サルコペニア虎の巻 診療のコツをとことん理解する

出版社: 中外医学社
著者:
発行日: 2021-12-05
分野: 臨床医学:内科  >  老人医学
ISBN: 9784498059221
電子書籍版: 2021-12-05 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

7,590 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

7,590 円(税込)

商品紹介

「サルコペニア肥満? なにそれ」というあなたにぴったり! これまでの「サルコペニア解説本」とはひと味違う,これからの診療に必須の実践的内容.全項目ポイントがよくわかる会話形式の導入付きで楽しく読んでしっかり学べる! サルコペニアの基本から,病態別の対策,在宅や新型コロナなど状況に応じた対応まで,臨床で役立つ実践知識をとことんわかりやすく解説.栄養,運動,薬剤,歯科連携などチーム全員に役立つ1冊.

目次

  • 1章 はじめに
     1 どうして,サルコペニアを知っておくべきなのか?
     2 超高齢社会の医療
     3 筋肉は尊い

    2章 筋肉の代謝について知っておこう
     1 これだけは押さえておきたい筋蛋白代謝
     2 加齢と骨格筋
     3 病気と筋肉
     4 筋トレとエクササイズ
     5 筋トレと栄養学
     6 筋トレと薬剤
     7 筋肉は量が大事? 質が大事?

    3章 エビデンスから考えるサルコペニア肥満対策
     1 サルコペニア肥満とAWGS2019
     2 サルコペニア肥満の病態生理と歴史的変遷
     3 サルコペニア肥満とobesity paradox
     4 サルコペニア肥満における筋量の部位別加齢変化
     5 サルコペニア肥満の対策:予防と治療:地域
     6 サルコペニア肥満の対策:予防と治療:病院

    4章 本当に怖い医原性サルコペニア
     1 医原性サルコペニアとは
     2 急性期の新しい概念:ICU-AWとPICS
     3 ICUでの早期リハビリテーションのエビデンス:効果と副作用
     4 ICUでの早期栄養療法のエビデンス:効果と副作用
     5 ERASとは(手術による二次性サルコペニア対策との関連性)
     6 回復期での運動療法とリハビリテーション
     7 回復期における栄養療法
     8 薬剤と医原性サルコペニア

    5章 病態別のサルコペニア対策の実践
     1 呼吸器疾患とサルコペニア(特に急性呼吸不全とCOPDについて)
     2 心疾患とサルコペニア(特に急性心不全と慢性心不全について)
     3 肝疾患とサルコペニア
     4 脳卒中とサルコペニア:急性期と回復期
     5 大腿骨近位部骨折とサルコペニア
     6 癌とサルコペニア
     7 慢性腎臓病とサルコペニア
     8 2型糖尿病とサルコペニア
     9 摂食嚥下障害とサルコペニア
     10 認知症とサルコペニア
     11 排泄とサルコペニア

    6章 その他の重要事項
     1 新型コロナウィルス対策とサルコペニア・フレイル
     2 在宅ケアとサルコペニア・フレイル
     3 口腔機能障害と医科歯科連携
     4 栄養サポートチーム(NST)
     5 メタボ対策からフレイル対策へのギアチェンジ:フレイル検診
     6 臨床研究のすすめ
     7 医療者の学習をサポートするSNSのススメ

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 はじめに

P.10 掲載の参考文献
(1) Rosenberg I. Summary comments : epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989 ; 50 : 1231-3.
(2) サルコペニア診療ガイドライン作成委員会. サルコペニア診療ガイドライン2017年度版一部改訂. 東京 : ライフサイエンス出版 ; 2020.
(3) Cruz-Jentoft AJ, et al. Sarcopenia : European consensus on definition and diagnosis : Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 ; 39 : 412-23.
(4) Cruz-Jentoft AJ, et al. Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing. 2019 ; 48 : 16-31.
(5) Chen LK, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7
(6) Sanchez-Rodriguez D, et al. Sarcopenia in post-acute care and rehabilitation of older adults : A review. European Geriatric Medicine. 2016 ; 7 : 224-31.
(7) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018 ; 37 (6 Pt A) : 2022-8.
(8) Yoshimura Y, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
(9) Cruz-Jentoft A, et al. Sarcopenia. Lancet. 2019 ; 393 : 2636-46.
P.18 掲載の参考文献
(1) 内閣府. 高齢化の状況. 平成31年版高齢社会白書. 2019.
(2) Akishita M, et al. Priorities of health care outcomes for the elderly. J Am Med Dir Assoc. 2013 ; 14 : 479-84.
(3) 吉村芳弘, 編著. 熊リハ発! エビデンスがわかる! つくれる! 超実践リハ栄養ケースファイル. 京都 ; 金芳堂 : 2019
P.26 掲載の参考文献
(1) Vitasalo JT, et al. Muscular strength profiles and anthropometry in random samples of men aged 31-35, 51-55 and 71-75 years. Ergonomics. 1984 ; 28 : 1563-74.
(2) サルコペニア診療ガイドライン作成委員会. サルコペニア診療ガイドライン 2017年度版一部改訂. 東京 ; ライフサイエンス出版 : 2020.
(3) 秋山和宏. 医歩の学校 学ぶ・講座テキスト 2019年度版. チーム医療フォーラム. 2019. p.68.

