Less is More 考える集中治療

出版社: 金芳堂
著者:
発行日: 2021-12-12
分野: 臨床医学:一般  >  集中治療
ISBN: 9784765318891
電子書籍版: 2021-12-12 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:約3営業日

3,190 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

3,190 円(税込)

商品紹介

集中治療分野では「重症だから……」という理由だけで、詳細な病態や適応の評価もそこそこに、惰性的に、様々な薬剤投与、度重なる膨大な検査などが行われていることがあります。しかし、それは患者にとってデメリットでもあることを知っておきましょう。
ヨーロッパの集中治療医学会雑誌Intensive Care Medicineの「less is more」をもとに、日本の実情も踏まえながら、今後の医療の質を変えてみませんか?

目次

  • 1章 神経・鎮痛鎮静のless is more
    海外のless is more-推奨・根拠
    Discussion
    深鎮静が必要なケースとは?
    鎮静薬の選択
    鎮痛なくして鎮静なし
    早期離床の重要性
    騒音減少で良眠を得る

    2章 気道・呼吸のless is more
    海外のless is more-推奨・根拠
    Discussion
    離脱評価は日々SBTで行う
    SBTの実際
    肺保護戦略―TV制限の重要性
    これからの肺保護戦略―メカニカルパワー
    PEEPも必要最低限の時代に
    もはや常識―酸素投与は必要最低限
    気道管理は重要な予防対策

    Column 気管切開は早くする? 遅くする?

    3章 循環のless is more
    海外のless is more-推奨・根拠
    Discussion
    血圧目標MAP≧65mmHg
    昇圧薬を使用するならノルアドレナリンが第一選択
    ドパミンを優先使用する場面は存在するか?
    補助療法によるカテコラミン温存戦略は期待薄
    投与ルートもless is more?
    末梢還流評価も動脈ガスはless is moreか

    4章 腎・in/outバランスのless is more
    海外のless is more-推奨・根拠
    Discussion
    RRTは必要時まで待つ
    造影剤腎症予防は生理食塩水で
    過剰輸液が予後不良因子であることはニューノーマル
    輸液反応性は実際にチャレンジ
    アルブミン製剤もless is more
    晶質液は生理食塩水よりリンゲル液を
    CRRT処方量も多ければよい、というわけではない

    5章 血液のless is more
    海外のless is more-推奨・根拠
    Discussion
    赤血球輸血は必要最低限―もはや常識
    血小板輸血や新鮮凍結血漿もless is more
    DIC治療=現病治療、他にはない
    ECMOの抗凝固管理も見直しの時代?

    6章 感染のless is more
    海外のless is more-推奨・根拠
    Discussion
    適応のない侵襲的デバイスは留置しない
    不要となればすぐに抜去
    抗菌薬の投与期間は適切に・無駄に長期投与しない
    抗菌薬のスペクトラムは適切に・無駄に広域にしない
    不必要な抗菌薬併用療法は行わない
    抗菌薬投与量はless is more、ではない
    本当にペニシリンアレルギー?

    7章 栄養・予防のless is more
    海外のless is more-推奨・根拠
    Discussion
    栄養は急性期はless is more、回復してきたら十分に
    血糖140~180mg/dL目標はもはやICUの常識
    ストレス潰瘍予防は適応を評価し、漫然と続けない
    DVT予防も適応を評価し、漫然と続けない

    8章 その他のless is more
    海外のless is more-推奨・根拠
    Discussion
    「ICUだから……」というだけで毎日の採血/X線や定期的な血液ガス測定は不要
    救命だけがすべてではない、治療制限が患者/家族/医療者にとって最善策にもなり得る
    TLTは治療方針決定の一助になり得るかもしれない
    DNAR=何もしない、ではない

