医学と薬学 79/1 2022年1月号

出版社: 自然科学社
発行日: 2021-12-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: アルツハイマー病 update
電子書籍版: 2021-12-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,540 円(税込)

目次

  • 特集 アルツハイマー病 update

    序文
    アルツハイマー病の臨床経過
    アルツハイマー病の体液バイオマーカー
    画像バイオマーカー
    抗体医薬開発の現況
    根本治療薬開発における課題
    アルツハイマー病発症の危険因子とそのリスク低減
    共生社会を支える基盤整備
    若年発症における課題と対応

    Diagnosis
     全自動化学発光酵素免疫測定システムを用いたルミパルス®β-アミロイド1-40および
      ルミパルス®β-アミロイド1-42試薬の基礎性能評価
     全自動化学発光酵素免疫測定システムを用いたルミパルス®β-アミロイド1-40,
      ルミパルス®β-アミロイド1-42試薬の臨床有用性に関して
     全自動化学発光酵素免疫測定システムを用いた脳脊髄液中総タウ蛋白,
      181位リン酸化タウ蛋白測定試薬の基礎性能評価
     全自動化学発光酵素免疫測定システムを用いた総タウ蛋白,リン酸化タウ蛋白測定試薬の性能比較
     SARS-CoV-2抗原定量検査試薬の性能評価
      ―ウイルスRNA定量値およびウイルス分離結果との関係性―
     インフルエンザウイルス抗原迅速検出試薬「ラピッドテスタFLU・NEXT」の臨床評価