2章 筋肉の代謝について知っておこう

P.40 掲載の参考文献
(1) 越智ありさ, 他. 廃用性筋萎縮とアミノ酸. 生化学. 2014 ; 86 : 367-71.
(2) Schuelke M, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004 ; 350 : 2682-8.
(3) Furihata T, et al. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure. Int J Cardiol. 2016 ; 220 : 483-87.
(4) Cheng CF, et al. PGC-1alpha as a Pivotal Factor in Lipid and Metabolic Regulation. Int J Mol Sci. 2018 ; 19 : 3447.
(5) Ruas JL, et al. A PGC-1 α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012 ; 151 : 1319-31.
(6) Wilkinson DJ, et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013 ; 591 : 2911-23.
(7) Anthony JC, et al. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab. 2002 ; 282, E1092-101.
(8) 大村健二. 侵襲と飢餓. In : 大村健二, 他, 編. 新・栄養塾. 東京 ; 医学書院 : 2020. p.85-92.
(9) Argiles, JM, et al. Skeletal muscle regulates metabolism via interorgan crosstalk : roles in health and disease. J Am Med Dir Assoc. 2016 ; 17 : 789-96.
(10) Berg JM, et al. 食物摂取と飢餓は代謝の変化をひき起こす. In : 入村達郎, 他, 監訳. ストライヤー生化学, 第8版. 東京 ; 東京化学同人 : 2018. p.766-9.
(11) 大村健二. たんぱく質とアミノ酸の代謝. In : 大村健二, 他, 編. 新・栄養塾. 東京 ; 医学書院 : 2020. p.32-9.
(12) 大村健二. TCAサイクル, ミトコンドリアと酸化的リン酸化. In : 大村健二, 他, 編. 新・栄養塾, 東京 ; 医学書院 : 2020. p.93-8.
(13) Schricker T, et al. Parenteral nutrition and protein sparing after surgery : do we need glucose? Metabolism. 2007 ; 56 : 1044-50.
(14) Konosu M, et al. Peripheral vein infusions of amino acids facilitate recovery after esophagectomy for esophageal cancer : Retrospective cohort analysis. Ann Med Surg. 2017 ; 14 : 29-35.
(15) Wolfe RR, et al. Optimal protein intake in the elderly. Clin Nutr. 2008 ; 27 : 675-84,
(16) 厚生労働省. 令和元年 国民健康・栄養調査結果の概要. https://www.mhlw.go.jp/content/10900000/000687163.pdf
(17) Dardevet D, et al. Muscle wasting and resistance of muscle anabolism : the "anabolic threshold concept" for adapted nutritional strategies during sarcopenia. Scientific World J. 2012 ; 269531.
(18) 葛谷雅文. サルコペニアと栄養管理. 外科と代謝・栄養. 2016 ; 50 : 1-6.
P.48 掲載の参考文献
(1) Zhang X, et al. Falls among older adults with sarcopenia dwelling in nursing home or community : A meta-analysis. Clin Nutr. 2019 : S0261-5614 ; 30003-2.
(2) Beaudart C, et al. Health outcomes of sarcopenia : a systematic review and metaanalysis. PLoS One. 2017 ; 12 : e0169548.
(3) Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995 ; 50 Spec No : 11-6.
(4) Kanazawa Y, et al. Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats. Exp Gerontol. 2017 ; 98 : 153-61.
(5) Loyd C, et al. Prevalence of hospital-associated disability in older adults : a meta-analysis. J Am Med Dir Assoc. 2019 : S1525-8610 ; 30696-6.
(6) Ortiz-Alonso J, et al. Effect of a simple exercise program on hospitalization-associated disability in older patients : a randomized controlled trial. J Am Med Dir Assoc. 2020 : S1525-8610 ; 30836-9.
(7) Jackson AS, et al. Longitudinal changes in body composition associated with healthy ageing : men, aged 20-96 years. Br J Nutr. 2012 ; 107 : 1085-91.
(8) Speakman JR, et al. Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am J Clin Nutr. 2010 ; 92 : 826-34.
(9) Yamada M, et al. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age.Geriatr Gerontol Int. 2014 ; 14 Suppl 1 : 8-14.
(10) Vitasalo JT, et al. Muscular strength profiles and anthropometry in random samples of men aged 31-35, 51-55 and 71-75 years. Ergonomics. 1984 ; 28 : 1563-74.
(11) Hughes VA, et al. Longitudinal muscle strength changes in older adults : influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001 ; 56 : B209-17.
(12) Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995 ; 50 Spec No : 11-6.
(13) Sebastien Barbat-Artigas, et al. Muscle quantity is not synonymous with muscle quality. J Am Med Dir Assoc. 2013 ; 14 : 852.e1-7.
(14) Li R, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018 ; 50 : 458-67.
(15) Isoyama N, et al. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients.Clin J Am Soc Nephrol. 2014 ; 9 : 1720-8.
(16) Yamada Y, et al. Electrical properties assessed by bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. J Gerontol A Biol Sci Med Sci. 2017 ; 72 : 1180-6.
(17) Yamada M, et al. Phase angle is a useful indicator for muscle function in older adults. J Nutr Health Aging. 2019 ; 23 : 251-5.
P.59 掲載の参考文献
(1) サルコペニア診療実践ガイド作成委員会, 編. サルコペニア診療実践ガイド. 日本サルコペニア・フレイル学会. 2019.
(2) Venturelli M, et al. In vivo and in vitro evidence that intrinsic upper- and lowerlimb skeletal muscle function is unaffected by ageing and disuse in oldest-old humans. Acta Physiol (Oxf). 2015 ; 215 : 58-71.
(3) Siddiqui JA, et al. Advances in cancer cachexia : Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer. 2020 ; 1873 : 188359.
(4) Nakamura S, et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nat Commun. 2019 ; 10 : 847.
(5) Rong S, et al. The mechanisms and treatments for sarcopenia : could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle. 2020 ; 11 : 348-65.
(6) Bay ML, et al. Muscle-organ crosstalk : Focus on Immunometabolism. Front Physiol. 2020 ; 11 : 567881
P.70 掲載の参考文献
(1) Bao W, et al. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia : a systematic review and meta-analysis. Aging Dis. 2020 ; 11 : 863-73.
(2) Makizako H, et al. Effects of a Multicomponent exercise program in physical function and muscle mass in sarcopenic/pre-sarcopenic adults. J Clin Med. 2020 ; 9.
(3) Borde R, et al. Dose-reseponse relationships of resistance training in healthy old adults : a systematic review and meta-analysis. Sports Med. 2015 ; 45 : 1693-720.
(4) Beckwee D, et al. Exercise interventions for the prevention and treatment of sarcopenia. a systematic umbrella review. J Nutr Health Aging. 2019 ; 23 : 494-502.
(5) Vincent KR, et al. Resistance exercise and physical performance in adults aged 60 to 83. J Am Geriatr Soc. 2002 ; 50 : 1100-7.
(6) 武市尚也, 他. Hand-Held Dynamometer測定値からの1 repetition maximum (膝伸展筋) の予測. 総合リハビリテーション. 2012 ; 40 : 1005-9.
(7) Langeard A, et al. Does neuromuscular electrical stimulation training of the lower limb have functional effects on the elderly? A systematic review. Experimental gerontology. 2017 ; 91 : 88-98.
(8) Cameron MH, 著, 渡部一郎, 訳. EBM物理療法. 東京 : 医歯薬出版 ; 2015. p.257-73.
(9) Correa CS, et al. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults. Clin Physiol Funct Imaging. 2016 ; 36 : 306-10.
P.79 掲載の参考文献
(1) 藤田聡. 筋トレの栄養学 : サルコペニアとアミノ酸摂取. 筋トレの科学と実践. J Clin Rehabili. 2020 : 2 : 131-8.
(2) Morley JE. Anorexia of ageing : a key component in the pathogenesis of both sarcopenia and cachexia. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 523-6.
(3) Bujak AL, et al. AMPK activation of muscle autophagy prevents fasting-incuced hypoglycemia and myopathy during aging. Cell Metab. 2015 ; 21 : 883-90.
(4) 厚生労働省. 「日本人の食事摂取基準 (2020年版) 」策定検討会報告書. https://www.mhlw.go.jp/stf/newpage_08517.html.
(5) 西岡心大. 低栄養とリハビリテーション栄養管理の考え方-特にエネルギー必要量に関して-. 日静脈経腸栄会誌. 2016 ; 31 : 944-8.
(6) Fujishima l, et al. Sarcopenia and dysphagia : Poshition paper by four professional organizations. Geriatr Gerontol Int. 2019 ; 19 : 91-7.
(7) 日本肥満学会, 編. 肥満症治療ガイドライン 2016. 東京 : ライフサイエンス出版 ; 2016.
(8) Smith HJ, et al. Attenuation of proteasome induced proteolysis in skeletal muscle by {beta}-hydroxy-{beta}-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005 ; 65 : 277-83.
(9) Pennings B, et al. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011 ; 997-1005.
(10) 下方浩史, et al. 食事ガイドライン 第5回サルコペニア診療ガイドライン. 食と医療. 2018 ; 5 : 104-10.
(11) Katsanos CS, et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. AM J Physiol Endocrinol Metab. 2006 ; 291 : E381-7.
(12) Deutz NE, et al. Protein intake and exercise for optimal muscle function with aging : recommendations from ESPEN Expert Group. ClinNutri. 2014 ; 33 : 929-36.
(13) Muscariello E, et al. Dietary protein intake in sarcopenic obese older women. Clin Interv Aging. 2016 ; 11 : 133-40.
(14) Yoshii N, et al. Relationship between dietary protein or essential amino acid intake and training-induced muscle hypertrophy among older individuals. J Nutr Sci Vitaminol (Tokyo). 2017 ; 63 : 379-88.
(15) Kim HK, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women : a randomized controleed trial. J Am Geriatr Soc. 2012 ; 60 : 16-23.
(16) 山田実. サルコペニアと転倒. In : 島田裕之編. サルコペニアと運動 エビデンスと実践. 東京. 医歯薬出版 : 2014. p.30-6.
(17) Beydoun MA, et al. Associations among 25-hydroxyvitamin D, diet quality, and metabolic disturbance differ by adiposity in adults in the United States. J Clin Endocrinol Metab. 2010 ; 95 : 3814-27.
(18) Beaudart C, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power : a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014 ; 99 : 4336-45.
(19) van Dronkelaar C, et al. Minerals and sarcopenia ; The role of calciu, iron, magnesium, phosphorus, potassium, selenium, sodium ad zinc on muscle mass, Muscle strength, and physical performance in older adults : a systematic review. J Am Med Dir Assoc. 2018 ; 19 : 6-11.
(20) Esmarck B, et al. Timing of postexercise protein intake important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001 ; 535 : 301-11.
(21) Pochmuller M, et al. A systematic review and metaanalysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J Int Soc Sports Nutr. 2016 ; 13 : 27.
(22) Yoshimura Y, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
P.90 掲載の参考文献
(1) 2017 Anti-Doping Rule Violations (ADRVs) Report ; https://www.wada-ama.org/sites/default/files/resources/files/2017_adrv_report.pdf
(2) 2020年禁止表国際基準日本語版 日本アンチ・ドーピング機構. https://www.playtruejapan.org/entry_img/wada_2020_japanese_prohibited_list.pd.pdf
(3) Steroids and Other Appearance and Performance Enhancing Drugs (APEDs) Research Report, National Institute on Drug Abuse 2018.
(4) Bauer J, et al. Sarcopenia : a time for action. an SCWD position paper. J Cachexia, Sarcopenia Muscle. 2019 ; 10 : 956-61
(5) Campins L, et al. Oral drugs related with muscle wasting and sarcopenia. A review. Pharmacology. 2017 ; 99 : 1-8.
(6) Mogi M. Effect of renin-angiotensin system on senescence. Geriatr Gerontol Int. 2020 ; 20 : 520-5.
(7) Sumukadas D, et al. Effect of perindopril on physical function in elderly people with functional impairment : a randomized controlled trial. CMAJ. 2007 ; 177 : 867-74.
(8) Heisterberg MF, et al. Losartan has no additive effect on the response to heavy-resistance exercise in human elderly skeletal muscle. J Appl Physiol. 2018 ; 125 : 1536-54.
(9) Caulfield L, et al. Effect of angiotensin system inhibitors on physical performance in older people-a systematic review and meta-analysis. J Am Med Dir Assoc. 2020 : S1525-8610 ; 30623-X.
(10) 榊弥香, 他. 漢方薬のサルコペニアに対する効果. Medical Practice. 2020 ; 37 : 765-70.
(11) Kwak JY, et al. Pharmacological interventions for treatment of sarcopenia : current status of drug development for sarcopenia. Ann Geriatr Med Res. 2019 ; 23 : 98-104.
(12) Verzola D, et al. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019 ; 95 : 506-17.
(13) Becker C, et al. Myostatin antibody (LY2495655) in older weak fallers : a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015 ; 3 : 948-57.
(14) Morvan F, et al. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci U S A. 2017 ; 114 : 12448-53.
(15) Rooks D, et al. Treatment of sarcopenia with bimagrumab : results from a phase II, randomized, controlled, proof-of-concept study. J AmGeriatr Soc. 2017 ; 65 : 1988-95.
(16) Rooks D, et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults : A randomized clinical trial. JAMA Network Open. 2020 ; 3 : e2020836
(17) Fonseca GWPD, et al. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs. 2020 ; 29 : 881-91.
P.100 掲載の参考文献
(1) Rosenberg I. Summary comments : epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989 ; 50 : 1231-3.
(2) Chen L, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7.
(3) Barbat-Artigas S, et al. Muscle quantity is not synonymous with muscle quality. J Am Med Dir Assoc. 2013 ; 14 : 852.e1-7.
(4) Kim G, et al. Impact of skeletal muscle mass on metabolic health. Endocrinol Metab (Seoul). 2020 ; 35 : 1-6.
(5) Han J, et al. Low relative skeletal muscle mass predicts incident hypertension in Korean men : a prospective cohort study. J Hypertens. 2020 ; 25.
(6) Kirk B, et al. Osteosarcopenia : epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle. 2020 ; 11 : 609-18.
(7) Wang D, et al. Muscle mass, strength, and physical performance predicting activities of daily living : a meta-analysis. J Cachexia Sarcopenia Muscle. 2020 ; 11 : 3-25.
(8) Ancum J, et al. Muscle mass and muscle strength are associated with pre- and post-hospitalization falls in older male inpatients : a longitudinal cohort study. BMC Geriatr. 2018 ; 18 : 116.
(9) 上住聡芳, 他. 筋と骨の異所性脂肪蓄積. Bone. 2015 ; 29 : 243-8.
(10) Nazare J, et al. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile : the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am J Clin Nutr. 2012 ; 96 : 714-26.
(11) 重本和宏, 他. サルコペニアの概念と診断方法. 病理と臨床. 2018 ; 36 : 128-34.
(12) Nakano I, et al. Enhanced echo intensity of skeletal muscle is associated with exercise intolerance in patients with heart failure. J Card Fail. 2020 ; 26 : 685-93.
(13) Wilkinson T, et al. Quality over quantity? Association of skeletal muscle myosteatosis and myofibrosis on physical function in chronic kidney disease. Nephrol Dial Transplant. 2019 ; 34 : 1344-53.
(14) Tanaka M, et al. Low-attenuation muscle is a predictor of diabetes mellitus : A population-based cohort study. Nutrition. 2020 ; 74 : 110752.
(15) Tanaka M, et al. Trunk muscle quality and quantity predict the development of metabolic syndrome and the increase in the number of its components in individuals without metabolic syndrome. Nutr Metab Cardiovasc Dis. 2020 ; 30 : 1161-8.

