : 1930-42.
11) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班, 編. 成田一衛, 監. エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2020. 東京医学社. 2020.
12) Iliuta IA, Kalatharan V, Wang K, et al. Polycystic kidney disease without an apparent family history. Journal of the American Society of Nephrology : JASN. 2017 ; 28 : 2768-76.
13) Ito Y, Sekine A, Yabuuchi J, et al. Renal histology and MRI findings in a 37-year-old Japanese patient with autosomal recessive polycystic kidney disease. Clin Nephrol. 2017 ; 88 : 292-7.
14) Takada D, Sekine A, Yabuuchi J, et al. Renal histology and MRI in a 25-year-old Japanese man with nephronophthisis 4. Clin Nephrol. 2018 ; 89 : 223-8.
15) Grantham J, Torres VE, Chapman A, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006 ; 354 : 2122-30.
16) Cornec-Le Gall E, Andrezet M-P, Chen J-M, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. 2013 ; 24 : 1006-13.
17) Hwang YH, Conklin J, Chan W, et al. Refining genotype-phenotype correlation in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016 ; 27 : 1861-8.
18) Irazabal MV, Rangel LJ, Bergstralh EJ, et al. Imaging classification of autosomal dominant polycystic kidney disease : a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015 ; 26 : 160-72.
19) 西尾妙織. 多発性嚢胞腎のエンドポイント. 日腎会誌. 2018 ; 60 : 597-600.
20) Cornec-Le Gall E, Andrezet M-P, Rousseau A, et al. The PROPKD score : A new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016 ; 27 : 942-51.

M. 保存期

P.208 掲載の参考文献
1) 日本腎臓学会・日本医学放射線学会・日本循環器学会, 編. 腎障害患者におけるヨード造影剤使用に関するガイドライン 2018. 東京 : 東京医学社. 2018.
2) Bartels ED, Brun GC, Gammeltoft A, et al. Acute anuria following intravenous pyelography in a patient with myelomatosis. Acta Med Scand. 1954 ; 150 : 297-302.
3) Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material- induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989 ; 320 : 143-9.
4) Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity : is the medical risk really as great as we have come to believe? Radiology. 2010 ; 56 : 21-8.
5) McDonald RJ, McDonald JS, Newhouse JH, et al. Controversies in contrast material-induced acute kidney injury : closing in on the truth? Radiology. 2015 ; 277 : 627-32.
6) Luk L, Steinman J, Newhouse JH. Intravenous contrast-induced nephropathy-the rise and fall of a threatening idea. Adv Chronic Kidney Dis. 2017 ; 24 : 169-75.
7) Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity : a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol. 1999 ; 9 : 1602-13.
8) KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int (Suppl). 2012 ; 17 : 1-138.
9) Maioli M, Toso A, Leoncini M, et al. Persistent renal damage after contrast-induced acute kidney injury : incidence, evolution, risk factors, and prognosis. Circulation. 2012 ; 125 : 3099-107.
10) Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy : from pathophysiology to preventive strategies. Can J Cardiol. 2016 ; 32 : 247-55.
11) Lau A, Chung H, Komada T, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018 ; 128 : 2894-913.
12) Campbell DR, Flemming BK, Mason WF, et al. A comparative study of the nephrotoxicity of iohexol, iopamidol and ioxaglate in peripheral angiography. Can Assoc Radiol J. 1990 ; 41 : 133-7.
13) Moore RD, Steinberg EP, Powe NR, et al. Nephrotoxicity of high-osmolality versus low-osmolality contrast media : randomized clinical trial. Radiology. 1992 ; 182 : 649-55.
15) Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002 ; 105 : 2259-64.
16) Abe M, Kimura T, Morimoto T, et al. Incidence of and risk factors for contrast-induced nephropathy after cardiac catheterization in Japanese patients. Circ J. 2009 ; 73 : 1518-22.
17) Saito Y, Watanabe M, Aonuma K, et al ; CINC-J study investigators. proteinuria and reduced estimated glomerular filtration rate are independent risk factors for contrast-induced nephropathy after cardiac catheterization. Circ J. 2015 ; 79 : 1624-30.
18) Abe M, Morimoto T, Akao M, et al. Relation of contrast-induced nephropathy tolong-term mortality after percutaneous coronary intervention. Am J Cardiol. 2014 ; 114 : 362-8.
19) Davenport MS, Khalatbari S, Cohan RH, et al. Contrast material-induced nephrotoxicity and intra venous low-osmolality iodinated contrast material : risk stratification by using estimated glomerular filtration rate. Radiology. 2013 ; 268 : 719-28.
20) Ehrmann S, Quartin A, Hobbs BP, et al. Contrast-associated acute kidney injury in the critically ill : systematic review and Bayesian meta-analysis. Intensive Care Med. 2017 ; 43 : 785-94.
21) Lee YC, Hsieh CC, Chang TT, et al. Contrast-induced acute kidney injury among patients with chronic kidney disease undergoing imaging studies : A meta-analysis. AJR Am J Roentgenol. 2019 ; 213 : 728-35.
22) Gorelik Y, Bloch-Isenberg N, Yaseen H, et al. Acute kidney injury after radiocontrast-enhanced computerized tomography in hospitalized patients with advanced renal failure : a propensity-score-matching analysis. Invest Radiol. 2020 ; 55 : 677-87.
23) Nijssen EC, Rennenberg RJ, Nelemans PJ, et al. Prophylactic hydration to protect renal function from intravascular iodin- ated contrast material in patients at high risk of contrast-induced nephropathy (AMACING) : a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017 ; 389 : 1312-22.
24) Cruz DN, Goh CY, Marenzi G, et al. Renal replacement thera- pies for prevention of radiocontrast-induced nephropathy : a systematic review. Am J Med. 2012 ; 125 : 66-78.