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1 神経・鎮痛鎮静のless is more

P.17 掲載の参考文献
1) Devlin JW, et al. Guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018 ; 46 : e825-e873.
2) Sessler CN, et al. The Richmond Agitation-Sedation Scale : Validity and reliability in adult intensive care unit. Am J Resp Crit Care Med. 2002 ; 166 : 1338-1344.
3) 日本集中治療医学会J-PADガイドライン検討委員会. 集中治療領域における痛み・不穏・せん妄管理の現状調査. 日集中医誌. 2017 ; 24 : 199-207.
4) Wongtangman K, et al. Optimal sedation in patients who receive neuromuscular blocking agent infusions for treatment of acute respiratory distress syndrome-A retrospective cohort study from a New England health care network. Crit Care Med. 2021 ; 49 : 1137-1148.
5) Haji JY, et al. Awake ECMO and mobilizing patients on ECMO. Indian J Thorac Cardiovasc Surg. 2021 ; 1-10
6) Aragon RE, et al. Sedation practices and clinical outcomes in mechanically ventilated patients in a prospective multicenter cohort. Crit Care. 2019 ; 23 : 130.
7) Kawazoe Y, et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis : A randomized clinical trial. JAMA. 2017 ; 317 : 1321-1328.
8) Shehabi Y, et al. Early sedation with dexmedetomidine in ventilated critically ill patients and heterogeneity of treatment effect in the SPICE III randomised controlled trial. Intensive Care Med. 2021 ; 47 : 455-466.
9) Shehabi Y, et al. Early Sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019 ; 380 : 2506-2517.
10) Ohta Y, et al. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation : a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020 ; 24 : 493.
11) Morelli A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients : A crossover trial. Crit Care Med. 2019 ; 47 : e89-e95.
12) Lewis K, et al. Safety and efficacy of dexmedetomidine in acutely ill adults requiring noninvasive ventilation : a systematic review and meta-analysis of randomized trials. Chest. 2021 ; 159 : 2274-2288.
13) Olsen HT, et al. Nonsedation or light sedation in critically ill, mechanically ventilated patients. N Engl J Med. 2020 ; 382 : 1103-1111
14) Hughes CG, et al. Dexmedetomidine or propofol for sedation in mechanically ventilated adults with sepsis. N Engl J Med. 2021 ; 384 : 1424-1436.
15) Vanhorebeek I, et al. ICU-acquired weakness. Intensive Care Med. 2020 ; 46 : 637-653.
16) Vasilevskis, et al. Reducing iatrogenic risks : ICU-acquired delirium and weakness-crossing the quality chasm. Chest. 2010 ; 138 : 1224-1233.
17) Collinsworth AW, et al. Evaluating the cost-effectiveness of the ABCDE bundle : Impact of bundle adherence on inpatient and 1-year mortality and costs of care. Crit Care Med. 2020 ; 48 : 1752-1759.
18) Harvey MA, et al. Post intensive care syndrome : Right care, right now…and later. Crit Care Med. 2016 ; 44 : 381-385.
19) Tonna JE, et al. The effect of a quality improvement intervention on sleep and delirium in critically ill patients in a surgical intensive care unit. Chest. 2021 ; S0012-3692 : 00548-1.
20) Gandolfi JV, et al. The effects of melatonin supplementation on sleep quality and assessment of the serum melatonin in ICU patients : A randomized controlled trial. Crit Care Med. 2020 ; 48 : e1286-e1293.