3章 エビデンスから考えるサルコペニア肥満対策

P.113 掲載の参考文献
(1) Chen LK, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7. e2.
(2) Heber D, et al. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. 1996 ; 64 (3 Suppl) : 472S-477S.
(3) Atkins JL, et al. Sarcopenic obesity and risk of cardiovascular disease and mortality : a population-based cohort study of older men. J Am Geriatr Soc. 2014 ; 62 : 253-60.
(4) Yoshimura Y, et al. Sarcopenic obesity is associated with activities of daily living and home discharge in post-acute rehabilitation [published online ahead of print, 2020 May 20]. J Am Med Dir Assoc. 2020 ; S1525-8610 : 30288-7.
(5) 日下部徹, 他. 肥満者でサルコペニアであるサルコペニア肥満者は存在するか? 日本サルコペニア・フレイル学会誌. 2020 ; 4 : 28-33.
(6) Makizako H, et al. Prevalence of sarcopenia defined using the Asia Working Group for Sarcopenia criteria in Japanese community-dwelling older adults : A systematic review and meta-analysis. Phys Ther Res. 2019 ; 22 : 53-7.
(7) Donini LM, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr. 2020 ; 39 : 2368-88.
P.122 掲載の参考文献
(1) Rosenberg I. Summary comments : epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989 ; 50 : 1231-3.
(2) Cruz-Jentoft AJ, et al, European Working Group on Sarcopenia in Older People. Sarcopenia : European consensus on definition and diagnosis : Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 ; 39 : 412-23.
(3) Chen LK, et al, Sarcopenia in Asia : consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014 ; 15 : 95-101.
(4) サルコペニア診療ガイドライン作成委員会, 編. サルコペニア診療ガイドライン 2017年版. 東京 ; ライフサイエンス出版 : 2017.
(5) Chen LK, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020. pii : S1525-8610 (19) 30872-2.
(6) Cruz-Jentoft AJ, et al, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing. 2019 ; 48 : 16-31.
(7) Clark BC, et al, What is dynapenia? Nutrition. 2012 ; 28 : 495-503.
(8) Zhang X, et al, Falls among older adults with sarcopenia dwelling in nursing home or community : A meta-analysis. Clin Nutr. 2019. pii : S0261-5614 (19) 30003-2.
(9) Uemura K, et al, Sarcopenia and low serum albumin level synergistically increase the risk of incident disability in older adults. J Am Med Dir Assoc. 2019 ; 20 : 90-3.
(10) Beaudart C, et al, Health outcomes of sarcopenia : a systematic review and meta-analysis. PLoS One. 2017 17 ; 12 : e0169548.
(11) Wang DXM, et al, Muscle mass, strength, and physical performance predicting activities of daily living : a meta-analysis. J Cachexia Sarcopenia Muscle. 2019
(12) Li R, et al, Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018 ; 50 : 458-67.
(13) Isoyama N, et al, Comparative associations of muscle mass and muscle strength with mortality in dialysis patients.Clin J Am Soc Nephrol. 2014 ; 9 : 1720-8.
(14) Heber D, et al. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. 1996 ; 64 (3 Suppl) : 472S-7S.
(15) Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000 ; 904 : 437-48.
(16) Schrager MA, et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol (1985). 2007 ; 102 : 919-25.
(17) Dominguez LJ, et al. The cardiometabolic syndrome and sarcopenic obesity in older persons. J Cardiometab Syndr. 2007 ; 2 : 183-9.
(18) Tian S, et al. Association of sarcopenic obesity with the risk of all-cause mortality : A meta-analysis of prospective cohort studies. Geriatr Gerontol Int. 2016 ; 16 : 155-66.
(19) Chen HT, et al. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity. J Am Geriatr Soc. 2017 ; 65 : 827-32.
(20) Liao CD, et al. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity : A CONSORTcompliant prospective randomized controlled trial. Medicine (Baltimore). 2017 ; 96 : e7115.
(21) Villareal DT, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. N Engl J Med. 2017 ; 376 : 1943-55.
(22) Molino S, et al. Sarcopenic obesity : an appraisal of the current status of knowledge and management in elderly people. J Nutr Health Aging. 2016 ; 20 : 780-8.
(23) Liao CD, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults : a systematic review and meta-analysis. Am J Clin Nutr. 2017 ; 106 : 1078-91.
P.133 掲載の参考文献
(1) Tarui I, et al. Trends in BMI among elderly Japanese population : findings from the 1973-2016 Japan National Health and Nutrition Survey. Public Health Nutr. 2020 ; 23 : 1907-15.
(2) J Lennon H, et al. The obesity paradox in cancer : a review. Curr Oncol Rep. 2016 ; 18 : 56.
(3) Mahajan R, et al. Complex interaction of obesity, intentional weight loss and heart failure : a systematic review and meta-analysis. Heart. 2020 ; 106 : 58-68.
(4) Barrett-Connor E, et al. Is hypertension more benign when associated with obesity? Circulation. 1985 ; 72 : 53-60.
(5) Nourhashemi F, et al. Body mass index and incidence of dementia : the PAQUID study. PAQUID study. Personnes Agees Quid. Neurology. 2003 ; 60 : 117-9.
(6) Xia JY, et al. Association of body mass index with mortality in cardiovascular disease : New insights into the obesity paradox from multiple perspectives. Trends Cardiovasc Med. 2019 ; 29 : 220-5.
(7) Casas-Vara A, et al. The obesity paradox in elderly patients with heart failure : analysis of nutritional status. Nutrition. 2012 ; 28 : 616-22.
(8) Khatib MN, et al. Cardioprotective effects of ghrelin in heart failure : from gut to heart. Heart Views. 2014 ; 15 : 74-6.
(9) Hainer V, et al. Obesity paradox does exist. Diabetes Care. 2013 ; 36 Suppl 2 : S276-81.
(10) Global BMI Mortality Collaboration, Di Angelantonio E, et al. Body-mass index and all-cause mortality : individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016 ; 388 : 776-86.
(11) Carbone S, et al. Obesity paradox in cardiovascular disease : where do we stand? Vasc Health Risk Manag. 2019 ; 15 : 89-100.
(12) 木村真希, 他. サルコペニア肥満とobesity paradox. 日本サルコペニア・フレイル学会誌. 2020 ; 4 : 10-5.
(13) Lin TY, et al. Impact of misclassification of obesity by body mass index on mortality in patients with CKD. Kidney Int Rep. 2017 ; 3 : 447-55.
(14) Tate J, et al. A comparison of obesity indices in relation to mortality in type 2 diabetes : the Fremantle Diabetes Study. Diabetologia. 2020 ; 63 : 528-36.
(15) Sugimoto K, et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass : The multicenter study for clarifying evidence for sarcopenia in patients with diabetes mellitus. J Diabetes Investig. 2019 ; 10 : 1471-9.
(16) Kadowaki S, et al. Fatty liver has stronger association with insulin resistance than visceral fat accumulation in nonobese Japanese men. J Endocr Soc. 2019 ; 3 : 1409-16.
(17) Colleluori G, et al. Aerobic plus resistance exercise in obese older adults improves muscle protein synthesis and preserves myocellular quality despite weight loss. Cell Metab. 2019 ; 30 : 261-73.
P.145 掲載の参考文献
(1) Miyatani M, et al. Site-related differences in muscle loss with aging : "A Cross-sectional Survey On The Muscle Thickness in Japanese Men Aged 20 to 79 Years". International Journal of Sport and Health Science. 2003 ; 1 : 34-40.
(2) Abe T, et al. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. Journal of sports science & medicine. 2011 ; 10 : 145-50.
(3) Yamada M, et al. Age-dependent changes in skeletal muscle mass and visceral fat area in Japanese adults from 40 to 79 years-of-age. Geriatr Gerontol Int. 2014 ; 14 Suppl 1 : 8-14.
(4) Song MY, et al. Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutr. 2004 ; 79 : 874-80.
(5) Heymsfield SB, et al. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab. 2002 ; 282 : E132-8.
(6) Ata AM, et al. Regional and total muscle mass, muscle strength and physical performance : The potential use of ultrasound imaging for sarcopenia. Arch Gerontol Geriatr. 2019 ; 83 : 55-60.
(7) Sanada K, et al. Effects of age on ventilatory threshold and peak oxygen uptake normalised for regional skeletal muscle mass in Japanese men and women aged 20-80 years. Eur J Appl Physiol. 2007 ; 99 : 475-83.
(8) Rolland Y, et al. Muscle strength in obese elderly women : effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr. 2004 ; 79 : 552-7.
(9) Ido A, et al. Ultrasound-derived abdominal muscle thickness better detects metabolic syndrome risk in obese patients than skeletal muscle index measured by dual-energy X-ray absorptiometry. PLoS One. 2015 ; 10 : e0143858.
P.154 掲載の参考文献
(1) Lee CG, et al. Intra-abdominal fat accumulation is greatest at younger ages in Japanese-American adults. Diabetes Res Clin Pract. 2010 ; 89 : 58-64.
(2) Rattarasarn C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte. 2018 ; 7 : 71-80.
(3) Cuthbertson DJ, et al. What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications? Int J Obes ( Lond). 2017 ; 41 : 853-65.
(4) Bachmann OP, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001 ; 50 : 2579-84.
(5) Eshima H, et al. A chronic high-fat diet exacerbates contractile dysfunction with impaired intracellular Ca2+ release capacity in the skeletal muscle of aged mice. J Appl Physiol (1985). 2020 ; 128 : 1153-62.
(6) Morley JE. Frailty and sarcopenia : the new geriatric giants. Rev Invest Clin. 2016 ; 68 : 59-67.
(7) Clark BC, et al. What is dynapenia? Nutrition. 2012 ; 28 : 495-503.
(8) Rolland Y, et al. Muscle strength in obese elderly women : effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr. 2004 ; 79 : 552-7.
(9) Cruz-Jentoft AJ, et al. Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing. 2018 ; 48 : 16-31.
(10) Chen LK, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7.e2.
(11) Smith SR, et al. Visceral adipose tissue : a critical review of intervention strategies. Int J Obes Relat Metab Disord. 1999 ; 23 : 329-35.
(12) Ross R, et al. Exercise-induced reduction in obesity and insulin resistance in women : a randomized controlled trial. Obes Res. 2004 ; 12 : 789-98.
(13) Ohkawara K, et al. A dose-response relation between aerobic exercise and visceral fat reduction : systematic review of clinical trials. Int J Obes (Lond). 2007 ; 31 : 1786-97.
(14) 厚生労働省. 健康づくりのための運動指針 2006. 2006. p.9.
(16) Ayabe M, et al. Appendicular muscle mass and exercise/sports participation history in young Japanese women. Ann Hum Biol. 2019 ; 46 : 335-9.
(17) 日本肥満学会編集委員会. 肥満・肥満症の指導マニュアル. 第2版. 東京 : 医歯薬出版 ; 2001. p.1-11.
(18) Hong S, et al. Characteristics of body fat, body fat percentage and other body composition for Koreans from KNHANES IV. J Korean Med Sci. 2011 ; 26 : 1599-605.
P.166 掲載の参考文献
(1) Barazzoni R, et al. Sarcopenic obesity : Time to meet the challenge. Clin Nutr. 2018 ; 37 (6 Pt A) : 1787-93.
(2) Khadra D, et al. Association between sarcopenic obesity and metabolic syndrome in adults : a systematic review and meta-analysis. Curr Cardiol Rev. 2020 ; 16 : 153-62.
(3) EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019 ; 70 : 172-93.
(4) Hsu KJ, et al. Effects of exercise and nutritional intervention on body composition, metabolic health, and physical performance in adults with sarcopenic obesity : A Meta-Analysis. Nutrients. 2019 ; 11.
(5) Bopp MJ, et al. Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J Am Diet Assoc. 2008 ; 108 : 1216-20.
(6) Schollenberger AE, et al. Impact of protein supplementation after bariatric surgery : A randomized controlled double-blind pilot study. Nutrition. 2016 ; 32 : 186-92.
(7) Cava E, et al. Preserving Healthy Muscle during Weight Loss. Adv Nutr. 2017 ; 8 : 511-9.
(8) Cruz-Jentoft AJ, et al. Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing. 2019 ; 48 : 16-31.
(9) Murphy RA, et al. Weight change, body composition, and risk of mobility disability and mortality in older adults : a population-based cohort study. (1532-5415 (Electronic)).
(10) Lee JS, et al. Weight loss and regain and effects on body composition : the Health, Aging, and Body Composition Study. (1758-535X ( Electronic)).
(11) 日本老年医学会「高齢者の生活習慣病管理ガイドライン」作成ワーキング. 「高齢者肥満症診療ガイドライン 2018」. 日本老年医学会雑誌. 2018 ; 55 : 464-538.
(12) Spiering BA, et al. Resistance exercise biology : manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008 ; 38 : 527-40.
(13) Murayama H Fau - Liang J, et al. Trajectories of body mass index and their associations with mortality among older Japanese : do they differ from those of western populations? ; (1476-6256 ( Electronic)).
(14) Brown JC, et al. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle. 2016 ; 7 : 290-8.