N. 食事・運動指導

P.216 掲載の参考文献
1) 日本腎臓学会, 編. 慢性腎臓病に対する食事療法基準 2014年版. 東京 : 東京医学社 ; 2014.
2) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社 ; 2018.
3) Rughooputh MS, Zeng R, Yao Y. Protein diet restriction slows chronic kidney disease progression in non-diabetic and in type 1 diabetic patients, but not in type 2 diabetic patients : a meta-analysis of randomized controlled trials using glomerular filtration rate as a surrogate. PLoS One. 2015 ; 10 : e0145505.
4) 山縣邦弘. 腎障害進展予防と腎代替療法へのスムーズな移行 CKDステージG3b~5診療ガイドライン 2017 (2015 追補版). 日腎会誌. 2017 ; 59 : 1093-216.
5) 日本糖尿病学会, 編. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019.
6) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づく多発性嚢胞腎 (PKD) の診療ガイドライン 2017. 東京 : 東京医学社 ; 2017.
8) Yan B, Su X, Xu B, et al. Effect of diet protein restriction on progression of chronic kidney disease : A systematic review and meta-analysis.
9) Zhu HG, Jiang ZS, Gong PY, et al. Efficacy of low-protein diet for diabetic nephropathy : a systematic review of randomized controlled trials. Lipids Health Dis. 2018 ; 17 : 141.
10) Campbell K, Rangan GK, Lopez-Vargas P. et al. KHA-CARI autosomal dominant polycystic kidney disease guideline : diet and lifestyle management. Semin Nephrol. 2015 ; 35 : 572-81.
12) Garneata L, Stancu A, Dragomir D, et al. Ketoanalogue-supplemented vegetarian very low-protein diet and CKD progression. J Am Soc Nephrol. 2016 ; 27 : 2164-76.
13) Ishikawa S, Naito S, Iimori S, et al. Loop diuretics are associated with greater risk of sarcopenia in patients with non-dialysis-dependent chronic kidney disease. PLoS One. 2018 ; 13 : e0192990.
14) Shlipak MG, Stehman-Breen C, Fried LF, et al. The presence of frailty in elderly persons with chronic renal insufficiency. Am J Kidney Dis. 2004 ; 43 : 861-7.
15) Lee S, Lee S, Harada K, et al. Relationship between chronic kidney disease with diabetes or hypertension and frailty in community-dwelling Japanese older adults. Geriatr Gerontol Int. 2017 ; 17 : 1527-33.
16) 日本サルコペニア・フレイル学会. サルコペニア診療実践ガイド. 東京 : ライフサイエンス出版 ; 2019.
17) Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia : 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7. e2.
18) Morley JE, Vellas B, van Kan GA, et al. Frailty consensus : a call to action. J Am Med Dir Assor. 2013 ; 14 : 392-7.
19) Nixon AC, Bampouras TM, Pendleton N, et al. Diagnostic accuracy of frailty screening methods in advanced chronic kidney disease. Nephron. 2019 ; 141 : 147-55.
20) 日本腎臓学会. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言, 日腎会誌. 2019 ; 61 : 525-56.
21) Tangri N, Grams ME, Levey AS et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure : a meta-analysis. JAMA. 2016 ; 315 : 164-74.
22) Huang MC, Chen ME, Hung HC, et al. Inadequate energy and excess protein intakes may be associated with worsening renal function in chronic kidney disease. J Ren Nutr. 2008 ; 18 : 187-94.
23) Wu HL, Sung JM, Kao MD, et al. Nonprotein calorie supplement improves adherence to low-protein diet and exerts beneficial responses on renal function in chronic kidney disease. J Ren Nutr. 2013 ; 23 : 271-6.
24) 日本腎臓リハビリテーション学会. 腎臓リハビリテーションガイドライン. 東京 : 南江堂 ; 2018.
25) Castaneda C, Gordon PL, Uhlin KL, et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann Intern Med. 2001 ; 135 : 965-76.
26) Navaneethan SD, Shao J, Buysse J, et al. Effects of treatment of metabolic acidosis in CKD : a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2019 ; 14 : 1011-20.
P.225 掲載の参考文献
1) Heiwe S, Tollback A, Clyne N. Twelve weeks of exercise training increases muscle function and walking capacity in elderly predialysis patients and healthy subjects. Nephron. 2001 ; 88 : 48-56.
2) Clyne N, Ekholm J, Jogestrand T, et al. Effects of exercise training in predialytic uremic patients. Nephron. 1991 ; 59 : 84-9.
3) Painter PL, Nelson-Worel JN, Hill MM, et al. Effects of exercise training during hemodialysis. Nephron. 1986 ; 43 : 87-92.