2 気道・呼吸のless is more

P.38 掲載の参考文献
1) 日本集中治療医学会教育委員会, 編. 日本集中治療医学会専門医テキスト 第3版. 真興交易医書出版部, 2019.
2) Wawrzeniak IC, et al. Weaning from mechanical ventilation in ARDS : Aspects to think about for better understanding, evaluation, and management. Biomed Res Int. 2018 ; 2018 : 5423639.
3) Yeung J, et al. Non-invasive ventilation as a strategy for weaning from invasive mechanical ventilation : a systematic review and Bayesian meta-analysis. Intensive Care Med. 2018 ; 44 : 2192-2204.
4) Rochwerg B, et al. The role for high flow nasal cannula as a respiratory support strategy in adults : a clinical practice guideline. Intensive Care Med. 2020 ; 46 : 2226-2237.
5) Jong AD, et al. Focus on noninvasive respiratory support before and after mechanical ventilation in patients with acute respiratory failure. Intensive Care Med. 2020 ; 46 : 1460-1463.
6) Ouellette DR, et al. Liberation from mechanical ventilation in critically ill adults : An official American college of chest physicians/American thoracic society clinical practice guideline : Inspiratory pressure augmentation during spontaneous breathing trials, protocols minimizing sedation, and noninvasive ventilation immediately after extubation. Chest. 2017 ; 151 : 166-180.
7) Esteban A, et al. A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group. N Engl J Med. 1995 ; 332 : 345-350.
8) Ely EW, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996 ; 335 : 1864-1869.
9) Jung B, et al. Ten tips to optimize weaning and extubation success in the critically ill. Intensive Care Med. 2020 ; 46 : 2461-2463.
10) Liu J, et al. Cardiac dysfunction induced by weaning from mechanical ventilation : incidence, risk factors, and effects of fluid removal. Crit Care. 2016 ; 20 : 369.
11) Anguel N, et al. Increase in plasma protein concentration for diagnosing weaning-induced pulmonary oedema. Intensive Care Med. 2008 : 34 : 1231-1238.
12) Ferre A, at al. Lung ultrasound allows the diagnosis of weaning-induced pulmonary oedema. Intensive Care Med. 2019 ; 45 : 601-608.
13) Perren A, et al. Protocol-directed weaning from mechanical ventilation : clinical outcome in patients randomized for a 30-min or 120-min trial with pressure support ventilation. Intensive Care Med. 2002 ; 28 : 1058-1063.
14) Menk M, et al. Current and evolving standards of care for patients with ARDS. Intensive Care Med. 2020 ; 46 : 2157-2167.
15) The NIH-NHLBI ARDS Network. http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf
16) Zhang Z, et al. Declining mortality in patients with acute respiratory distress syndrome : An analysis of the acute respiratory distress syndrome network trials. Crit Care Med. 2019 ; 47 : 315-323.
17) Simonis FD, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS a randomized clinical trial. JAMA. 2018 ; 320 : 1872-1880.
18) Lanspa MJ, et al. Driving pressure is not associated with mortality in mechanically ventilated patients without ARDS. Crit Care. 2019 ; 23 : 424.
19) Sjoding MW, et al. Evaluating delivery of low tidal volume ventilation in six ICUs using electronic health record data. Crit Care Med. 2019 ; 47 : 56-61.
20) Bellani G, et al. Missed or delayed diagnosis of ARDS : a common and serious problem. Intensive Care Med. 2020 ; 46 : 1180-1183.
21) Goligher EC, et al. Effect of lowering Vt on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am J Respir Crit Care Med. 2021 ; 203 : 1378-1385.
22) Gattinoni L, et al. Ventilator-related causes of lung injury : the mechanical power. Intensive Care Med. 2016 ; 42 : 1567-1575.
23) Sahetya SK, et al. Mean airway pressure as a predictor of 90 -day mortality in mechanically ventilated patients. Crit Care Med. 2020 ; 48 : 688-695.
24) Writing Committee and Steering Committee for the RELAx Collaborative Group, et al. Effect of a lower vs higher positive end-expiratory pressure strategy on ventilator-free days in ICU patients without ARDS a randomized clinical trial. JAMA. 2020 ; 324 : 2509-2520.
25) Pettenuzzo T, et al. Higher versus lower positive end-expiratory pressure in patients without acute respiratory distress syndrome : a meta-analysis of randomized controlled trials. Crit Care. 2021 ; 25 : 247.
26) Walkey AJ, et al. Higher PEEP versus lower PEEP strategies for patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017 ; 14 (Supple 4) : S297-S303.
27) 日本集中治療医学会, 他編. 日本版敗血症診療ガイドライン 2020. 真興交易医書出版部, 2021.
28) Siemieniuk RAC, et al. Oxygen therapy for acutely ill medical patients : a clinical practice guideline. BMJ. 2018 ; 363 : k4169.
29) Cooper N, et al. Essential guide to acute care third edition. WILEY Blackwell, 2021.
30) ICU-ROX investigators and the Australian and New Zealand intensive care society clinical trials group, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020 ; 382 : 989-998.
31) Barrot L, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020 ; 382 : 999-1008.
32) Robba C, et al. Mechanical ventilation in patients with acute brain injury : recommendations of the European society of intensive care medicine consensus. Intensive Care Med. 2020 ; 46 : 2397-2410.
33) 国公立大学附属病院感染対策協議会, 編. 病院感染対策ガイドライン 2018年版. じほう, 2018.
34) Papazian L, et al. Ventilator-associated pneumonia in adults : a narrative review. Intensive Care Med. 2020 ; 46 : 888-906.
35) Krisciunas GP, et al. The association between endotracheal tube size and aspiration (during flexible endoscopic evaluation of swallowing) in acute respiratory failure survivors. Crit Care Med. 2020 ; 48 : 1604-1611.
36) Marjanovic N, et al. Continuous pneumatic regulation of tracheal cuff pressure to decrease ventilator-associated pneumonia in trauma patients who were mechanically ventilated the AGATE multicenter randomized controlled study. Chest. 2021 ; 160 : 499-508.
37) Jans DR, et al. Effect of a fluid bolus on cardiovascular collapse among critically ill adults undergoing tracheal intubation (PrePARE) : A randomised controlled trial. Lancet Respir Med. 2019 ; 7 : 1039-1047.
38) Chorath K, et al. Association of early vs late tracheostomy placement with pneumonia and ventilator days in critically ill patients : A meta-analysis. JAMA Otolaryngol Head Neck Surg. 2021 ; 147 : 450-459.
39) Robba C, et al. Tracheostomy practice and timing in traumatic brain-injured patients : A CENTER-TBI study. Intensive Care Med. 2020 ; 46 : 983-994.