4章 本当に怖い医原性サルコペニア

P.175 掲載の参考文献
(1) サルコペニア診療ガイドライン作成委員会. サルコペニア診療ガイドライン 2017年度版. 東京 : ライフサイエンス出版 ; 2017.
(2) Bianchi L, et al. Prevalence and clinical correlates of sarcopenia, identified according to the EWGSOP definition and diagnostic algorithm, in hospitalized older people : The GLISTEN Study. J Gerontol A Biol Sci Med Sci. 2017 ; 72 : 1575-81.
(3) Yang M, et al. Sarcopenia predicts readmission and mortality in elderly patients in acute care wards : a prospective study. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 251-8.
(4) Martone AM, et al. The incidence of sarcopenia among hospitalized older patients : results from the Glisten study. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 907-14.
(5) 荒井秀典, 編. フレイル診療ガイド 2018年版. 東京 : ライフサイエンス出版 ; 2018.
(6) Sanchez-Rodriguez D, et al. Sarcopenia in post-acute care and rehabilitation of older adults : A review. European Geriatric Medicine. 2016 ; 7 : 224-31.
(7) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018 ; 37 : 2022-8.
(8) Shiraishi A, et al. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients : Implications for oral sarcopenia. Clin Nutr. 2018 ; 37 : 204-7.
(9) Yoshimura Y, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
(10) 回復期リハビリテーション病棟協会. 回復期リハビリテーション病棟の現状と課題に関する調査報告書【修正版】. 2019.
(11) 吉村芳弘. 回復期リハビリテーション病棟で医原性サルコペニアをつくらないために. 週間医学会新聞. 2020 ; 3365 : 4-5.
(12) Wakabayashi H, et al. Malnutrition is associated with poor rehabilitation outcome in elderly inpatients with hospital-associated deconditioning a prospective cohort study. J Rehabil Med. 2014 ; 46 : 277-82.
(13) Wall BT, et al. Skeletal muscle atrophy during short-term disuse : implications for age-related sarcopenia. Ageing Res Rev. 2013 ; 12 : 898-906.
(14) 長野文彦, 他. 起立着席運動は脳卒中の回復期患者の機能的予後を改善する. 日本サルコペニア・フレイル学会誌. 2019 ; 3 : 92-8.
(15) 嶋津さゆり, 他. 熊リハパワーライス(R) は脳卒中回復期の栄養状態や機能的予後を改善する. 学会誌. JSPEN. 2019 ; 1 : 149-56.
(16) Shiraishi A, et al. Hospital dental hygienist intervention improves activities of daily living, home discharge and mortality in post-acute rehabilitation. Geriatr Gerontol Int. 2019 ; 19 : 189-96.
(17) 吉村芳弘, 編著. 熊リハ発! エビデンスがわかる! つくれる! 超実践リハ栄養ケースファイル. 京都 : 金芳堂 ; 2019.
P.189 掲載の参考文献
(1) Vanhorebeek I, et al. ICU-acquired weakness. Intensive Care Med. 2020 ; 46 : 637-53.
(2) Fan E, et al. ATS Committee on ICU-acquired Weakness in Adults ; American Thoracic Society (2014) An offical American Thoracic Society Clinical Practice guideline : the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014 ; 190 : 1437-46.
(3) Stevens RD, et al. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009 ; 37 (10 Suppl) : S299-308.
(4) Sarah E, et al. ICU-Acquired Weakness. Chest. 2016 ; 150 : 1129-40. Published online 2016 Apr 7.
(5) Kleyweg RP, et al. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain-Barre syndrome. Muscle Nerve. 1991 ; 14 : 1103-9.
(6) Goossens C, et al. Premorbid obesity, but not nutrition, prevents critical illness-induced muscle wasting and weakness. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 89-101.
(7) Needham DM, et al. Improving longterm outcomes after discharge from intensive care unit : report from a stakeholders' conference. Crit. Care Med. 2012 ; 40 : 502-9.
(8) Inoue S, et al. Post-intensive care syndrome : its pathophysiology, prevention, and future directions. Acute Med Surg. 2019 ; 6 : 233-46.
(9) Pandharipande PP, et al. Long-term cognitive impairment after critical illness. N Engl J Med.2013 ; 369 : 1306-16.
(10) Litton E, et al. The efficacy of earplugs as a sleep hygiene strategy for reducing delirium in the ICU : a systematic review and meta-analysis. Crit Care Med. 2016 ; 44 : 992-9.
(11) Chlan LL, et al. Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support : a randomized clinical trial. JAMA. 2013 ; 309 : 2335-44.
(12) Barreto BB, et al. The impact of intensive care unit diaries on patients' and relatives' outcomes : a systematic review and meta-analysis. Crit Care. 2019 ; 23 : 411.
P.197 掲載の参考文献
(1) Elliott D, et al. Exploring the scope of post-intensive care syndrome therapy and care : engagement of non-critical care providers and survivors in a second stakeholders meeting. Crit Care Med. 2014 ; 42 : 2518-26.
(2) Schefold JC, et al. Intensive care unit - acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle. 2010 ; 1 : 147-57.
(3) Schweickert WD, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients : a randomised controlled trial. Lancet. 2009 ; 373 : 1874-82.
(4) Welch C, et al. Acute sarcopenia secondary to hospitalisation - An emerging condition affecting older adults. Aging Dis. 2018 ; 9 : 151-64.
(5) de Jonghe B, et al. Intensive care unit-acquired weakness : risk factors and prevention. Crit Care Med. 2009 ; 37 : S309-S15.
(6) 日本集中治療医学会早期リハビリテーション検討委員会. 集中治療における早期リハビリテーション~根拠に基づくエキスパートコンセンサス~. 日集中医誌. 2017 ; 24 : 255-303.
(7) Merchan C, et al. Tolerability of enteral nutrition in mechanically ventilated patients with septic shock who require vasopressors. J Intensive Care Med. 2017 ; 32 : 540-6.
(8) Fuke R, et al. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness : a systematic review and meta-analysis. BMJ Open. 2018 ; 8 : e019998.
(9) 西田修, 他. 日本版敗血症診療ガイドライン 2016. 日集中医誌. 2017 ; 24 : S1-S232.
(10) Hermans G, et al. Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev. 2014 ; 2014 : CD006832.
(11) Harvey MA, et al. Postintensive care syndrome : right care, right now… and later. Crit Care Med. 2016 ; 44 : 381-5.
(12) Nakanishi N, et al. Effect of electrical muscle stimulation on upper and lower limb muscles in critically ill patients : A two-center randomized controlled trial. Crit Care Med. 2020 ; 48 : e997-e1003.
P.207 掲載の参考文献
(1) 寺島秀夫. 侵襲急性期におけるエネルギー投与のパラダイムシフト-内因性エネルギー供給を考慮した理論的エネルギー投与法の提言-. 日集中治医誌. 2013 ; 20 : 359-67.
(2) Tardif N, et al. Autophagy flux in critical illness, a translational approach. Sci Rep. 2019 ; 9 : 10762.
(3) 日本集中治療医学会重症疾患の栄養管理ガイドライン作成委員会. 日本版重症患者の栄養療法ガイドライン. 日集中医誌. 2016 ; 23 : 185-281.
(4) Singer P, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2018 Sep 29. pii : S0261-5614 32432-4.
(5) McClave SA, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically Ill patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016 ; 40 : 159-211.
(6) Reignier J, et al. Enteral versus parenteral early nutrition in ventilated adults with shock : a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018 ; 391 : 133-43.
(7) Shimizu K, et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis : a randomized controlled trial. Crit Care. 2018 ; 22 : 239.
(8) Fujii T, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock : The VITAMINS randomized clinical trial. JAMA. 2020 ; 323 : 423-31.
(9) Peterson E, et al. Static autoregulation is intact in majority of patients with severe traumatic brain injury. J Trauma. 2009 ; 67 : 944-9.
(10) Berger MM, et al. Enteral nutrition and cardiovascular failure : from myths to clinical practice. JPEN J Parenter Enteral Nutr. 2009 ; 33 : 702-9.
(11) Casaer MP, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011 1 ; 365 : 506-17.
(12) 東別府直紀, 他. 本邦ICUでのエネルギー充足率と転帰への影響. 日集中医雑. 2019 ; 26 : 25-7.
(13) Casaer MP, et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial : a post hoc analysis Am J Respir Crit Care Med. 2013 ; 187 : 247-55.
(14) Vanhorebeek I, et al. Effect of early supplemental parenteral nutrition in the paediatric ICU : a preplanned observational study of post-randomisation treatments in the PEPaNIC trial. Lancet Respir Med. 2017 ; 5 : 475-83.
(15) Tardif N, et al. Autophagy flux in critical illness, a translational approach. Sci Rep. 2019 ; 9 : 10762.
(16) Zusman O, et al. Resting energy expenditure, calorie and protein consumption in critically ill patients : a retrospective cohort study. Crit Care. 2016 ; 20 : 367.
(17) Hartwell JL, et al. Early Achievement of Enteral Nutrition Protein Goals by Intensive Care Unit Day 4 is Associated With Fewer Complications in Critically Injured Adults. Ann Surg. 2019. Online ahead of print.
(18) Weijs PJM, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014 ; 18 : 701.
(19) WAC Kristine Koekkoek, et al. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation : The PROTINVENT retrospective study. Clin Nutr. 2019 ; 38 : 883-90.
(20) ESICM Working Group on Gastrointestinal Function. Early enteral nutrition in critically ill patients : ESICM clinical practice guidelines. Intensive Care Med. 2017 ; 43 : 380-98.
(21) 日本版敗血症診療ガイドライン2020特別委員会. 日本敗血症診療ガイドライン 2020. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG2020). https://www.jsicm.org/pdf/jjsicm28Suppl.pdf
P.218 掲載の参考文献
(1) Kehlet H, et al. Multimodal strategies to improve surgical outcome. Am J Surg. 2002 ; 183 : 630-41.
(2) Fearon KCH, et al. Enhanced recovery after surgery : a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr. 2005 ; 24 : 466-77.
(3) Gustafsson UO, et al. Guidelines for perioperative care in elective colonic surgery : Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr. 2012 ; 31 : 783-800.
(4) Lieffers JR, et al. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br J Cancer. 2012 ; 107 : 931-6.
(5) Harimoto N, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013 ; 100 : 1523-30,
(6) Aoyama T, et al. Body composition analysis within 1 month after gastrectomy for gastric cancer. Gastric Cancer. 2016 ; 19 : 645-50.
(7) Takahashi S, et al. Characteristics of sarcopenia after distal gastrectomy in elderly patients. PLoS One. 2019 ; 14 : e0222412.
(8) Kugimiya N, et al. Loss of skeletal muscle mass after curative gastrectomy is a poor prognostic factor. Oncol Lett. 2018 ; 16 : 1341-7.
(9) Aoyama T, et al. Body weight loss after surgery is an independent risk factor for continuation of S-1 adjuvant chemotherapy for gastric cancer. Ann Surg Oncol. 2013 ; 20 : 2000-6.
(10) Crowe PJ, et al. The effect of pre-operative glucose loading on postoperative nitrogen metabolism. Br J Surg. 1984 ; 71 : 635-7.
(11) Svanfeldt M, et al. Randomized clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br J Surg. 2007 ; 94 : 1342-50.
(12) Yuill KA, et al. The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal muscle mass postoperatively--a randomised clinical trial. Clin Nutr. 2005 ; 24 : 32-7.
(13) Henriksen MG, et al. Effects of preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition and muscle function in abdominal surgery. Acta Anaesthesiol Scand. 2003 ; 47 : 191-9.
(14) Bilku DK, et al. Role of preoperative carbohydrate loading : a systematic review. Ann R Coll Surg Engl. 2014 ; 96 : 15-22.
(15) Yi HC, et al. Impact of enhanced recovery after surgery with preoperative whey protein-infused carbohydrate loading and postoperative early oral feeding among surgical gynecologic cancer patients : an open-labelled randomized controlled trial. Nutrients. 2020 ; 12 : 264.
P.227 掲載の参考文献
(1) 厚生労働省. 個別事項 (その5) について ; 中央社会保険医療協議会総会 (第365回). 平成29年10月25日. https://www.mhlw.go.jp/file/05-Shingikai-12404000-Hokenkyoku-Iryouka/0000182077.pdf (2020年10月10日アクセス)
(2) 回復期リハビリテーション病棟協会. 回復期リハビリテーション病棟の現状と課題に関する調査報告書. 2018.
(3) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018 ; 37 : 2022-8.
(4) Jensen GL, et al. Adult starvation and disease-related malnutrition ; a proposal for etiology-based diagnosis in the clinical practice setting from the international Consensus Guideline Committee. JPEN. 2010. 34 : 156-9.
(5) Marshall B, et al. The consequences of malnutrition following discharge from rehabilitation to the community : a systematic review of current evidence in older adults. J Hum Nutr Diet. 2014. 27 : 133-41.
(6) Morandi A, et al. The association between the probability of sarcopenia and functional outcomes in older patients undergoing in-hospital rehabilitation. J Am Med Dir Assoc. 2015.16 : 951-6.
(7) Csapo R, et al. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly : A meta-analysis. Scand Med Sci Sports. 2016 ; 26 : 995-1006.
(8) 三好正堂. 脳卒中・片麻痺の早期リハビリテーション-原理と方法-. 日本医事新報. 1993 ; 3596 : 45-9.
(9) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphasia in convalescent rehabilitation ward inpatiens. Clin Nutr. 2018 ; 37 : 2022-28.
(10) Yoshimura Y, et al. Effects of nutritional supplements on muscle mass and activities of daily living in elderly rehabilitation patients with decreased muscle mass : a randomized controlled trial. J Nutr Health Aging. 2016. 20 : 185-291.
(11) 長野文彦, 他. 起立着席運動は脳卒中の回復期患者の機能的予後を改善する. 日本サルコペニア・フレイル学会誌. 2019 ; 3 : 92-8.
P.239 掲載の参考文献
(1) Matsushita T, et al. Sarcopenia as a predictor of activities of daily living capability in stroke patients undergoing rehabilitation. Geriatr Gerontol Int. 2019 ; 19 : 1124-8.
(2) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward in patients. Clin Nutr. 2018 ; 37 : 2022-8.
(3) Bauer J, et al. Sarcopenia : a time for action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle. 2019 ; 10 : 956-61.
(4) サルコペニア診療ガイドライン作成委員会, 編. サルコペニア診療ガイドライン 2017年版. 東京 : ライフサイエンス出版 ; 2017.
(5) Morley JE, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010 ; 11 : 391-6.
(6) 西岡心大. 低栄養とリハビリテーション栄養管理の考え方-特にエネルギー必要量に関して-. 日本静脈経腸栄養学会雑誌. 2016 ; 31 : 944-8.
(7) 日本腎臓学会 サルコペニア・フレイルを合併したCKDの食事療法検討WG. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
(8) Morley JE. Anorexia of ageing : a key component in the pathogenesis of both sarcopenia and cachexia. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 523-6.
(9) 西岡心大. サルコペニアと栄養療法. 臨床リハ. 2020 ; 29 : 10-7.
(10) 厚生労働省. 令和2年診療報酬改定について. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000188411_00027.html)
(11) 西岡心大. 入院料1における栄養関連要件の概要と当院の栄養ケアの実際. 栄養経営エキスパート. 2018 ; 3 : 34-41.
(12) Kyle UG, et al. Bioelectrical impedance analysis-part II : utilization in clinical practice. Clin Nutr. 2004 ; 23 : 1430-53.
(13) Steihaug OM, et al. Identifying low muscle mass in patients with hip fracture : Validation of bioelectrical impedance analysis and anthropometry compared to dual energy X-ray absorptiometry. J Nutr Health Aging. 2016 ; 20 : 685-90.
P.249 掲載の参考文献
(1) 厚生労働省. 高齢者の医薬品適正使用の指針 (総論編). 2018.
(2) Kojima T, et al. High risk of adverse drug reactions in elderly patients taking six or more drugs : analysis of inpatient database. Geriatr Gerontol Int.2012 ; 12 : 761-2.
(3) Steinman MA, et al. How to Use the American Geriatrics Society 2015 Beers Criteria-A Guide for Patients, Clinicians, Health Systems, and Payors. J Am Geriatr Soc. 2015 ; 63 : e1-e7.
(4) O'Mahony D, et al. STOPP/START criteria for potentially inappropriate prescribing in older people : version 2. Age Ageing. 2015 ; 44 : 213-8.
(5) Kojima T, et al. Working Group on Guidelines for Medical Treatment and its Safety in the Elderly. Screening tool for older persons' appropriate prescriptions for Japanese : report of the Japan Geriatrics Society Working Group on "Guidelines for medical treatment and its safety in the elderly". Geriatr Gerontol Int. 2016 ; 16 : 983-1001.
(6) Maki H, et al. Impact of number of drug types on clinical outcome in patients with acute hip fracture. J Nutr Health Aging. 2019 ; 23 : 937-42.
(7) Kose E, et al. Role of potentially inappropriate medication use in rehabilitation outcomes for geriatric patients after strokes. Geriatr Gerontol Int. 2018 ; 18 : 321-8.
(8) Nagai T, et al. Relationship between potentially inappropriate medications and functional prognosis in elderly patients with distal radius fracture : a retrospective cohort study. J Orthop Surg Res. 2020 ; 12 ; 15 : 321.
(9) Ogawa Y, et al. Anticholinergic and sedative drug burden and functional recovery after cerebrovascular accident : a Retrospective Descriptive Study. Prog Rehabil Med. 2020 ; 16 ; 5 : 20200010.
(10) Skinner JW, et al. Muscular responses to testosterone replacement vary by administration route : a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2018 ; 9 : 465-81.
(11) Antoniak AE, et al. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults : a systematic review and meta-analysis. BMJ Open. 2017 ; 7 : e014619.
(12) Caulfield L, et al. Effect of angiotensin system inhibitors on physical performance in older people - A systematic review and meta-analysis. J Am Med Dir Assoc. 2020 ; S1525-8610.
(13) 若林秀隆, 他. リハビリテーション薬剤のコンセプトと展望. リハビリテーション栄養学会誌. 2018 ; 2 : 106-12.
(14) Kose E, Wakabayashi H. Rehabilitation pharmacotherapy : A scoping review. Geriatr Gerontol Int. 2020 ; 20 : 655-63.
(15) 宮田靖志, 編. 特集 症状・治療歴から考える 薬の副作用の診断プロセス問題集60題. Medicina. 2020 ; 57 : 430-6.