4) Heiwe S, Clyne N, Tollback A, et al. Effects of regular resistance training on muscle histopathology and morphometry in elderly patients with chronic kidney disease. Am J Phys Med Rehabil. 2005 ; 84 : 865-74.
5) Tamaki M, Hagiwara A, Miyashita K, et al. Improvement of physical decline through combined effects of muscle enhancement and mitochondrial activation by a gastric hormone ghrelin in male 5/6Nx CKD model mice. Endocrinology. 2015 ; 156 : 3638-48.
7) Tsubakihara Y, Nishi S, Akiba T, et al. 2008 Japanese Society for Dialysis Therapy : guidelines for renal anemia in chronic kidney disease. Ther Apher Dial. 2010 ; 14 : 240-75.
8) Gulati M, Black HR, Arnsdorf MF, et al. Kidney dysfunction, cardiorespiratory fitness, and the risk of death in women. J Womens Health (Larchmt). 2012 ; 21 : 917-24.
9) Chen IR, Wang SM, Liang CC, et al. Association of walking with survival and RRT among patients with CKD Stages 3-5. Clin J Am Soc Nephrol. 2014.
10) 日本透析医学会統計調査委員会. 図説わが国の慢性透析療法の現況 (2018年12月31日現在). 東京 : 日本透析医学会 ; 2018.
11) 大久保麗, 近藤正, 岡田浩, 他. 進行期CKD患者の運動習慣と生活について REACH-J-CKDコホート研究より. 日本腎臓学会誌. 2018 ; 60 : 394.
12) Glavinovic T, Ferguson T, Komenda P, et al. CKD and sedentary time : results from the canadian health measures survey. Am J Kidney Dis. 2018 ; 72 : 529-37.
13) Beddhu S, Wei G, Marcus RL, et al. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin J Am Soc Nephrol. 2015 ; 10 : 1145-53.
14) Yamagata K, Hoshino J, Sugiyama H, et al. Clinical practice guideline for renal rehabilitation : systematic reviews and recommendations of exercise therapies in patients with kidney diseases. Renal Replacement Therapy. 2019 ; 5 : 28.
15) Zhang L, Wang Y, Xiong L, et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients : evidence from a meta-analysis. BMC nephrology. 2019 ; 20 : 398.
16) Peng H, Wang Q, Lou T, et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun. 2017 ; 8 : 1493.
17) Ito D, Cao P, Kakihana T, et al. Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in Zucker diabetic rats. PLoS One. 2015 ; 10 : e0138037.
18) Hellberg M, Hoglund P, Svensson P, et al. Randomized controlled trial of exercise in CKD-The RENEXC Study. Kidney international reports. 2019 ; 4 : 963-76.
19) Zhou Y, Hellberg M, Hellmark T, et al. Muscle mass and plasma myostatin after exercise training : a substudy of Renal Exercise (RENEXC) -a randomized controlled trial. Nephrol Dial Transplant. 2019.
20) 新井武, 大渕修, 小島基, 他. 地域在住高齢者の身体機能と高齢者筋力向上トレーニングによる身体機能改善効果との関係. 日本老年医学会雑誌. 2006 ; 43 : 781-8.
21) Clarke AL, Young HM, Hull KL, et al. Motivations and barriers to exercise in chronic kidney disease : a qualitative study. Nephrol Dial Transplant. 2015 ; 30 : 1885-92.
22) Xu B. BDNF (I) rising from exercise. Cell metabolism. 2013 ; 18 : 612-4.
23) Shimada S, Hirose T, Takahashi C, et al. Pathophysiological and molecular mechanisms involved in renal congestion in a novel rat model. Scientific reports. 2018 ; 8 : 16808.
P.231 掲載の参考文献
2) 日本集中治療医学会重症患者の栄養管理ガイドライン作成委員会. 日本版重症患者の栄養療法ガイドライン. 日集中医誌. 2016 ; 23 : 185-281.
6) 日本腎臓学会, 編. 慢性腎臓病に対する食事療法基準 2014年版. 日腎会誌. 2014 ; 56 : 553-99.
7) 日本腎臓学会. サルコペニア・フレイルを合併した保存期腎不全の食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
11) Kawakami R, Murakami H, Sanada K, et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015 ; 15 : 969-76.
12) Maebashi M, Imamura A, Yoshinaga K, et al. Carnitine depletion as a probable cause of hyperlipidemia in uremic patients on maintenance hemodialysis. Tohoku J Exp Med. 1983 ; 139 : 33-42.
13) Fukami K, Sakai K, Kaida Y, et al. Effects of oral or intravenous L-carnitine administration on serum carnitine levels and clinical parameters in hemodialysis patients. Nihon Toseki Igakkai Zasshi. 2014 ; 47 : 367-74.
14) 宮澤靖. 栄養剤からみたPEG. 静脈経腸栄養. 2014 ; 29 : 975-80.
15) 谷口英喜, 辻智大, 中田恵津子. 経口補水液の前投与は, 経腸栄養剤の胃排出を促進する~13C呼気ガス診断を応用した胃排出能検査法を用いた検討から~. 2012 ; 27 : 731-7.