3 循環のless is more

P.54 掲載の参考文献
1) Russell JA, et al. Personalized blood pressure targets in shock : What if your normal blood pressure is "low"?. Am J Respir Crit Care Med. 2020 ; 202 : 10-12.
2) Roberts BW, et al. Association Between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest : Results from a multicenter prospective cohort study. Crit Care Med. 2019 ; 47 : 93-100.
3) Sandroni C, et al. Focus on post-resuscitation care. Intensive Care Med. 2019 ; 45 : 1283-1287.
4) Jakkula P, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation : A randomised pilot trial. Intensive Care Med. 2018 ; 44 : 2091-2101.
5) 日本集中治療医学会, 他編. 日本版敗血症診療ガイドライン 2020. 真興交易医書出版部, 2021.
6) de Chambrun MP, et al. What's new in cardiogenic shock?. Intensive Care Med. 2020 ; 46 : 1016-1019.
7) De Backer D, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010 ; 362 : 779-789.
8) De Backer D, et al. Dopamine versus norepinephrine in the treatment of septic shock : A meta-analysis. Crit Care Med. 2012 ; 40 : 725-730.
9) Holmes CL, et al. Bad medicine : Low dose dopamine in the ICU. Chest 2003 ; 123 : 1226-1275.
10) Belletti A, et al. Effect of continuous epinephrine infusion on survival in critically ill patients : A meta-analysis of randomized trials. Crit Care Med. 2020 ; 48 : 398-405.
11) Stolk RF, et al. Norepinephrine dysregulates the immune response and compromises host defense during sepsis. Am J Respir Crit Care Med. 2020 ; 202 : 830-842.
12) Okazaki N, et al. Beneficial effects of vasopressin compared with norepinephrine on renal perfusion, oxygenation, and function in experimental septic acute kidney injury. Crit Care Med. 2020 ; 48 : e951-e958.
13) Hajjar LA, et al. Vasopressin versus norepinephrine for the management of septic shock in cancer patients : The VANCS II randomized clinical trial. Crit Care Med. 2019 ; 47 : 1743-1750.
14) Ferenchick H, et al. Diabetes insipidus after discontinuation of vasopressin infusion for treatment of shock. Crit Care Med. 2019 ; 47 : e1008-e1013.
15) Kotlof RM, et al. Management of the potential organ donor in the ICU : Society of critical care medicine/American college of chest physicians/association of organ procurement organizations consensus statement. Crit Care Med. 2015 ; 43 : 1291-1325.
16) Schnuelle P, et al. Effects of donor pre-treatment with dopamine on graft function after kidney transplantation. JAMA. 2009 ; 302 : 1067-1075.
17) Stoica SC, et al. Noradrenaline use in the human donor and relationship with load-independent right ventricular contractility. Transplantation. 2004 ; 78 : 1193-1197.
18) Birtan D, et al. Effect of vasoactive therapy used for brain dead donors on graft survival after kidney transplantation. Transplant Proc. 2018 ; 50 : 1289-1291.
19) Meyfroidt G, et al. Management of the brain-dead donor in the ICU : general and specifc therapy to improve transplantable organ quality. Intensive Care Med. 2019 ; 45 : 343-353.
20) Payen DM, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis : a multicenter randomized control trial. Intensive Care Med. 2015 ; 41 : 975-984.
21) Dellinger RP, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level : The EUPHRATES randomized clinical trial. JAMA. 2018 ; 320 : 1455-1463.
22) Fujii T, et al. Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock : A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018 ; 44 : 167-178.
23) David S, et al. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021 ; 47 : 352-354.
24) Sevransky JE, et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilatorand vasopressor-free days in patients with sepsis : The VICTAS randomized clinical trial. JAMA. 2021 ; 325 : 742-750.
25) Putzu A, et al. The effect of vitamin C on clinical outcome in critically ill patients : A systematic review with meta-analysis of randomized controlled trials. Crit Care Med. 2019 ; 47 : 774-783.
26) Moskowitz A, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock the ACTS randomized clinical trial. JAMA. 2020 ; 324 : 642-650.
27) Hwang SY, et al. Combination therapy of vitamin C and thiamine for septic shock : a multicentre, double-blinded randomized, controlled study. Intensive Care Med. 2020 ; 46 : 2015-2025.
28) Miyamoto Y, et al. Association between IV thiamine and mortality in patients with septic shock : A nationwide observational study. Crit Care Med. 2020 ; 48 : 1135-1139.
29) Fang F, et al. Association of corticosteroid treatment with Outcomes in adult patients with sepsis a systematic review and meta-analysis. JAMA Intern Med. 2019 ; 179 : 213-223.
30) Owen VS, et al. Adverse events associated with administration of vasopressor medications through a peripheral intravenous catheter : a systematic review and metaanalysis. Crit Care. 2021 ; 25 : 146.
31) Hernandez G, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock the ANDROMEDA-SHOCK randomized clinical trial.