5章 病態別のサルコペニア対策の実践

P.260 掲載の参考文献
(1) Vestbo J, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample : findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006 ; 173 : 79-83.
(2) Kim SH, et al. Sarcopenia associated with chronic obstructive pulmonary disease. J Bone Metab. 2019 ; 26 : 65-74.
(3) Sepulveda-Loyola W, et al. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD : a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2020 ; 11 : 1164-76.
(4) Benz E, et al. Sarcopenia in COPD : a systematic review and meta-analysis. Eur Respir Rev. 2019 ; 28.
(5) Hopkinson NS, et al. A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res. 2007 ; 8 : 25.
(6) Vermeeren MA, et al. Nutritional support in patients with chronic obstructive pulmonary disease during hospitalization for an acute exacerbation ; a randomized controlled feasibility trial. Clin Nutr. 2004 ; 23 : 1184-92.
(7) Levine S, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008 ; 358 : 1327-35.
(8) Goligher EC, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients : feasibility, reproducibility and validity. Intensive Care Med. 2015 ; 41 : 642-9.
(9) Goligher EC, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018 ; 197 : 204-13.
(10) Nagano A, et al. Respiratory sarcopenia and sarcopenic respiratory disability : concepts, diagnosis, and treatment. J Nutr, Health Aging. 2021 ; 25 : 507-15.
(11) Bestall JC, et al. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999 ; 54 : 581-6.
(12) Anker SD, et al. ESPEN Guidelines on enteral nutrition : cardiology and pulmonology. Clin Nutr. 2006 ; 25 : 311-8.
P.270 掲載の参考文献
(1) 厚生労働省. 脳卒中, 心臓病その他の循環器病に係る治療提供体制の在り方に関する検討会. 脳卒中, 心臓病その他の循環器病に係る診療提供体制の在り方について. 2017.
(2) Cruz-Jentoft AJ, et al. Sarcopenia : European consensus on definition and diagnosis : Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 ; 39 : 412-23.
(3) Narumi T, et al. Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure. Eur J Inter Med. 2015 ; 26 : 118-22.
(4) Ambrosy AP, et al. The global health and economic burden of hospitalizations for heart failure : lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014 ; 63 : 1123-33.
(5) Doust JA, et al. How well does Btype natriuretic peptide predict death and cardiac events in patients with heart failure : systematic review. BMJ. 2005 ; 330 : 625.
(6) Yamashita M, et al. Prognostic Value of Psoas Muscle Area and Density in Patients Who Undergo Cardiovascular Surgery. Can J Cardiol. 2017 ; 33 : 1652-59.
(7) Von Haeling S, et al. Prevalence, incidence and clinical impact of cachexia : Facts and numbers-Update 2014. J Cachexia Sarcopenia Muscle. 2014 ; 5 : 261-3.
(8) Tian M, et al. Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol. 2010 ; 37 : 347-53.
(9) Fulster S, et al. Muscle wasting in patients with chronic heart failure : results from the studies investigating comorbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013 ; 34 : 512-9.
(10) Kamiya K, Masuda T, Matsue Y, et al. Prognostic usefulness of arm and calf circumference on patients ≧ 65 years of age with cardiovascular disease. Am J Cardiol. 2017 ; 119 : 186-91.
(11) Bekfani T, et al. Sarcopenia in patients with heart failure with preserved ejection fraction : Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016 ; 222 : 41-6.
(12) Garcia-Olmos L, et al. Disability and quality of life in heart failure patients : a cross-sectional study. Fam Pract. 2019 ; 38 : 693-8.
(13) Bonilla-Palomas JL, et al. Impact of malnutrition on long-term mortality in hospitalized patients with heart failure. Rev Esp Cardiol. 2011 ; 64 : 752-8.
(14) Lin H, et al. Review of nutritional screening and assessment tools and clinical outcomes in heart failure. Heart Fail Rev. 2016 ; 21 : 1050-3.
(15) Narumi T, et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013 ; 62 : 307-13.
(16) Gumieiro DN, et al. Mini Nutritional Assessment predicts gait status and mortality 6 months after hip fracture. Br J Nutr. 2013 ; 109 : 1657-61.
(17) Rauchhaus M, et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation. 2000 ; 102 : 3060-67.
(18) Nagaya N, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004 ; 110 : 3674-9.
(19) Caminiti G, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009 ; 54 : 919-27.
(20) Adams KF Jr, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States : rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005 ; 149 : 209-16.
(21) Von Haehling S, From muscle wasting to sarcopenia and myopenia : Update 2012. J. Cachexia Sarcopenia Muscle. 2012 ; 3 : 213-7.
(22) Wakabayashi H, et al. Impact of body mass Index on activities of daily living in inpatients with acute heart failure. J Nutr Health Aging. 2019 ; 23 : 151-6.
(23) Yoshimura Y, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia, and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
(24) Matsuo H, et al. Risk of malnutrition is associated with poor physical function in patients undergoing cardiac rehabilitation following heart failure. Nutr Diet. 2019 ; 76 : 82-6.
(25) Pineda-Juarez JA, et al. Changes in body composition in heart failure patients after a resistance exercise program and branched chain amino acid supplementation. Clin Nutr. 2016 ; 35 : 41-7.
(26) Kinugasa S, et al. Skeletal muscle abnormalities in heart failure. Int Heart J. 2015 ; 56 : 475-84.
(27) Carubelli V, et al. Amino acids and derivatives, a new treatment of chronic heart failure? Heart Fail Rev. 2015 ; 20 : 39-51.
(28) Wakabayashi H, et al. Rehabilitation nutrition for sarcopenia with disability : a combination of both rehabilitation and nutrition care management. J Cachexia Sarcopenia Muscle. 2014 ; 5 : 269-77.
(29) Yoshimura Y, et al. Interventions for treating sarcopenia : a systematic review and meta-analysis of randomized controlled studies. J Am Med Dir Assoc. 2017 ; 18 : 553.e1-553.e16.
(30) Gielen S, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age : the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circuration. 2012 ; 125 : 2716-27.
P.281 掲載の参考文献
(1) Cheung K, et al. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol. 2012 ; 10 : 117-25.
(2) Shiraki M, et al. Nutritional status and quality of life in current patients with liver cirrhosis as assessed in 2007-2011. Hepatol Res. 2013 ; 43 : 106-12.
(3) Shiraki M, et al. Elevated serum tumor necrosis factor-alpha and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis. Nutrition. 2010 26 ; 269-75.
(4) Tajika M, et al. Prognostic value of energy metabolism in patients with viral liver cirrhosis. Nutrition. 2002 ; 18 229-34.
(5) Rosenberg IH. Summary comments : epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989 ; 50 : 1231-3.
(6) Hanai T, et al. Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol Res. 2016 ; 46 ; 743-51.
(7) Yoshida D, et al. Using two different algorithms to determine the prevalence of sarcopenia. Geriatr Gerontol Int. 2014 ; 14 Suppl 1 : 46-51.
(8) Yoshimura N, et al. Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int. 2017 ; 28 : 189-99.
(9) Hanai T, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015 31 ; 193-9.
(10) Iritani S, et al. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol. 2015 ; 50 : 323-32.
(11) Fujiwara N, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015 ; 63 : 131-40.
(12) Kaido T, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013 ; 13 : 1549-56.
(13) Nishikawa H, et al. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition) : Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 2016 ; 46 : 951-63.
(14) Kim G, et al. Prognostic value of sarcopenia in patients with liver cirrhosis : A systematic review and meta-analysis. PLoS One. 2017 ; 24 : 12 : e0186990.
(15) European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019 ; 70 : 172-3.
P.289 掲載の参考文献
(1) Yoshimura Y, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphasia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018 ; 37 : 2022-8.
(2) 吉村芳弘. 回復期のリハビリテーション栄養管理. 日本静脈経腸栄養学会誌. 2016 ; 31 : 959-66.
(3) 熊谷直子. 脳卒中患者の医原性サルコペニア対策. In : 吉村芳弘, 若林秀隆, 編. 臨床栄養別冊 リハビリテーション栄養UPDATE 医原性サルコペニア廃絶を目指して. 東京 : 医歯薬出版 ; 2017. p.110-6.
(4) Scherbakov N, et al. Stroke induced Sarcopenia : muscle wasting and disability after stroke. Int J Cardil. 2013 ; 170 : 89-94.
(5) Scherbakov N, et al. Stroke-related sarcopenia : specific characteristics. J Am Med Dir Assoc. 2015 ; 16 : 272-76.
(6) Hvid L, et al. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol. 2010 ; 109 : 1628-34.
(7) Hvid LG, et al. Effects of ageing on single muscle fiber contractile function following short-term immobilization. J Psychol. 2011 ; 589 : 4745-57.
(8) Hafer-Macko CE, et al. Elevated tumor necrosis factor-alpha in skeletal muscle after stroke. Stroke. 2005 ; 36 : 2021-3.
(9) 長野文彦, 他. 脳卒中患者の骨格筋量は歩行獲得の独立した予測因子である. 学会誌 JSPEN. 2019 ; 1 : 70-9.
(10) Yoshimura Y, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia, and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
(11) Foley NC, et al. Which reported estimate of the prevalence of malnutrition after stroke is valid? Stroke. 2009 ; 40 : 66-74.
(12) Chen N, et al. Risk factors for malnutrition in stroke patients : A meta-analysis. Clin Nutr. 2019 ; 38 : 127-35.
(13) Foley NC, et al. Energy and protein intakes of acute stroke patients. J Nutr Heatlth Aging. 2006 ; 10 : 171-5.
(14) Rabadi MH, et al. Intensive Nutritional supplements can improve outcomes in rehabilitation. Neurology. 2008 ; 71 : 1856-61.
(15) Lisa H, et al. Individual, nutritional support prevents undernutrition, increases muscle strength and improves QoL among elderly at nutritional risk hospitalized for acute stroke : A randomized controlled trial. Clin Nutr. 2010 ; 29 : 567-73.
(16) Zheng T, et al. Impact of early enteral nutrition on short term prognosis after acute stroke. J Clin Neurosci. 2015 ; 22 : 1473-6.
(17) Nishiyama A, et al. Energy intake at admission for improving activities of daily living and nutritional status among convalescent stroke patients. Neurol Med Chir (Tokyo). 2019 ; 59 : 313-20.
(18) Deutz NE, et al. Protein intake and exercise for optimal muscle function with aging : recommendations from the ESPEN Expert Group. Clin Nutr. 2014 ; 33 : 929-36.
(19) 嶋津さゆり, 他. 熊リハパワーライス(R) は脳卒中回復期の栄養状態や機能的予後を改善する. JSPEN 学会誌. 2019 ; 1 : 149-56.
(20) Yoshimura Y, et al. Ghrelin activation by ingestion of medium-chain triglycerides in healthy adults : a pilot trial. J Aging Res Clin Practice. 2018 ; 7 : 42-6.
(21) Riolo L, et al. Is there evidence that strength training could help improve muscle function and their outcomes without reinforcing abnormal movement patterns or increasing reflex activities in a man who has had a stroke? Phys Ther. 2003 ; 83 : 844-51.
(22) Eng JJ. Strength training in individuals with stroke. Physiotherapy Canada. 2004 ; 56 : 189-200.
(23) Borges CAS, et al. Effect of resisted exercise on muscular strength, spasticity and functionally in chronic hemiparetic subjects : a systematic review. J of Applied Research. 2009 ; 9 : 147-58.