O. チーム医療

P.239 掲載の参考文献
1) Keith DS, Nichols GA, Gullion CM, et al. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004 ; 164 : 659-63.
2) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン. 東京 : 東京医学社 ; 2018.
3) 山縣邦弘, 研究代表. CKDステージG3b~5診療ガイドライン 2015.
4) Bayliss EA, Bhardwaja B, Ross C, et al. Multidisciplinary team care may slow the rate of decline in renal function. Clin J Am Soc Nephrol. 2011 ; 6 : 704-10.
5) Yamagata K, Makino H, Iseki K, et al. Effect of behavior modification on outcome in early- to moderate-stage chronic kidney disease : A Cluster-Randomized Trial. PLoS One. 2016 ; 11 : e0151422.
6) 日本腎臓リハビリテーション学会, 編. 腎臓リハビリテーションガイドライン. 東京 : 南江堂. 2018.
P.244 掲載の参考文献
1) Halabi I, Scholtes B, Voz B, et al. Patient participation and related concepts : A scoping review on their dimensional composition. Patient Educ Couns 2019.
2) Castro EM, Regenmortel TV, Vanhaecht K, et al. Patient empowerment, patient participation and patient-centeredness in hospital care : A concept analysis based on a literature review. Patient Education and Counseling. 2016 ; 99 : 1923-39.
3) Carman KL, Dardess P, Maurer M, et al. Patient and family engagement : a framework for understanding the elements and developing interventions and policies. Health Affairs. 2013 ; 32 : 223.
4) Cene CW, Johnson BH, Wells N, et al. A narrative review of patient and family engagement : The "Foundation" of the Medical Home. Med Care. 2016 ; 54 : 697-705.
5) Frosch L, Rincon D, Ochoa S, et al. Activating seniors to improve chronic disease care : Results from a pilot intervention study. J Am Geriatr Soc. 2010 ; 58 : 1496-503.
6) Stamp KD, Dunbar SB, Clark PC, et al. Family partner intervention influences self-care confidence and treatment self-regulation in patients with heart failure. European Journal of Cardiovascular Nursing. 2016 ; 15 : 317-27.
7) Strom JL, Egede LE. The impact of social support on outcomes in adult patients with type 2 diabetes : A systematic review. Current Diabetes Reports. 2012 ; 12 : 769-81.
8) Coulmont M, Roy C, Dumas L. Does the planetree patient-centered approach to carepay off? : Acost-benefit analysis. The Health Care Manager. 2013 ; 32 : 87-95.
9) Gazelle G, Liebschutz JM, Riess H. Physician burnout : Coaching a way out. J General Inter Med. 2015 ; 30 : 508-13.
10) Nelson KM, Helfrich C, Sun H, et al. Implementation of the patient-centered medical home in the Veterans Health Administration : Associations with patient satisfaction, quality of care, staff burnout, and hospital and emergency department use. JAMA Inter Med. 2014 ; 174 : 1350-8.
11) Barry MJ, Edgman-Levitan S. Shared decision making-the pinnacle of patient-centered care. N Engl J Med. 2012 ; 366 : 780-1.
12) National Quality Forum. National quality partners playbook. Shared Decision Making in Healthcare. 2018.
13) Charles C, Gafni A, Whelan T. Decision-making in the physician-patient encounter : revisiting the shared treatment decision-making model. Social Sci Med. 1999 ; 49 : 651-61.
14) Maclean A. Autonomy, Informed consent and medical law. Cambridge Univ Pres ; 2009. p.129.
15) Childress JF, Childress MD. What does the evolution from informed consent to shared decision making teach us about authority in health care? AMA J Ethics. 2020 ; 22 : E423-9.
16) Entwistle VA, Watt IS. Broad versus narrow shared decision making : Patients' involvement in real world contexts. In : Elwyn G, ed. Shared Decision Making in Health Care. Third ed. Oxford Univ Press ; 2016.
17) Lee CT, Chen CY, Yu TM, et al. Shared decision making increases living kidney transplantation and peritoneal dialysis. Transplantation Proceedings. 2019 ; 51 : 1321-4.
18) Subramanian L, Zhao J, Zee J, et al. 2018. Does an online decision aid help people with advanced chronic kidney disease choose between two treatment options. Washington, DC : Patient-Centered Outcomes Research Institute (PCORI). <https://doi.org/10.25302/10.2018.CER.1109.>
19) Lee A, Gudex C, Povlsen JV, et al. Patients' views regarding choice of dialysis modality. Nephrol Dial Transplant. 2008 ; 23 : 3953-9.
20) Song M, Lin F, Gilet CA, et al. Patient perspectives on informed decision-making surrounding dialysis initiation. Nephrol Dial Transplant. 2013 ; 28 : 2815-23.
21) Goto Y, Miura H, Son D, et al. Psychometric evaluation of the Japanese 9-item shared decision-making questionnaire and its association with decision conflict and patient factors in Japanese primary care. JMA J. 2020 ; 3 : 208-15.
22) Simon D, Schorr G, Wirtz M, et al. Development and first validation of the shared decision-making questionnaire (SDM-Q). Patient Educ Couns. 2006 ; 63 : 319-27.
23) Elwyn G, Durand MA, Song J, et al. A three-talk model for shared decision making : multistage consultation process. BMJ. 2017 ; 6 ; 359 : j4891.
24) AHRQ. The share approach : Shared decisionmaking tools and training. https://www.ahrq.gov/evidencenow/tools/share-approach.html
25) Saw KC, Wood AM, Murphy K, et al. Informed consent : An evaluation of patients' understanding and opinion (with respect to the operation of transurethral resection of prostate). J Royal Soc Med. 1994 ; 87 : 143-4.
27) 腎臓病SDM推進協会. <http://www.ckdsdm.jp/>
28) 中元秀友, 秋野公造. 腎代替療法の未来. 東京 : 西村書店 ; 2020.
29) Jayanti A, Neuvonen M, Wearden A, et al. Healthcare decision-making in end stage renal disease-patient preferences and clinical correlates. BMC Nephrol. 2015 ; 16 : 189. <https://doi.org/10.1186/s12882-015-0180-8>
30) Cassidy BP, Getchell LE, Harwood L, et al. Barriers to education and shared decision making in the chronic kidney disease population : a narrative review. Can J Kidney Health Dis. 2018 ; 5 : 1-11.
31) Levinson W, Kao A, Kuby A, et al. Not all patients want to participate in decision making. J Gen Intern Med. 2005 ; 20 : 531-5.
32) Brom L, Hopmans W, Pasman RW, et al. Congruence between patients' preferred and perceived participation in medical decision making : a review of the literature. BMC Medical Informatics and Decision Making. 2014 ; 14 : 25.
33) The Salzburg Statement on Shared Decision Making. 2011 <https://www.bmj.com/content/bmj/342/bmj.d1745.full.pdf>