4 腎・in / outバランスのless is more

P.72 掲載の参考文献
1) Gaudry S, et al. Timing of renal replacement therapy for severe acute kidney injury in Critically Ill Patients. Am J Respir Crit Care Med. 2019 ; 199 : 1066-1075.
2) AKI (急性腎障害) 診療ガイドライン作成委員. 急性腎障害診療ガイドライン 2016. 日腎会誌. 2016 ; 59 : 419-533.
3) 日本集中治療医学会教育委員会, 編. 日本集中治療医学会専門医テキスト 第3版. pp437-449. 真興交易医書出版部, 2019.
4) Gaudry S, et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2) : A multicentre, open-label, randomised, controlled trial. Lancet. 2021 ; 397 : 1293-1300.
5) Chen JJ, et al. Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy : a systemic review and meta-analysis. Crit Care. 2020 ; 24 : 202.
6) Yang CY, et al. Effect of renin-angiotensin-aldosterone system blockade on long-term outcomes in postacute kidney injury patients with hypertension. Crit Care Med. 2020 ; 48 : e1185-e1193.
7) Pannu N. In patients with CKD having CT with contrast media, no prehydration and prehydration did not differ for AKI. Ann Intern Med. 2020 ; 173 : JC8.
8) Mehran R, et al. Contrast-associated acute kidney injury. N Engl J Med. 2019 ; 380 : 2146-2155.
9) Ostermann M, et al. Fluid management in acute kidney injury. Chest 2019 ; 156 : 594-603.
10) Perner A, et al. Fluid management in acute kidney injury. Intensive Care Med. 2017 ; 43 : 807-815.
11) Chuang CL. Fluid management in acute kidney injury. Contrib Nephrol. 2016 ; 187 : 84-93.
12) Messmer AS, et al. Fluid overload and mortality in adult critical care patients-A systematic review and meta-analysis of observational studies. Crit Care Med. 2020 ; 48 : 1862-1870.
13) Silversides JA, et al. Liberal versus restrictive fluid therapy in critically ill patients. Intensive Care Med. 2019 ; 45 : 1440-1442.
14) Perner A, et al. Focus on fluid therapy in critically ill patients. Intensive Care Med. 2019 ; 45 : 1469-1471.
15) Woodward CW, et al. Fluid overload associates with major adverse kidney events in critically ill patients with acute kidney injury requiring continuous renal replacement therapy. Crit Care Med. 2019 ; 47 : e753-e760.
16) Vaara ST, et al. Restrictive fluid management versus usual care in acute kidney injury (REVERSE-AKI) : A pilot randomized controlled feasibility trial. Intensive Care Med. 2021 ; 47 : 665-673.
17) Cori KA, et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS) : A randomaized pilot study. Crit Care Med. 2019 ; 47 : 951-959.
18) Permpikul C, et al. Early use of norepinephrine in septic shock resuscitation (CENSER) : A randomized trial. Am J Respir Crit Care Med. 2019 ; 199 : 1049-1051.
19) Ospina-Tascon GA, et al. Effects of very early start of norepinephrine in patients with septic shock : A propensity score-based analysis. Crit Care. 2020 ; 24 : 52.
20) 日本集中治療医学会, 他編. 日本版敗血症診療ガイドライン 2020. 真興交易医書出版部, 2021.
21) Hu B, et al. Effect of initial infusion rates of fluid resuscitation on outcomes in patients with septic shock : a historical cohort study. Crit Care. 2020 ; 24 : 137.
22) Jacquet-Lagreze M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019 ; 23 : 281.
23) AKI (急性腎障害) 診療ガイドライン作成委員会, 他編. 急性・慢性心不全診療ガイドライン 2017.
24) Poston JT, et al. Sepsis associated acute kidney injury. BMJ. 2019 ; 364 : k4891.
25) Park CHL, et al. Lactated ringer's versus 4 % albumin on lactated ringer's in early sepsis therapy in cancer patients : A pilot single-center randomized trial. Crit Care Med. 2019 ; 47 : e798-e805.
26) China L, et al. A randomized trial of albumin infusions in hospitalized patients with cirrhosis. N Engl J Med. 2021 ; 384 : 808-817.
27) Semler MW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018 ; 378 : 829-839.
28) Self WH, et al. Balanced crystalloids versus saline in noncritically ill Adults. N Engl J Med. 2018 ; 378 : 819-828.
29) Brown RM, et al. Balanced crystalloids versus saline in sepsis. A secondary analysis of the SMART clinical trial. Am J Respir Crit Care Med. 2019 ; 200 : 1487-1495.
30) Toporek AH, et al. Balanced crystalloids versus saline in critically ill adults with hyperkalemia or acute kidney injury : Secondary analysis of a clinical trial. Am J Respir Crit Care Med. 2021 ; 203 : 1322-1325.
31) Pfortmuller CA, et al. Fluid management in patients undergoing cardiac surgery : Effects of an acetate- versus lactate-buffered balanced infusion solution in hemodynamic stability (HEMACETAT). Crit Care. 2019 ; 23 : 159.
32) Palevsky PM, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008 ; 359 : 7-20.
33) Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009 ; 361 : 1627-1638.
34) KDIGO AKI Working Group. KDIGO Clinical Practice Guideline. 2012 ; 2 : 1-138.
35) Hang P, et al. Effect of the intensity of continuous renal replacement therapy in patients with sepsis and acute kidney injury : a single-center randomized clinical trial. Nephrol Dial Transplant. 2012 ; 27 : 967-973.
36) Joannes-Boyau O, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study) : A multicentre randomized controlled trial. Intensive Care Med. 2013 ; 39 : 1535-1546.
37) Park JT, et al. High-Dose versus conventional-dose continuous venovenous hemodiafiltration and patient and kidney survival and cytokine removal in sepsis-associated acute kidney injury : A randomized controlled trial. Am J Kidney Dis. 2016 ; 68 : 599-608.
38) Yasuda H, et al. The lower limit of intensity to control uremia during continuous renal replacement therapy. Crit Care. 2014 ; 18 : 539.