(24) Hammami N, et al. Isokinetic muscle strengthening after acquired cerebral damage : a literature review. Ann of Phys Rehabil Med. 2012 ; 55 : 279-91.
(25) 山田実. サルコペニアの栄養理学療法. In : 山田実, 編, 栄養・嚥下理学療法. 理学療法実践レクチャー 栄養・嚥下理学療法. 東京 : 医歯薬出版 ; 2018. p.62-71.
(26) Csapo R, et al. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly : A meta-analysis. Scand J Med Sci Sports. 2016 ; 26 : 995-1006.
(27) Nagano F, et al. Muscle mass gain is positively associated with functional recovery in patients with sarcopenia after stroke. JSCVD. 2020 ; 29 : 105017.
(28) 長野文彦, 他. 起立着席運動は脳卒中の回復期患者の機能的予後を改善する. 日本サルコペニア・フレイル学会誌. 2019 ; 3 : 92-8.
(29) Yoshimura Y, et al. Chair-Stand Exercise Improves Post-Stroke Dysphagia. Geriatr Gentrol Int. 2020 ; doi : 10.1111/ggi.13998.
(30) Yoshimura Y, et al. Shorter interval between onset and admission to convalescent rehabilitation wards is associated with improved outcomes in ischemic stroke patients. Tohoku J Exp Med. 2020 ; 252 : 15-22.
P.299 掲載の参考文献
(1) Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci. 2013 ; 68 : 1236-42.
(2) Hagino H, et al. Committee on Osteoporosis of The Japaniese Orthopaedic Association. Notionwide one-decade survey of hip fractures in Japan. J Orthop Sci. 2010 ; 15 : 737-45.
(3) Tinetti ME, et al. The patient who falls : "It's always a trade-off". JAMA. 2010 ; 303 ; 258-66.
(4) 中村耕三. 超高齢社会とロコモティブシンドローム. 日整会誌. 2008 ; 82 : 1-2.
(5) Yoshimura N, et al. Bone and Mineral. Metabolism. 2019 ; 37 : 1058-66.
(6) Di Marco M, et al. Sarcopenia is more prevalent in men than in women after hip fracture : a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr. 2012 ; 55 : 48-52.
(7) Hida T, et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int. 2013 ; 13 : 413-20.
(8) 日本整形外科学会, 編. ロコモパンフレット 2013年版. 2013. p.4.
(9) 日本整形外科学会, 編 ロコモパンフレット 2013年版. 2013. p.5-10.
(10) 石橋英明. ロコモ介入が転倒予防につながるか. 日骨粗鬆症会誌. 2019 ; 5 (Suppl 1) : 189.
(11) Coin A, et al. Predictors of low bone mineral density in the elderly : the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr. 2008 ; 62 : 802-9.
(12) Miyakoshi N, et al. Prevalence of sarcopenia in Japanese women with osteopenia and osteoporosis. J Bone Miner Metab. 2013 ; 31 : 556-61.
(13) Hirschfeld HP. Osteosarcopenia : where bone, muscle, and fat collide. Osteoporos Int. 2017.
(14) Yoshimura N, et al. Profiles of vitamin D insufficiency and deficiency in Japanese men and women ; association with biological environmental, and nutritional factors and coexisting disorders : the ROAD study. Osteoporosis Int. 2013 ; 24. 2775-87.
(15) 萩野 浩. 日本人骨粗鬆症患者におけるミノドロン酸の骨折予防効果に対する検討. Clin Calcium. 2009 ; 19 : 75-84.
(16) 田中清. 転倒・骨折のリスク因子としてのビタミンD不足の意義-我が国のコホート研究の結果から. ビタミン. 2017 ; 91 : 135-8.
(17) Kalyani RR, et al. Vitamin D treatment for the prevention of falls in older adults ; systematic review and meta-analysis. J Am Geriatr Soc. 2010 ; 58 : 1299-310.
(18) Ito S, et al. Use of alfacalcidol in osteoporotic patients with low muscle mass might increase muscle mass : an investigation using a patient database. Geriatr Gerontol Int. 2014 ; 14 Suppl 1 : 122-28.
(19) Harada A, et al. Effect of alendronate on muscle mass : Investigation in patients with osteoporosis. Osteoporosis and Sarcopenia. 2015 ; 1 : 53-8.
(20) Papanicolaou DA, et al. A phase II A randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging. 2013 ; 17 : 533-43.
(21) Sakamoto K, et al. Report on the Japanese Orhopaedic Association's 3-year project observing hip fractures at fixed-point hospitals. J Orhop Sci. 2006 ; 11 : 127-34.
(22) 骨粗鬆症の予防と治療ガイドライン作成委員会, 編. 骨粗鬆症の予防と治療ガイドライン 2015年版. 東京 : ライフサイエンス出版 ; 2015. p.57.
(23) 黒川正夫. 骨粗鬆症健診を起点とする地域連携パスの役割. 日骨粗鬆症会誌. 2017 ; 3 : 227-31.
(24) Bell JJ, et al. Concurrent and predictive evaluation of malnutrition diagnostic measures in hip fracture inpatients : a diagnostic accuracy study. Eur J Clin Nutr. 2014 ; 68 : 358-62.
(25) Miyanishi K, et al. Mortality after hip fracture in Japan : the role of nutritional atatus. J Orthop Surg. 2010 ; 18 : 265-70.
(26) Hoekstra JC, et al. Effectiveness of multidisciplinary nutritional care on nutritional intake, nutritional status and quality of life in patients with hip fractures : a controlled prospective cohort study. Clin Nutr. 2011 ; 30 : 455-61.
(27) Niitsu M, et al. Effects of combination of whey protein intake and rehabilitation on muscle strength and daily movements in patients with hip fracture in the early postoperative period. Clin Nutr. 2015 ; 35 : 943-9.
(28) Love AL, et al. Oropharyngeal dysphagia in an elderly post-operative hip fracture population : a prospective cohort study. Age Ageing. 2013 ; 42 : 782-5.
P.309 掲載の参考文献
(1) Moldawer LL, et al. Proinflammatory cytokines, nutritional support, and the cachexia syndrome interactions and therapeutic options. Cancer. 1987 ; 79 : 1828-39.
(2) Yeh CW, et al. Bioelectrical impedance analysis in a mathematical model for estimating fat-free mass in multiple segments in elderly Taiwanese males. Int J Gerontol. 2012 ; 6 : 273-7.
(3) Hamaguchi Y, et al. Proposal for new diagnostic criteria for low skeletal mass based on computed tomography imaging in Asian adults. Nutrition. 2016 ; 32 : 1200-5.
(4) Chen LK, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-7.
(5) Hodari A, et al. Assessment of morbidity and mortality after esophagectomy using a modified frailty index. Ann Thorac Surg. 2013 ; 96 : 1240-5.
(6) Huang DD, et al. Sarcopenia predicts 1-year mortality in elderly patients undergoing curative gastrectomy for gastric cancer : a prospective study. J Cancer Res Clin Oncol. 2016 ; 142 : 2347-56.
(7) Fukuda Y, et al. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann Surg Oncol. 2015 ; 22 : S778-85.
(8) Hamaguchi Y, et al. Preoperative visceral adiposity and muscularity predict poor outcomes after hepatectomy for hepatocellular carcinoma. Liver Cancer. 2019 ; 8 : 92-109.
(9) Kobayashi A, et al. Impact of sarcopenic obesity on outcomes in patients undergoing hepatectomy for hepatocellular carcinoma. Ann Surg. 2019 ; 269 : 924-31.
(10) Okumura S, et al. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery. 2015 ; 157 : 1088-98.
(11) Okumura S, et al. Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer. Ann Surg Oncol. 2017 ; 24 : 3732-40.
(12) Okumura S, et al. Impact of skeletal muscle mass, muscle quality, and visceral adiposity on outcomes following resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017 ; 24 : 1037-45.
(13) Okumura S, et al. Impact of preoperative quality and quantity of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery. 2016 ; 159 : 821-33.
(14) 吉岡佑二, 他. 生体肝移植術前リハビリテーションの安全性と有効性. 移植. 2019 ; 54 : 211-6.
(15) Kamo N, et al. Effect of administration of β-hydroxy-β-methyl butyrate after liver transplantation : A pilot randomized controlled trial. Nutrition. 2020 ; 23 : 110871.
(16) Cruz-Jentoft AJ, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing. 2019 ; 48 : 16-31.
(17) Kaido T, et al. Effects of pretransplant sarcopenia and sequential changes in sarcopenic parameters after living donor liver transplantation. Nutrition. 2017 ; 33 : 195-8.
P.319 掲載の参考文献
(1) Moreno-Gonzalez R, et al. Prevalence of sarcopenia in community-dwelling older adults using the updated EWGSOP2 definition according to kidney function and albuminuria : The Screening for CKD among Older People across Europe (SCOPE) study. BMC Geriatr. 2020 ; 20 (Suppl 1) : 327.
(2) Sharma D, et al. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin Am Soc Nephrol. 2014 ; 5 : 2079-88.
(3) Lee YL, et al. Relationship between low handgrip strength and chronic kidney disease : KNHANES 2014-2017. J Ren Nutr. 2020 ; S1051-2276 (20) 30068-6.
(4) Ishikawa S, et al. Loop diuretics are associated with greater risk of sarcopenia in patients with non-dialysis-dependent chronic kidney disease. PLoS One. 2018 ; 13 : e0192990.
(5) Ballew SH, et al. Frailty, kidney function, and polypharmacy : the Atherosclerosis Risk in Communities ( ARIC) study. Am J Kidney Dis. 2017 ; 69 : 228-36.
(6) Mori K, et al. Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrol. 2019 ; 20 : 105.
(7) Kamijo Y, et al. Sarcopenia and frailty in PD : impact on mortality, malnutrition, and inflammation. Perit Dial Int. 2018 ; 38 : 447-54.
(8) Takamoto D, et al. A longer history of hemodialysis can lead to sarcopenia in renal transplantation patients. Transplant Proc. 2018 ; 50 : 2447-50.
(9) Gandolfini I, et al. Frailty and sarcopenia in older patients receiving kidney transplantation. Front Nutr. 2019 ; 6 : 169.
(10) Saitoh M, et al. Factors determing achievement of early postoperative cardiac rehabilitation goal in patients with or withont preoperative kidney dysfunction undergoing cardiac surgery. J Cardiol. 2013 ; 61 : 299-303.
(11) Jang SY, et al. Chronic kidney disease and functional outcomes 6 months after ischemic stroke : a prospective multicenter study. Neuroepidemiology. 2016 ; 46 : 24-30.
(12) Doyle EM, et al. Association between kidney function, rehabilitation outcome, and survival in older patients discharged from inpatient rehabilitation. Am J Kidney Dis. 2015 ; 66 : 768-74.
(13) Shinjo G, et al. Functional outcomes of rehabilitation in patients with subacute stroke on haemodialysis. J Rehabil Med. 2020 ; 52 : jrm00033.
(14) Farragher J, et al. Importance of early inpatient geriatric rehabilitation on outcomes in individuals on dialysis. Arch Phys Med Rehabil. 2020 ; 101 : 227-33.
(15) 日本腎臓学会 サルコペニア・フレイルを合併したCKDの食事療法検討WG. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
(16) 日本透析医学会学術委員会栄養問題検討ワーキンググループ. サルコペニア・フレイルを合併した透析期CKDの食事療法. 透析会誌. 2019 ; 52 : 397-99.
(17) Lambert K, et al. An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease. BMC Nephrol. 2017 ; 18 : 317.
(18) Nishi S, et al. Diet therapy after kidney transplantation : a comparative debate between Japan and western countries. Contrib Nephrol. 2007 ; 155 : 82-89.
(19) Nagaoka Y, et al. Dietary intake in Japanese patients with kidney transplantation. Clin Exp Nephrol. 2016 ; 20 : 972-81.
(20) Navaneethan SD, et al. Effects of treatment of metabolic acidosis in CKD : a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2019 ; 14 : 1011-20.
(21) Dubey AK, et al. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4 : a randomized controlled trial. Nephrol Dial Transplant. 2020 ; 35 : 121-29.
(22) Bani Hassan E, et al. Hemoglobin levels are low in sarcopenic and osteosarcopenic older persons. Calcif Tissue Int. 2020 ; 107 : 135-42.
(23) Chaves PH, et al. Impact of anemia and cardiovascular disease on frailty status of community-dwelling older women : the Women's Health and Aging Studies I and II. J Gerontol A Biol Sci Med Sci. 2005 ; 60 : 729-35.
(24) Dharmarajan TS, et al. Anemia increases risk for falls in hospitalized older adults : an evaluation of falls in 362 hospitalized, ambulatory, long-term care, and community patients. J Am Med Dir Assoc. 2007 ; 8 (3 Suppl 2) : e9-e15.