P. 移植・再生

P.252 掲載の参考文献
1) Wolf M, Weir MR, Kopyt N, et al. A prospective cohort study of mineral metabolism after kidney transplantation. Transplant. 2016 ; 100 : 184.
2) Lamina C, Kronenberg F, Stenvinkel P, et al. Association of changes in bone mineral parameters with mortality in haemodialysis patients : insights from the ARO cohort. Nephrology Dialysis Transplant. 2020 ; 35 : 478-87.
3) Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23. Bone. 2007 ; 40 : 1190-5.
4) Forster IC, Hernando N, Biber J, et al. Proximal tubular handling of phosphate : A molecular perspective. Kid Int. 2006 ; 70 : 1548-59.
5) Baia LC, Heilberg IP, Navis G, et al. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol. 2015 ; 11 : 656.
6) Ambuhl PM, Meier D, Wolf B, et al. Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation : impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis. 1999 ; 34 : 875-83.
7) Schwarz A, Merkel S, Leitolf H, et al. The effect of cinacalcet on bone remodeling and renal function in transplant patients with persistent hyperparathyroidism. Transplant. 2011 ; 91 : 560-5.
8) Cohen JB, Gordon CE, Balk EM, et al. Cinacalcet for the treatment of hyperparathyroidism in kidney transplant recipients : a systematic review and meta-analysis. Transplant. 2012 ; 94 : 1041-8.
9) 齋藤淳史, 木村庄吾, 横山仁, 他. 移植後の持続性二次性副甲状腺機能亢進症に対するシナカルセトの有効性. 第44回 日本臨床腎移植学会記録集 腎移植症例. 2011 ; 150-3.
10) Gagne ER, Urena P, Leite-Silva S, et al. Short-and long-term efficacy of total parathyroidectomy with immediate autografting compared with subtotal parathyroidectomy in hemodialysis patients. J Am Soc Nephrol. 1992 ; 3 : 1008-17.
11) Richards ML, Wormuth J, Bingener J, et al. Parathyroidectomy in secondary hyperparathyroidism : Is there an optimal operative management?. Surgery. 2006 ; 139 : 174-80.
12) 中村道郎, 滝口進也, 上原咲恵子, 他. 移植腎・生命予後からみた腎移植前後の副甲状腺機能亢進症とその管理. J Jap Soc Clin Renal Transplant. 2017 ; 5 : 138-44.
13) Park JH, Kang SW, Jeong JJ, et al. Surgical treatment of tertiary hyperparathyroidism after renal transplantation : a 31-year experience in a single institution. Endocrine Journal. 2011 ; 1107260596-1107260596.
14) Kim H, Park J, Nam KH, et al. The effect of interactions between proteinuria, activity of fibroblast growth factor 23 and serum phosphate on renal progression in patients with chronic kidney disease : a result from the KoreaN cohort study for outcome in patients with chronic kidney Disease study. Nephrol Dialysis Transplant. 2020 ; 35 : 438-46.
15) Baia LC, Humalda JK, Vervloet MG, et al. Fibroblast growth factor 23 and cardiovascular mortality after kidney transplantation. Clin J Am Soc Nephrol. 2013 ; 8 : 1968-78.
16) Bouma-de Krijger, Annet & Vervloet MG. Fibroblast growth factor 23 : are we ready to use it in clinical practice?. J Nephrol. 2020 ; 1-19.
P.261 掲載の参考文献
1) 日本臨床腎移植学会・日本移植学会. 腎移植臨床登録集計報告 (2019) 2018年実施症例の集計報告と追跡調査結果. 2019.
2) Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007 ; 46 : 13-58.
3) Demey B, Tinez C, Francois C, et al. Risk factors for BK virus viremia and nephropathy after kidney transplantation : A systematic review. J Clin Virol. 2018 ; 109 : 6-12.
4) Berger SP, Sommerer C, Witzke O, et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019 ; 19 : 3018-34.
5) 岩藤和, 中島一, 渕之上昌. 腎移植後の悪性腫瘍 その現状と要因と対策. 日本臨床腎移植学会雑誌. 2014 ; 2 : 44-61.
6) KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009 ; 9 (Suppl 3) : S1-155.
7) Wolf S, Hoffmann VS, Habicht A, et al. Effects of mTOR-Is on malignancy and survival following renal transplantation : A systematic review and meta-analysis of randomized trials with a minimum follow-up of 24 months. PLoS One. 2018 ; 13 : e0194975.
8) Sifontis NM, Coscia LA, Constantinescu S, et al. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplant. 2006 ; 82 : 1698-702.
9) Everolimus : Drug information. UpToDate. 2020.