5 血液のless is more

P.84 掲載の参考文献
1) Ducrocq G, et al. Effect of a restrictive vs liberal blood transfusion strategy on major cardiovascular events among patients with acute myocardial infarction and anemia the REALITY randomized clinical trial. JAMA. 2021 ; 325 : 552-560.
2) Mazer CD, et al. Six-month outcomes after restrictive or liberal transfusion for cardiac surgery. N Engl J Med. 2018 ; 379 : 1224-1233.
3) Hunsicker O, et al. Lower versus higher hemoglobin threshold for transfusion in ARDS patients with and without ECMO. Crit Care. 2020 ; 24 : 697.
4) Fogagnolo A, et al. Using arterial-venous oxygen difference to guide red blood cell transfusion strategy. Crit Care. 2020 ; 24 : 160.
5) 日本集中治療医学会教育委員会, 編. 日本集中治療医学会専門医テキスト 第3版. 真興交易医書出版部, 2019.
6) Peju E, et al. Impact of blood product transfusions on the risk of ICU-acquired infections in septic shock. Crit Care Med. 2021 ; 49 : 912-922.
7) Vincent JL, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy the SCARLET randomized clinical trial. JAMA. 2019 ; 321 : 1993-2002.
8) Kondoh Y, et al. Thrombomodulin alfa for acute exacerbation of idiopathic pulmonary fibrosis. A randomized, double-blind placebo-controlled trial. Am J Respir Crit Care Med. 2020 ; 201 : 1110-1119.
9) Panigada M, et al. A randomized controlled trial of antithrombin supplementation during extracorporeal membrane oxygenation. Crit Care Med. 2020 ; 48 : 1636-1644.
10) Fisser C, et al. Argatroban versus heparin in patients without heparin-induced thrombocytopenia during venovenous extracorporeal membrane oxygenation : A propensity-score matched study. Crit Care. 2021 ; 25 : 160.