(25) Drueke TB, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006 ; 355 : 2071-84.
(26) Hoshino J, et al. Associations of hemoglobin levels with health-related quality of life, physical activity, and clinical outcomes in persons with stage 3-5 nondialysis CKD. J Ren Nutr. 2020 ; 30 : 404-14.
(27) Sofue T, et al. Prevalence of anemia in patients with chronic kidney disease in Japan : A nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PLoS One. 2020 ; 15 : e0236132.
P.331 掲載の参考文献
(1) Nakamura J, et al. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001-2010 : Report of the Committee on Causes of Death in Diabetes Mellitus. J Diabetes Investig. 2017 ; 8 : 397-410.
(2) Makizako H, et al. Prevalence of sarcopenia defined using the Asia Working Group for Sarcopenia criteria in Japanese community-dwelling older adults : A systematic review and meta-analysis. Phys Ther Res. 2019 ; 22 : 53-7.
(3) Yuki A, et al. Epidemiology of sarcopenia in elderly Japanease. J Phys Fitness Sports Med.2015;4:111-5.
(4) Murata Y, et al. Sarcopenia in elderly patients with type 2 diabetes mellitus : prevalence and related clinical factors. Diabetol Int. 2017 ; 9 : 136-42.
(5) 植木浩二郎. 高齢者の糖尿病 5. 高齢者糖尿病とサルコペニア. 糖尿病. 2014 ; 57 : 689-92.
(6) Park SW, et al. Health, Aging, and Body Composition Study. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009 ; 32 : 1993-7.
(7) Cui M, et al. A cross-sectional study : Associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Medicine (Baltimore). 2020 ; 99 : e18708.
(8) O'Neill BT, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest. 2016 ; 126 : 3433-46.
(9) Hirata Y, et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight. 2019 ; 4 : e124952.
(10) Shimizu N, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011 ; 13 : 170-82.
(11) Araki A, et al. Non-high-density lipoprotein cholesterol : an important predictor of stroke and diabetesrelated mortality in Japanese elderly diabetic patients. Geriatr Gerontol Int. 2012 ; 12 (Suppl. 1) : 18-28.
(12) Huang ES, et al. Glycemic control, complications, and death in older diabetic patients : The Diabetes and Aging Study. Diabetes Care. 2011 ; 34 : 1329-36.
(13) Tokunaga K, et al. Ideal body weight estimated from the body mass index with the lowest morbidity. Int J Obes. 1991 ; 15 : 1-5.
(14) Tanaka S, et al. Japan Diabetes Complications Study Group and the Japanese Elderly Diabetes Intervention Trial Group. Body mass index and mortality among Japanese patients with type 2 diabetes : pooled analysis of the Japan diabetes complications study and the Japanese elderly diabetes intervention trial. J Clin Endocrinol Metab. 2014 ; 99 : E2692-6.
(15) Kubota Y, JACC Study Group. Association of Body Mass Index and Mortality in Japanese Diabetic Men and Women Based on Self-Reports : The Japan Collaborative Cohort (JACC) Study. J Epidemiol. 2015 ; 25 : 553-8.
(16) 山内敏正, 他. 日本糖尿病学会コンセンサスステートメント策定に関する委員会. 糖尿病患者の栄養食事指導-エネルギー・炭水化物・タンパク質摂取量と栄養食事指導-. 糖尿病. 2020 ; 63 : 91-109.
(17) Paddon-Jones D, et al. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009 ; 12 : 86-90.
(18) Ishikawa-Takata K, et al. Current protein and amino acid intakes among Japanese people : Analysis of the 2012 National Health and Nutrition Survey. Geriatr Gerontol Int. 2018 ; 18 : 723-31.
(19) Li J, et al. Dietary protein intake and type 2 diabetes among women and men in northeast China. Sci Rep. 2016 ; 6 : 37604.
(20) Rossetti L, et al. Effect of dietary protein on in vivo insulin action and liver glycogen repletion. Am J Physiol. 1989 ; 257, E212-9.
(21) Sluik D, et al. Protein intake and the incidence of pre-diabetes and diabetes in 4 population-based studies : the PREVIEW project. Am J Clin Nutr. 2019 ; 109 : 1310-8.
(22) Konishi K, et al. Dietary Soy Intake Is Inversely Associated with Risk of Type 2 Diabetes in Japanese Women but Not in Men. J Nutr. 2019 ; 149 : 1208-14.
(23) Kuwata H, et al. Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes : a randomised, controlled crossover, exploratory trial. Diabetologia. 2016 ; 59 : 453-61.
(24) Dempsey PC, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016 ; 39 : 964-72.
(25) Umpierre D, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes : a systematic review and metaanalysis. JAMA. 2011 ; 305 : 1790-9.
(26) 日本糖尿病学会, 編著. 4 運動療法. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019. p.57-68.
(27) Bouchi R, et al. Dipeptidyl peptidase 4 inhibitors attenuates the decline of skeletal muscle mass in patients with type 2 diabetes. Diabetes Metab Res Rev. 2018 ; 34.
(28) Sasaki T. Sarcopenia, frailty circle and treatment with sodium-glucose cotransporter 2 inhibitors. J Diabetes Investig. 2019 ; 10 : 193-5.
(29) Sasaki T, et al. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile : 52-week prospective LIGHT (Luseogliflozin : the Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. J Diabetes Investig. 2019 ; 10 : 108-17.
(30) Sugiyama S, et al. Dapagliflozin reduces fat mass without affecting muscle mass in type 2 diabetes. J Atheroscler Thromb. 2018 ; 25 : 467-76.
(31) Okuno A, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest. 1998 ; 101 : 1354-61.
(32) Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007 ; 18 : 427-44.
(33) Janghorbani M, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007 ; 166 : 495-505.
(34) Loke YK, et al. Long-term use of thiazolidinediones and fractures in type 2 diabetes : a meta-analysis. CMAJ. 2009 ; 180 : 32-9.
(35) Dormandy J, et al. PROactive investigators. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes : an overview of data from PROactive. Drug Saf. 2009 ; 32 : 187-202.
(36) Lambert CP, et al. Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons J Appl Physiol. 2008 ; 105 : 473-8.
(37) Sakuma K, et al. Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol. 2013 ; 2013 : 204164.
(38) Khadra D, et al. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults : A systematic review and meta-analysis. World J Diabetes. 2019 ; 10 : 311-23.
(39) Fukuoka Y, et al. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. Diabetes Investig. 2019 ; 10 : 322-30.
P.342 掲載の参考文献
(1) Veldee MS, et al. Can protein-calorie malnutrition cause dysphagia? Dysphagia. 1992 ; 7 : 86-101.
(2) Kuroda Y, et al. Relationship between thinness and swallowing function in Japanese older adults : implications for sarcopenic dysphagia. J Am Geriatr Soc. 2012 ; 60 : 1785-6.
(3) Fujishima I, et al. Sarcopenia and dysphagia : Position paper by four professional organizations. Geriatr Gerontol Int. 2019 ; 19 : 91-7.
(4) Tamura F, et al. Tongue thickness relates to nutritional status in the elderly. Dysphagia. 2012 ; 27 : 556-61.
(5) Maeda K, et al. Decreased tongue pressure is associated with sarcopenia and sarcopenic dysphagia in the elderly. Dysphagia. 2015 ; 30 : 80-7.
(6) Maeda K, et al. Decreased Skeletal Muscle Mass and Risk Factors of Sarcopenic Dysphagia : A Prospective Observational Cohort Study. J Gerontol A Biol Sci Med Sci. 2017 ; 72 : 1290-4.
(7) Shimizu S, et al. Ultrasonographic evaluation of geniohyoid muscle mass in perioperative patients. Kawasaki Medical Journal. 2016 ; 42 : 47-56.
(8) Mori T, et al. Development, reliability, and validity of a diagnostic algorithm for sarcopenic dysphagia. JCSM Clin Rep. 2017 ; 2 : e00017.
(9) Sporns PB, et al. Atrophy of swallowing muscles Is associated with severity of dysphagia and age in patients with acute stroke. J Am Med Dir Assoc. 2017 ; 18 : 635.e1-635.e7.
(10) Brown CJ,et al. The underrecognized epidemic of low mobility during hospitalization of older adults. J Am Geriatr Soc. 2009 ; 57 : 1660-5.
(11) Konturek PC, et al. Malnutrition in hospitals : It was, is now, and must not remain a problem! Med Sci Monit. 2015 ; 21 : 2969-75.
(12) Karr JR, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012 ; 150 : 389-401.
(13) Dent E, et al. International clinical practice guidelines for sarcopenia (ICFSR) : screening, diagnosis and management. J Nutr Health Aging. 2018 ; 22 : 1148-61.
(14) Nagano A, et al. Effects of physical rehabilitation and nutritional intake management on improvement in tongue strength in sarcopenic patients. Nutrients. 2020 ; 12 : 3104.
(15) Maeda K, et al. Tentative nil per os leads to poor outcomes in older adults with aspiration pneumonia. Clin Nutr. 2016 ; 35 : 1147-52.
P.354 掲載の参考文献
(1) World Health Organization. Alzheimer's Disease International. Dementia : a public health priority. Geneva : WHO Press ; 2012.
(2) Akatsu H, et al. Subtype analysis of neuropathologically diagnosed patients in a Japanese geriatric hospital. J Neurol Sci. 2002 ; 196 : 63-9.
(3) Minaglia C, et al. Cachexia and advanced dementia. J Cachexia Sarcopenia Muscle. 2019 ; 10 : 263-77.
(4) Suzuki M, et al. Reliability and validity of measurements of knee extension strength obtained from nursing home residents with dementia. Am J Phys Med Rehabil. 2009 ; 88 : 924-33.
(5) Liu CJ, et al. Progressive resistance strength training for improving physical function in older adults. The Cochrane database of systematic reviews. 2009 : CD002759.
(6) Thomas VS, et al. Can neuromuscular strength and function in people with dementia be rehabilitated using resistance-exercise training? Results from a preliminary intervention study. J Gerontol A Biol Sci Med Sci. 2003 ; 58 : 746-51.
(7) Santana-Sosa E, et al. Exercise training is beneficial for Alzheimer's patients. Int J Sports Med. 2008 ; 29 : 845-50.
(8) Hauer K, et al. Physical training improves motor performance in people with dementia : a randomized controlled trial. J Am Geriatr Soc. 2012 ; 60 : 8-15.
P.366 掲載の参考文献
(1) 内閣府. 平成29年度版高齢社会白書.
(2) 平成24年度介護報酬改定の効果検証及び調査研究に係る調査 [平成26年度実施分] (6) リハビリテーションにおける医療と介護の連携 に関する調査.
(3) 内閣府2013年8月アンケート調査 (在宅介護経験者696人対象). 介護ロボットに対する特別世論調査の概要.
(4) Mikumo U, et al. The conditions for aged sroke patients in order to discharge to home : Analysis by Classification and Regression Trees (CART). Jpn J Rehabil Med. 2002 ; 39 : 396-402.
(5) 船津良夫 ユニ・チャーム排泄ケアナビより. http://www.carenavi.jp/basic/about/jiritsuhaisetsu/04.html
(6) McLeod PC, et al. Measurements of repetitive activities of the knee. J Biomech. 1975 ; 8 : 369-73.
(7) Sorock G, Pomerantz R. A case-control study of falling episodes among hospitalized elderly. Gerontoligist. 1980 ; 20 : 240.
(8) Yoshida K, et al. Motion analysis in the movements of standing up from and sitting down on a chair. Scand J Rehabil Med. 1983 ; 15:133-40.
(9) Tnetti ME, et al. Riskfactor for folls among elderly persons living in the community. N Engl J Med. 1988 ; 319 : 1701-7.
(10) 日本創傷. オストミー・失禁管理学会. 排泄ケアガイドブック. 東京 : 照林社 ; 2017.
(11) 日本消化器病学会関連研究会 慢性便秘の診断・治療研究会. 慢性便秘症ガイドライン 2017. 東京 : 南江堂 ; 2017.
(12) Chih-Hung Wang, et al. Cranberry-containing products for prevention of urinary tract infections in susceptible populations a systematic review and metaanalysis of randomized controlled trials. Arch Intern Med. 2012 ; 172 : 988-96.
(13) eヘルスネット情報提供. 便秘と食事. 厚労省ホームページ. https://www.e-healthnet.mhlw.go.jp/information/food/e-02...