10) Huyghe E, Zairi A, Nohra J, et al. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients : an overview. Transpl Int. 2007 ; 20 : 305-11.
11) Zuber J, Anglicheau D, Elie C, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant. 2008 ; 8 : 1471-9.
12) Dalrymple LS, Katz R, Kestenbaum B, et al. The risk of infection-related hospitalization with decreased kidney function. Am J Kidney Dis. 2012 ; 59 : 356-63.
13) Johnston O, Rose CL, Gill JS, et al. Risks and benefits of preemptive second kidney transplantation. Transplant. 2013 ; 95 : 705-10.
14) Aubert O, Loupy A, Hidalgo L, et al. Antibody-mediated rejection due to preexisting versus de novo donor-specific antibodies in kidney allograft recipients. J Am Soc Nephrol. 2017 ; 28 : 1912-23.
15) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific antibody. Am J Transplant. 2015 ; 15 : 2921-30.
16) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012 ; 12 : 1157-67.
P.268 掲載の参考文献
1) Tasaki M, Saito K, Nakagawa Y, et al. 20-year analysis of kidney transplantation : a single center in Japan. Transplant Proc. 2014 ; 46 : 437-41.
2) 腎移植推進委員会. 腎不全 治療選択とその実際. 2019.
3) 公益法人日本臓器移植ネットワーク. 臓器提供・移植データブック 2017. 東京 : 日本臓器移植ネットワーク ; 2017. p.587.
4) 日本臨床腎移植学会・日本移植学会. 腎移植臨床登録集計報告 (2019). 2018年実施症例の集計報告と追跡調査結果. 移植. 2019 ; 54 : 61-80.
5) Magee JC, Barr ML, Basadonna GP, et al. Repeat organ transplantation in the United States, 1996-2005. Am J Transplant. 2007 ; 7 : 1424-33.
6) Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2013 Annual Data Report : kidney. Am J Transplant. 2015 ; 15 Suppl 2 : 1-34.
8) 福澤信之, 原田浩, 板谷一史, 他. 市立札幌病院における二次腎移植症例. 今日の移植. 2013 ; 2 : 553-6.
9) Han SH, Go J, Park SC, et al. Long-term outcome of kidney retransplantation in comparison with first transplantation : A propensity score matching analysis. Transplant Proc. 2019 ; 51 : 2582-6.
10) Graves RC, Fine RN. Kidney retransplantation in children following rejection and recurrent disease. Pediatr Nephrol. 2016 ; 31 : 2235-47.
11) Petrun BM, Christie R, Nygaard RM, et al. Graft survival of fourth-time renal transplant recipients is similar to third time recipients : A SRTR database analysis. Clin Transplant. 2020 [Epub ahead of print]
P.274 掲載の参考文献
2) Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017 ; 21 : 730-46.
3) Tsujimoto H, Kasahara T, Sueta S, et al. A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells. Cell Rep. 2020 ; 31 : 107476.
4) Kobayashi T. Yamaguchi T, Hamanaka S, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010 ; 142 : 787-99.
5) Yamaguchi T. Sato H, Itoh MK, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017 ; 9 : 191-6.
8) Hamanaka S, Umino A, Sato H, et al. Generation of vascular endothelial cells and hematopoietic cells by blastocyst complementation. Stem Cell Reports. 2019 ; 11 : 988-97.
9) Matsunari H, Watanabe M, Hasegawa K, et al. Compensation of disabled organogeneses in genetically modified pig fetuses by blastocyst complementation. Stem Cell Reports. 2020 ; 14 : 21-33.
10) Das S, Nakagawa NK, Gafni O, et al. Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol. 2020 ; 38 : 297-302.
11) Yokoo T, Ohashi T, Shen JS, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA. 2005 ; 102 : 3296-300.
13) Yokoo T, Fukui A, Matsumoto K, et al. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation. 2008 ; 85 : 1654-8.
16) Yokote S, Matsunari H, Iwai, S, et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci USA. 2015 ; 112 : 12980-5.
17) Lai L, Simonds DK, Park KW, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002 ; 295 : 1089-92.
18) Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995 ; 1 : 964-6.
19) Miwa Y, Yamamoto K, Onishi A, et al. Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation. Xenotransplantation. 2010 ; 17 : 26-37.
20) Kim SC, Mathews DV, Breeden CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant. 2019 ; 19 : 2174-85.