6 感染のless is more

P.107 掲載の参考文献
1) 国公立大学附属病院感染対策協議会, 編. 病院感染対策ガイドライン 2018年版. じほう, 2018.
2) Rickard CM, et al. Effect of infusion set replacement intervals on catheter-related bloodstream infections (RSVP) : a randomised, controlled, equivalence (central venous access device) -non-inferiority (peripheral arterial catheter) trial. Lancet. 2021 ; 397 : 1447-1458.
3) Kohlhardt SR, et al. Fine bore silicone catheters for peripheral intravenous nutrition in adults. BMJ. 1989 ; 299 : 1380-1381.
4) Madan M, et al. Influence of catheter type on occurrence of thrombophlebitis during peripheral intravenous nutrition. Lancet. 1992 ; 339 : 101-103.
5) Lee RA, et al. Appropriate use of short-course antibiotics in common infections : Best practice advice from the American college of physicians. Ann Intern Med. 2021 ; 174 : 822-827.
6) Dinh A, et al. Discontinuing β-lactam treatment after 3 days for patients with community-acquired pneumonia in non-critical care wards (PTC) : a double-blind, randomised, placebo-controlled, non-inferiority trial. Lancet. 2021 ; 397 : 1195-1203.
7) Gariani K, et al. Three weeks versus six weeks of antibiotic therapy for diabetic foot osteomyelitis : A prospective, randomized, noninferiority pilot trial. Clin Infect Dis. 2020 ; ciaa1758.
8) Fabre V, et al. Antibiotic therapy for Pseudomonas aeruginosa bloodstream infections : How long is long enough?. Clin Infect Dis. 2019 ; 69 : 2011-2014.
9) Iversen K, et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med. 2019 ; 380 : 415-424.
10) Li HK, et al. Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med. 2019 ; 380 : 425-436.
11) Schimmel J, et al. Pneumococcal urinary antigen testing in United States hospitals : A missed opportunity for antimicrobial stewardship. Clin Infect Dis. 2020 ; 71 : 1427-1434.
12) The Johns Hopkins POC-IT ABX Guide (The Johns Hopkins University). The Unbound Platform, 2020.
13) Huang HB, et al. Procalcitonin-guided antibiotic therapy in intensive care unit patients : a systematic review and meta-analysis. Ann Intensive Care. 2017 ; 7 : 114.
14) Kamat IS, et al. Procalcitonin to distinguish viral from bacterial pneumonia : A systematic review and meta-analysis. Clin Infect Dis. 2020 ; 70 : 538-542.
15) Liu Y, et al. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome : A systematic review and meta-analysis. Springerplus. 2016 ; 5 : 2091.
16) Obayashi T, et al. Reappraisal of the serum (1->3) -beta-D-glucan assay for the diagnosis of invasive fungal infections--a study based on autopsy cases from 6 years. Clin Infect Dis. 2008 ; 46 : 1864-1870.
17) Timsit JF, et al. Impact of bronchial colonization with Candida spp. on the risk of bacterial ventilator-associated pneumonia in the ICU : The FUNGIBACT prospective cohort study. Intensive Care Med. 2019 ; 45 : 834-843.
18) Timsit JF, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure : The EMPIRICUS randomized clinical trial. JAMA. 2016 ; 316 : 1555-1564.
19) Guerci P, et al. Outcomes of Stenotrophomonas maltophilia hospital-acquired pneumonia in intensive care unit : a nationwide retrospective study. Crit Care. 2019 ; 23 : 371.
20) Babich T, et al. Ceftazidime, carbapenems, or piperacillin-tazobactam as single definitive therapy for Pseudomonas aeruginosa bloodstream infection : A multisite retrospective study. Clin Infect Dis. 2020 ; 70 : 2270-2280.
21) Lee JD, et al. Risk of acute kidney injury and Clostridioides difficile infection with piperacillin/tazobactam, cefepime, and meropenem with or without vancomycin. Clin Infect Dis. 2020 ; ciaa1902.
22) Ong DSY, et al. Short-course adjunctive gentamicin as empirical therapy in patients with severe sepsis and septic shock : A prospective observational cohort study. Clin Infect Dis. 2017 ; 64 : 1731-1736.
23) Pujol M, et al. Daptomycin plus fosfomycin versus daptomycin alone for methicillinresistant Staphylococcus aureus bacteremia and endocarditis : A randomized clinical trial. Clin Infect Dis. 2021 ; 72 : 1517-1525.
24) Tong SYC, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-Lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia a randomized clinical trial. JAMA. 2020 ; 323 : 527-537.
25) Grillo S, et al. Impact of β-Lactam and daptomycin combination therapy on clinical outcomes in methicillin-susceptible staphylococcus aureus bacteremia : A propensity score-matched analysis. Clin Infect Dis. 2019 ; 69 : 1480-1488.
26) Roberts JA, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients : Data from the multinational sampling antibiotics in renal replacement therapy study. Clin Infect Dis. 2021 ; 72 : 1369-1378.
27) Carrie C, et al. Increased β-Lactams dosing regimens improve clinical outcome in critically ill patients with augmented renal clearance treated for a first episode of hospital or ventilator-acquired pneumonia : a before and after study. Crit Care. 2019 ; 23 : 379.
28) Flannery AH, et al. Continuous versus intermittent infusion of vancomycin and the risk of acute kidney injury in critically ill adults : A systematic review and meta-analysis. Crit Care Med. 2020 ; 48 : 912-918.
29) Shenoy ES, et al. Evaluation and management of penicillin allergy a review. JAMA. 2019 ; 321 : 188-199.

7 栄養・予防のless is more

P.123 掲載の参考文献
1) Singer P, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 ; 38 : 48-79.
2) McClave SA, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. JPEN J Parenter Enteral Nutr. 2016 ; 40 : 159-211.
3) 小谷穣治, 他. 日本版重症患者の栄養療法ガイドライン. 日集中医誌. 2016 ; 23 : 185-281.
4) 日本集中治療医学会, 他編. 日本版敗血症診療ガイドライン 2020. 真興交易医書出版部, 2021.
5) Ohbe H, et al. Early enteral nutrition in patients undergoing sustained neuromuscular blockade : A propensity-matched analysis using a nationwide inpatient database. Crit Care Med. 2019 ; 47 : 1072-1080.
6) Brierley-Hobson S, et al. Safety and efficacy of volume-based feeding in critically ill, mechanically ventilated adults using the 'Protein & Energy Requirements Fed for Every Critically ill patient every Time' (PERFECT) protocol : A before-and-after study. Crit Care. 2019 ; 23 : 105.
7) Litton E, et al. Early and sustained Lactobacillus plantarum probiotic therapy in critical illness : the randomised, placebo-controlled, restoration of gut microflora in critical illness trial (ROCIT). Intensive Care Med. 2021 ; 47 : 307-315.
8) Besselink MG, et al. Probiotic prophylaxis in predicted severe acute pancreatitis : a randomised, double-blind, placebo-controlled trial. Lancet. 2008 ; 371 : 651-659.
9) American diabetes association. Standards of medical care in diabetes-2014 Diabetes Care. 2014 ; 37 Suppl 1 : S14-80.
10) Qaseem A, et al. Inpatient glycemic control : best practice advice from the Clinical Guidelines Committee of the American College of Physicians. Am J Med Qual. 2014 ; 29 : 95-98.
11) Jacobi J, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012 ; 40 : 3251-3276.
12) Rhodes A, et al. Surviving sepsis campaign : International guidelines for management of sepsis and septic shock : 2016. Intensive Care Med. 2017 ; 43 : 304-377.
13) Firestone RL, et al. Moderate-Intensity insulin therapy is associated with reduced length of stay in critically ill patients with diabetic ketoacidosis and hyperosmolar hyperglycemic state. Crit Care Med. 2019 ; 47 : 700-705.
14) Musso G, et al. Diabetic ketoacidosis with SGLT2 inhibitors. BMJ. 2020 ; 371 : m4147.
15) Ye Z, et al. Gastrointestinal bleeding prophylaxis for critically ill patients : A clinical practice guideline. BMJ. 2020 ; 368 : l6722.
16) Barbar S, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism : the Padua Prediction Score. J Thromb Haemost. 2010 ; 8 : 2450-2457.
17) Decousus H, et al. Factors at admission associated with bleeding risk in medical patients : findings from the IMPROVE investigators. Chest. 2011 ; 139 : 69-79.
18) Arabi YM, et al. Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. N Engl J Med. 2019 ; 380 : 1305-1315.
19) Arabi YM, et al. Surveillance or no surveillance ultrasonography for deep vein thrombosis and outcomes of critically ill patients : a pre-planned sub-study of the PREVENT trial. Intensive Care Med. 2020 ; 46 : 737-746.