6章 その他の重要事項

P.377 掲載の参考文献
(1) Kirwan R, et al. Sarcopenia during COVID-19 lockdown restrictions : long-term health effects of short-term muscle loss. Geroscience. 2020 ; 1 : 1-32.
(2) Yamada M, et al. Effect of the COVID-19 epidemic on physical activity in community-dwelling older adults in Japan : A cross-sectional online survey. J Nutr Health Aging. 2020 ; 24 : 948-50.
(3) Ammar A, et al. Effects of COVID-19 home confinement on eating behaviour and physical activity : results of the ECLB-COVID19 international online survey. Nutrients. 2020 ; 12 : 1583.
(4) Casagrande M, et al. The enemy who sealed the world : effects quarantine due to the COVID-19 on sleep quality, anxiety, and psychological distress in the Italian population. Sleep Med. 2020 ; 75 : 12-20.
(5) Xiao H, et al. Social capital and sleep quality in individuals who self-isolated for 14 days during the coronavirus disease 2019 (COVID-19) outbreak in January 2020 in China. Med Sci Monit. 2020 ; 26 : e923921.
(6) Sidor A, et al. Dietary choices and habits during COVID-19 lockdown : experience from Poland. Nutrients. 2020 ; 12 : 1657.
(7) Scarmozzino F, et al. Covid-19 and the subsequent lockdown modified dietary habits of almost half the population in an Italian sample. foods. 2020 ; 9 : 675.
(8) 吉澤裕世, 他. 地域在住高齢者における身体・文化・地域活動の重複実施とフレイルとの関係. 日公衛誌. 2019 : 66 : 306-16.
(9) Gruther W, et al. Muscle wasting in intensive care patients : ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008 ; 40 : 185-9.
(10) Meftahi GH, et al. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection : the contribution of "inflame-aging". Inflamm Res. 2020 ; 69 : 825-39.
(11) Bloem BR, et al. The coronavirus disease 2019 crisis as catalyst for telemedicine for chronic neurological disorders. JAMA Neurol. 2020 ; 77 : 927-8.
(12) Vroege DP, et al. Dose-response effects of a Web-based physical activity program on body composition and metabolic health in inactive older adults: additional analyses of a randomized controlled trial. J Med Internet Res. 2014 ; 16 : e265.
(13) Hong J, et al. Effects of home-based tele-exercise on sarcopenia among community-dwelling elderly adults : Body composition and functional fitness. Exp Gerontol. 2017 ; 87 (Pt A) : 33-9.
(14) 総務省. 情報通信白書平成30年版-特集 人口減少時代におけるICTによる持続的成長.
(15) 大田康博, 他. ネットによりつながりがあると健康な人が1.6倍. 日福大報道発表資料. 2020.
P.387 掲載の参考文献
(1) Morris DM, et al. Constraint-induced movement therapy : characterizing the intervention protocol. Eura Medicophys. 2006 ; 42 : 257-68.
(2) Bandura A. Self-efficacy : Toward a unifying theory of behavioral change. Psychological Review. 1977 ; 84 : 191-215.
(3) 盛田寛明, 他. 在宅高齢脳卒中片麻痺者のできる ADLとしている ADLの差と意欲・自己効力感との双方向因果分析- 構造方程式モデルを用いて-. 保健の科学. 2002 ; 44 : 727-33.
(4) 盛田寛明, 他. 在宅高齢脳卒中片麻痺者の「できるADL」と「しているADL」の差に影響する心理・環境要因- 構造方程式モデルによる分析-. 総合リハ. 2003 ; 31 : 167-74.
(5) 佐伯和子, 他. 高齢者の介護エンパワーメント教育の評価- カリキュラムとの関連において-. 北陸公衆衛生学会誌. 2001 ; 27 : 76-80.
(6) 藺牟田洋美, 他. 自立および準寝たきり高齢者の自立度の変化に影響する予測因子の解明 身体・心理・社会的要因から. 日本公衆衛生雑誌. 2002 ; 49 : 483-96.
(7) 森脇美早, 他. 摂食嚥下障害の地域連携のための情報共有ツール「嚥下手帳」の有用性. 日本在宅栄養管理学会誌. 2020 ; 6 : 1-8.
P.395 掲載の参考文献
(1) 日本老年歯科医学界学術委員会. 高齢期における口腔機能低下-学会見解論文 2016年版-. 老年歯学. 2016 : 31 : 81-99.
(2) 日本歯科医学会. 口腔機能低下症に関する基本的な考え方. 平成30年3月. http://www.jads.jp/basic/pdf/document-180328-02.pdf
(3) 菊谷武. チェアサイド オーラルフレイルの診かた. 歯科診療報酬における「口腔機能低下症」考え方と診断基準. 東京 : 医歯薬出版 ; 2019.p.20.
(4) 白石愛, 他. 在宅高齢者の口腔障害, 栄養障害, 嚥下障害の実態とスクリーニングツールの重要性. 栄養-Trend of nutrition. 2017 ; 2 : 32-4.
(5) 白石愛, 他. 高齢入院患者における口腔機能障害はサルコペニアや低栄養と関連する. 日本静脈経腸栄養学会雑誌. 2016 ; 31 : 711-7.
(6) Grap MJ, et al. Oral care interventions in critical care : frequency and documentation. Am J Crit Care. 2003 ; 12 : 113-8 ; discussion 119.
(7) Wardh I, et al. Oral health care--a low priority in nursing. In-depth interviews with nursing staff. Scand J Caring Sci. 2000 ; 14 : 137-42.
(8) Ajwani S, et al. Integrated oral health care for stroke patients - a scoping review. J Clin Nurs. 2017 ; 26 : 891-901.
(9) Kossioni AE, et al. An expert opinion from the European College of Gerodontology and the European Geriatric Medicine Society : European Policy Recommendations on oral health in older adults. J Am Geriatr Soc. 2018 ; 66 : 609-13.
(10) Hanne K, et al. Oral status and the need for oral health care among patients hospitalis.ed with acute medical conditions. J Clin Nurs 2012 ; 21 : 2851-9.
(11) Pajukoski H, et al. Oral health in hospitalized and nonhospitalized community-dwelling elderly patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 ; 88 : 437-43.
(12) Tramini P, et al. Tooth loss and associated factors in long-term institutionalised elderly patients. Gerodontology. 2007 ; 24 : 196-203.
(13) Shiraishi A, et al. Poor oral status is associated with rehabilitation outcome in older people. Geriatr Gerontol Int. 2017 ; 17 : 598-604.
(14) Shiraishi A, et al. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients : Implications for oral sarcopenia. Clin Nutr. 2018 ; 37 : 204-7.
(15) Tanaka T, et al. Oral frailty as a risk factor for physical frailty and mortality in community-dwelling elderly. J Gerontol A Biol Sci Med Sci. 2018 ; 73 : 1661-7.
(16) Shiraishi A, et al. Hospital dental hygienist intervention improves activities of daily living, home discharge and mortality in post-acute rehabilitation. Geriatr Gerontol Int. 2019 ; 19 : 189-96.
(17) Shiraishi A, et al. Oral management in rehabilitation medicine : oral frailty, oral sarcopenia, and hospital-associated oral problems. Nutr Health Aging. 2020. https://doi.org/10.1007/s12603-020-1439-8
(18) Wakabayashi H. Medical-dental collaboration in general and family medicine. J Gen Fam Med. 2019 ; 20 : 47.
(19) Suzuki R, et al. Assignment of dental hygienists improves outcomes in Japanese rehabilitation wards : A retrospective cohort study. J Nutr Health Aging. 2020 ; 24 : 28-36.
(20) Shiraishi A, et al. Impaired oral health status on admission is associated with poor clinical outcomes in post-acute inpatients : A prospective cohort study.Clin Nutr. 2018.
(21) 嶋津さゆり, 他. 熊リハパワーライス(R) は脳卒中回復期の栄養状態や機能的予後を改善する. JSPEN. 2019 ; 1 : 149-56.
P.404 掲載の参考文献
(1) 総務省統計局. 統計トピックス No.126 統計からみた我が国の高齢者-「敬老の日」にちなんで-. https://www.stat.go.jp/data/topics/topi1261.html
(2) 厚生労働省. 平成29年 (2017) 患者調査の概況, 推定患者数, https://www.mhlw.go.jp/toukei/saikin/hw/kanja/17/dl/01.pdf
(3) 厚生労働省. 「チーム医療の推進について」 (「チーム医療の推進に関する検討会」報告書) https://www.mhlw.go.jp/shingi/2010/03/dl/s0319-9a.pdf
(4) 飯島正平. 栄養スクリーニングツールの特徴と比較. In : 日本静脈経腸栄養学会. 静脈経腸栄養テキストブック. 東京 : 南江堂 ; 2017. p.135
(5) 岩佐幹恵. 栄養障害のスクリーニング. In : 日本静脈経腸栄養学会. 静脈経腸栄養ハンドブック. 東京 : 南江堂 ; 2011. p.103
(6) 国立長寿医療研究センター. 平成25年度老人保健健康増進等事業. 「在宅療養患者の栄養状態改善方法に関する調査研究 報告書」https://www.ncgg.go.jp/ncgg-kenkyu/documents/roken/rojinhokoku4_25.pdf
(7) 長寿医療費研究開発費 平成26年度総括報告書. フレイルの進行に関わる要因に関する研究 (25-11). https://www.ncgg.go.jp/ncgg-kenkyu/documents/25-11.pdf
(8) e-ヘルスネット (情報提供) 栄養・食生活. https://www.e-healthnet.mhlw.go.jp/information/dictionary/food/ye-021.html
(9) 吉村芳弘. 高齢者の低栄養の病態と診断法は?. リハビリナース. 2019 ; 12 : 18-20.
P.416 掲載の参考文献
(1) Akishita M, et al. Priorities of health care outcomes for the elderly. J Am Med Dir Assoc. 2013 ; 14 : 479-87.
(2) 鈴木隆雄, 他. 日本人高齢者における身体機能の・縦断的・横断的変化に関する研究-高齢者は若返っているか? 厚生の指標. 2006 ; 53 : 1-10.
(3) Ryuno H, et al. Differences in the association between high blood pressure and cognitive functioning among the general Japanese population aged 70 and 80 years : The SONIC study. Hypertens Res. 2016 ; 39 : 557-63.
(4) 長寿医療研究開発費事業 (27-23) : 要介護高齢者, フレイル高齢者, 認知症高齢者に対する栄養療法, 運動療法, 薬物療法に関するガイドライン作成に向けた調査研究班, 編. フレイル診療ガイド 2018年版. 東京 : ライフ・サイエンス ; 2018. p.28-65.
(5) 厚生労働省保険局高齢者医療課. 高齢者の特性を踏まえた保健事業ガイドライン 第2版, 2019年. https://www.mhlw.go.jp/content/12401000/000557575.pdf
(6) 日本老年医学会. かかりつけ医のための後期高齢者の質問票対応マニュアル (2020年5月). https://www.jpn-geriat-soc.or.jp/tool/pdf/manual_02.pdf
(7) 葛谷雅文. 高齢者における栄養管理 ギアチェンジの考え方. 医事新報. 2016 ; 4797 : 41-7.
P.424 掲載の参考文献
(1) サルコペニア診療ガイドライン作成委員会, 編. サルコペニア診療ガイドライン 2017年度版. 2017年. 東京 : ライフサイエンス出版 ; 2017. (https://minds.jcqhc.or.jp/docs/gl_pdf/G0001021/4/sarcopenia2017.pdf)
(2) 日本リハビリテーション栄養学会, 編. リハビリテーション栄養診療ガイドライン 2018年版. 2018年. 東京 : 医歯薬出版 ; 2018. (https://minds.jcqhc.or.jp/docs/gl_pdf/G0001083/4/rehabilitation_nutrition.pdf)
(3) 吉村芳弘. 多職種チームで実践する臨床研究. In : 前田圭介, 他, 編. 臨床研究アウトプット術. 東京 : 中外医学社 ; 2020.

最近チェックした商品履歴

Loading...