Q. 遺伝性疾患

P.280 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班, 編. 成田一衛, 監. エビデンスに基づく多発性嚢胞腎PKD診療ガイドライン 2020. 東京 : 東京医学社. 2020.
3) 日本先天代謝異常学会, 編. ファブリー病診療ガイドライン 2019. 東京 : 診断と治療社. 2019.
4) 日本小児腎臓病学会, 編. アルポート症候群診療ガイドライン 2017. 東京 : 診断と治療社. 2017.
5) Eng CM, Fletcher J, Wilcox WR, et al. Fabry disease : baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007 ; 30 : 184-92.
6) Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008 ; 359 : 1477-85.
7) Kobayashi M, et al. Frequency of de novo mutations in Japanese patients with Fabry disease. Mol Genet Metab Rep. 2014 ; 1 : 283-7.
8) Eckardt KU, Alper SL, Antignac C, et al. Autosomal dominant tubulointerstitial kidney disease : Diagnosis, classification, and management--A KDIGO consensus report. Kidney Int. 2015 ; 88 : 676-83.
9) Grantham JJ, Cook LT, Wetzel LH, et al. Evidence of extraordinary growth in the progressive enlargement of renal cysts. Clin J Am Soc Nephrol. 2010 ; 5 : 889-96.
10) Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD) : executive summary from a Kidney Disease : Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015 ; 88 : 17-27.
11) 日本医学会. 医療における遺伝学的検査・診断に関するガイドライン <http://jams.med.or.jp/guideline/genetics-diagnosis.pdf>

R. 移行期医療

P.287 掲載の参考文献
1) 服部元史. 腎臓病診療における小児から成人への移行医療. 日医雑誌. 2016 ; 145 : 742-3.
2) 横谷進, 落合亮太, 小林信秋, 他. 小児期発症疾患を有する患者の移行期医療に関する提言. 日児誌. 2014 ; 118 : 98-106.
4) American Academy of Pediatrics, American Academy of Family Physicians, American College of Physicians-American Society of Internal Medicine. A consensus statement on health care transitions for young adults with special health care needs. Pediatrics. 2002 ; 110 : 1304-6.
5) Watson AR, Harden P, Ferris M, et al. Transition from pediatric to adult renal services : a consensus statement by the International Society of Nephrology (ISN) and the International Pediatric Nephrology Association (IPNA). Kidney Int. 2011 ; 80 : 704-7.
6) 厚生労働省難治性疾患等政策研究事業「難治性腎疾患に関する調査研究」研究班診療ガイドライン分科会トランジションWG, 日本腎臓学会, 日本小児腎臓病学会. 小児慢性腎臓病患者における移行医療についての提言-思春期・若年成人に適切な医療を提供するために-. 日腎会誌. 2015 ; 57 : 789-803.
8) 日本腎臓学会, 日本小児腎臓病学会, 監修. 厚生労働省難治性疾患克服研究事業難治性腎疾患に関する調査研究班編. 思春期・青年期の患者のためのCKD診療ガイド. 日腎会誌. 2016 ; 58 : 1095-233.
9) 佐古まゆみ, 三浦健一郎, 芦田明, 他. 「小児慢性腎臓病患者における移行医療についての提言」と「思春期・青年期の患者のためのCKD診療ガイド」の認知度, 理解度, 活用度に関するアンケート調査の報告. 日腎会誌. 2018 ; 60 : 972-7.
12) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 「難治性腎疾患に関する調査研究」, 編. 腎疾患の移行期医療支援ガイド-IgA腎症・微小変化型ネフローゼ症候群-. 東京 : 東京医学社. 2019.
13) 日本小児腎臓病学会「小児IgA腎症治療ガイドライン作成委員会」, 編. 小児IgA腎症治療ガイドライン 1.0版. 2007.
14) 丸山彰一, 監修, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくIgA腎症診療ガイドライン 2017. 東京 : 東京医学社. 2017.
15) 三浦健一郎, 佐古まゆみ, 芦田明, 他. IgA腎症と微小変化型ネフローゼ症候群の診療ガイドラインの認知度と活用状況に関するアンケート調査の報告. 日腎会誌. 2019 ; 61 : 51-7.
16) Tarshish P, Tobin JN, Bernstein J, et al. Prognostic significance of the early course of minimal change nephrotic syndrome : Report of the International Study of Kidney Disease in Children. J Am Soc Nephrol. 1997 ; 8 : 769-76.
P.292 掲載の参考文献
1) 厚生労働省難治性疾患克服研究事業難治性腎疾患に関する調査研究班, 編. 日本腎臓学会, 日本小児腎臓学会, 監. 思春期・青年期の患者のためのCKD診療ガイド. 東京 : 東京医学社. 2016.
1) Watson AR. Non-compliance and transfer from paediatric to adult transplant unit. Pediatr Nephrol. 2000 ; 14 : 469-72.
2) 厚生労働省難治性疾患克服研究事業難治性腎疾患に関する調査研究班, 編. 腎疾患の移行期医療支援ガイド-IgA腎症・微小変化型ネフローゼ症候群-. 東京 : 東京医学社. 2019.
2) American Academy of Pediatrics ; American Academy of Family Physicians ; American College of Physicians-American Society of Internal Medicine. A consensus statement on health care transitions for young adults with special health care needs. Pediatrics. 2002 ; 110 : 1304-6.
3) Blum RW, Garell D, Hodgman CH, et al. Transition from child-centered to adult health-care systems for adolescents with chronic conditions. A position paper of the Society for Adolescent Medicine. J Adolesc Health. 1993 ; 14 : 570-6.
4) 石塚優子, 丸光惠, 他, 編. 成人移行期小児慢性疾患患者の自立支援のための移行支援について. 平成25年度厚生労働科学研究費補助金 (成育疾患克服等次世代育成基盤研究事業) 慢性疾患に罹患している児の社会生活支援並びに療育生活支援に関する実態調査およびそれら施策の充実に関する研究. 2002.
5) Wood DL, Sawicki GS, Miller MD, et al. The transition readiness assessment questionnaire (TRAQ) : its factor structure, reliability, and validity. Pediatr. 2014 ; 14 : 415-22.
6) Ishizaki Y, Maru M, Higashino H, et al. The transition of adult patients with childhood-onset chronic diseases from pediatric to adult healthcare systems : a survey of the perceptions of Japanese pediatricians and child health nurses. Biopsychosoc Med. 2012 ; 6 : 8.
8) Wingen AM, Fabian-Bach C, Schaefer F, et al. Randomised multicentre study of a low-protein diet on the progression of chronic renal failure in children. European Study Group of Nutritional Treatment of Chronic Renal Failure in Childhood. Lancet. 1997 ; 349 : 1117-23.
9) Vivante A, Golan E, Tzur D, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012 ; 172 : 1644-50.
10) Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood : systematic review. Int J Obes (Lond). 2011 ; 35 : 891-8.
11) Gerson A, Hwang W, Fiorenza J, et al. Anemia and health-related quality of life in adolescents with chronic kidney disease. Am J Kidney Dis. 2004 ; 44 : 1017-23.
12) Mitsnefes MM, Daniels SR, Schwartz SM, et al. Severe left ventricular hypertrophy in pediatric dialysis : Prevalence and predictors. Pediatr Nephrol. 2000 ; 14 : 898-902.
13) Amaral S, Hwang W, Fivush B, et al. Association of mortality and hospitalization with achievement of adult hemoglobin targets in adolescents maintained on hemodialysis. J Am Soc Nephrol. 2006 ; 17 : 2878-85.
14) Warady BA, Abraham AG, Schwartz GJ, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents : The Chronic Kidney Disease in Children (CKiD) Cohort. Am J Kidney Dis. 2015 ; 65 : 878-88.