8 その他のless is more

P.138 掲載の参考文献
1) Eaton KP, et al. Evidence-based guidelines to eliminate repetitive laboratory testing. JAMA Intern Med. 2017 ; 177 : 1833-1839.
2) Zampieri FG, et al. When will less monitoring and diagnostic testing benefit the patient more?. Intensive Care Med. 2019 ; 45 : 1447-1450.
3) 杉本恵申, 他編. 診療点数早見表 2021年4月増補版. 医学通信社, 2021.
4) Ruza GC, et al. Routine chest radiography in intensive care : impact on decision-making. Rev Bras Ter Intensiva. 2012 ; 24 : 252-257.
5) Oba Y, et al. Abandoning daily routine chest radiography in the intensive care unit : metaanalysis. Radiology. 2010 ; 255 : 386-395.
6) Ricou B, et al. 'Less is more' in modern ICU : Blessings and traps of treatment limitation. Intensive Care Med. 2020 ; 46 : 110-112.
7) Piers RD, et al. Perceptions of appropriateness of care among European and Israeli intensive care unit nurses and physicians. JAMA. 2011 ; 306 : 2694-2703.
8) Breen CM, et al. Conflict associated with decisions to limit life-sustaining treatment in intensive care units. J Gen Intern Med. 2001 ; 16 : 283-289.
9) Merlani P, et al. Burnout in ICU caregivers : a multicenter study of factors associated to centers. Am J Respir Crit Care Med. 2011 ; 184 : 1140-1146.
10) Embriaco N, et al. Burnout syndrome among critical care healthcare workers. Curr Opin Crit Care. 2007 ; 13 : 482-488.
11) Verdon M, et al. Burnout in a surgical ICU team. Intensive Care Med. 2008 ; 34 : 152-156.
12) Herridge MS, et al. The RECOVER program : disability risk groups and 1-year outcome after 7 or more days of mechanical ventilation. Am J Respir Crit Care Med. 2016 ; 194 : 831-844.
13) Myers EA, et al. Post-ICU syndrome : rescuing the undiagnosed. JAAPA. 2016 ; 29 : 34-37.
14) Hill AD, et al. Long-term outcomes and healthcare utilization following critical illness-a population-based study. Crit Care. 2016 ; 20 : 76.
15) Piers RD, et al. Inappropriate care in European ICUs : Confronting views from nurses and junior and senior physicians. Chest. 2014 ; 146 : 267-275.
16) Cameron JI, et al. One-year outcomes in caregivers of critically ill patients. N Engl J Med. 2016 ; 374 : 1831-1841
17) Vink EE, et al. Time-limited trial of intensive care treatment : An overview of current literature. Intensive Care Med. 2018 ; 44 : 1369-1377.
18) Chang DW, et al. Evaluation of time-limited trials among critically ill patients with advanced medical illnesses and reduction of nonbeneficial ICU treatments. JAMA Intern Med. 2021 ; 181 : 786-794.
19) Ma J, et al. Early palliative care consultation in the medical ICU : A cluster randomized crossover trial. Crit Care Med. 2019 ; 47 : 1707-1715.
20) Rosa RG, et al. Effect of flexible family visitation on delirium among patients in the intensive care unit the ICU visits randomized clinical trial. JAMA. 2019 ; 322 : 216-228.
21) 日本集中治療医学会. Do Not Attempt Resuscitation (DNAR) 指示のあり方についての勧告. 日集中医誌. 2017 ; 24 : 208-209.

最近チェックした商品履歴

Loading...