S. ガイドライン

P.297 掲載の参考文献
1) 小島原典子, 中山健夫, 森實敏夫, 他, 編. Minds診療ガイドライン作成マニュアル 2017. 公益財団法人日本医療機能評価機構, 2017. <http://minds4.jcqhc.or.jp/minds/guideline/pdf/manual_all_2017.pdf>
2) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくIgA腎症診療ガイドライン 2017. 東京 : 東京医学社. 2017.
3) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくネフローゼ症候群診療ガイドライン 2017. 東京 : 東京医学社. 2017.
4) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づく急速進行性腎炎症候群 (RPGN) 診療ガイドライン 2017. 東京 : 東京医学社. 2017.
5) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2017. 東京 : 東京医学社. 2017.
6) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくIgA腎症診療ガイドライン 2020. 東京 : 東京医学社. 2020.
7) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づくネフローゼ症候群診療ガイドライン 2020. 東京 : 東京医学社. 2020.
8) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づく急速進行性腎炎症候群 (RPGN) 診療ガイドライン 2020. 東京 : 東京医学社. 2020.
9) 厚生労働省科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 難治性腎疾患に関する調査研究班, 編. エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2020. 東京 : 東京医学社. 2020.
P.301 掲載の参考文献
1) 小島原典子, 中山健夫, 森實敏夫, 他, 編. Minds診療ガイドライン作成マニュアル 2017 (https://minds.jcqhc.or.jp/s/guidance_2017_0_h) 公益財団法人日本医療機能評価機構, 2017.
2) Brouwers MC, Kho ME, Browman GP, et al. AGREEII : Advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010 ; 63 : 1308-11.
3) 岡田浩一. CKD対策における診療ガイドラインの戦略的意義. 日内会誌. 2020 ; 109 : 93-7.
4) 岡田浩一. 特集 :症例で学ぶ! 腎泌尿器科診療ガイドラインの使い方 : 第2章 3. 慢性腎臓病 (CKD). 腎と透析増刊号 2020 ; p.55.
5) Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged > 75 years : a randomized clinical trial. JAMA. 2016 ; 315 : 2673-82.
7) Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults : A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018 ; 71 : e127-e248.
8) Obi Y, Kalantar-Zadeh K, Shintani A, et al. Estimated glomerular filtration rate and the risk-benefit profile of intensive blood pressure control amongst nondiabetic patients : a post hoc analysis of a randomized clinical trial. J Intern Med. 2018 ; 283 : 314-27.
10) 日本腎臓学会, 編. エビデンスに基づくCKD診療ガイドライン 2018. 東京 : 東京医学社. 2018.
11) van der Veer SN, Tomson CRV, Jager KJ, et al. Bridging the gap between what is known and what we do in renal medicine : improving implementability of the European Renal Best Practice guidelines. Nephrol Dial Transplant. 2014 ; 29 : 951-7.

最近チェックした商品履歴

Loading...