    臨床試験
     ジルムロ®配合OD錠HD「日医工」の健康成人における生物学的同等性試験

    研究
     緑内障治療薬による有害事象に関する患者意識調査

    総説
     川崎病原因究明の実際

    Health Care
     医薬部外品消毒モイストクリーン
     「テルビーナ」の白癬菌殺菌効力試験

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 アルツハイマー病 update】

P.15 掲載の参考文献
1) McKhann GM, Knopman DS, Chertkow H, et al : The diagnosis of dementia due to Alzheimer's disease : Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7 : 263-269, 2011.
2) Albert MS, DeKosky ST, Dickson D, et al : The diagnosis of mild cognitive impairment due to Alzheimer's disease : recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease Alzheimers Dement 7 : 270-279, 2011.
3) Sperling RA, Aisen PS, Becket LA, et al : Toward defining the preclinical stages of Alzheimer's disease : recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7 : 280-292, 2011.
4) Jack CR Jr., Bennett DA, Blennow K, et al : NIA-AA Research Framework : Toward a biological definition of Alzheimer's disease Alzheimers Dement 14 : 535-562, 2018.
5) Dubois B, Feldman HH, Jacova C, et al : Advancing research diagnostic criteria for Alzheimer's disease : the IWG-2 criteria. Lancet Neurol 13 : 614-629, 2014.
6) Sakae N, Josephs KA, Litvan I, et al : Clinicopathologic subtype of Alzheimer's disease presenting as corticobasal syndrome. Alzheimers Dement 15 : 1218-1228, 2019.
7) Han L, Cole M, Bellavance F, et al : Tracking cognitive decline in Alzheimer's disease using the mini-mental state examination : A meta-analysis. Int Psychogeriatr 12 : 231-247, 2000.
8) Schmidt C, Wolff M, Weitz M, et al : Rapidly progressive Alzheimer disease. Arch Neurol 68 : 1124-1130, 2011.
9) Bernick C, Cummings J, Raman R, et al : Age and rate of cognitive decline in Alzheimer disease : Implications for clinical trials. Arch Neurol 69 : 901-905, 2012.
10) Peters ME, Schwartz S, Han D, et al : Neuropsychiatric symptoms as predictors of progression to severe Alzheimer's dementia and death : The Cache County Dementia Progression Study. Am J Psychiatry 172 : 460-465, 2015.
11) Whitwell JL, Dickson DW, Murray ME et al : Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease : a case-control study Lancet Neurol 11 : 868-877, 2012.
12) Murray ME, Graff-Radford NR, Ross OA, et al : Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics : a retrospective study. Lancet Neurol 10 : 785-796, 2011.
13) Wada-Isoe K, Kikuchi T, Umeda-Kameyama Y, et al : Validation of the Neuropsychiatric Inventory Based on Item Response Theory. J Alzheimers Dis Rep 4 : 151-159, 2020.
14) Petersen RC, Smith GE, Waring SC, et al : Mild cognitive impairment : clinical characterization and outcome. Arch Neurol 56 : 303-308, 1999.
15) 日本精神神経学会 日本語版用語監修, 高橋三郎, 大野裕監訳, DSM-5 精神疾患の診断・統計マニュアル, 東京, 医学書院, 2014.
16) 日本神経学会監, 「認知症疾患治療ガイドライン」作成委員会編 : 認知症疾患治療ガイドライン 2017, 医学書院, 東京, 2017.
17) van Maurik IS, Vos SJ, Bos I et al : Biomarker-based prognosis for people with mild cognitive impairment (ABIDE) : a modelling study Lancet Neurol 18 : 1034-1044, 2019
19) Morris JC, M Storandt, D W McKeel Jr, et al : Cerebral amyloid deposition and diffuse plaques in "normal" aging : Evidence for presymptomatic and very mild Alzheimer's disease. Neurology 46 : 707-719, 1996.
20) Rowe CC, Ellis KA, Rimajova M, et al : Bourgeat PAmyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31 : 1275-1283, 2010.
21) Bateman RJ, Xiong C, Benzinger TL, et al : Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367 : 795-804, 2012.
P.22 掲載の参考文献
1) Beach TG, Monsell SE, Phillips LE, et al : Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol 71 (4) : 266-273, 2012.
2) Kapasi A, DeCarli C, Schneider JA : Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134 (2) : 171-186, 2017.
3) Jack CR, Jr., Bennett DA, Blennow K, et al : NIA-AA Research Framework : Toward a biological definition of Alzheimer's disease. Alzheimers Dement 14 (4) : 535-562, 2018.
4) Soldan A, Pettigrew C, Fagan AM, et al : ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes. Neurology 92 (14) : e1567-e1579, 2019.
5) Olsson B, Lautner R, A ndreasson U, et al : CSF and blood biomarkers for the diagnosis of Alzheimer's disease : a systematic review and meta-analysis. Lancet Neurol 15 (7) : 673-684, 2016.
6) Toledo JB, Brettschneider J, Grossman M, et al : CSF biomarkers cutoffs : the importance of coincident neuropathological diseases. Acta Neuropathol 124 (1) : 23-35, 2012.
7) Tapiola T, Alafuzoff I, Herukka SK, et al : Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66 (3) : 382-389, 2009.
8) Blennow K, Mattsson N, Scholl M, et al : Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol Sci 36 (5) : 297-309, 2015.
9) Tijms BM, Vermunt L, Zwan MD, et al : Pre-amyloid stage of Alzheimer's disease in cognitively normal individuals. Ann Clin Transl Neurol 5 (9) : 1037-1047, 2018.
10) Reimand J, Collij L, Scheltens P, et al : Association of amyloid-beta CSF/PET discordance and tau load 5 years later. Neurology 95 (19) : e2648-e2657, 2020.
11) 春日健作 : 【認知症のバイオマーカー】アルツハイマー病病理とバイオマーカー. Geriatric Medicine 59 (2) : 135-142, 2021.
12) Cousins KAQ, Irwin DJ, Wolk DA, et al : ATN status in amnestic and non-amnestic Alzheimer's disease and frontotemporal lobar degeneration. Brain 143 (7) : 2295-2311, 2020.
13) Meyer PF, Pichet Binette A, Gonneaud J, et al : Characterization of Alzheimer Disease Biomarker Discrepancies Using Cerebrospinal Fluid Phosphorylated Tau and AV1451 Positron Emission Tomography. JAMA Neurol 77 (4) : 508-516, 2020.
14) Mattsson-Carlgren N, Andersson E, Janelidze S, et al : Abeta deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer's disease. Sci Adv 6 (16) : eaaz2387, 2020.
15) Barthelemy NR, Li Y, Joseph-Mathurin N, et al : A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer's disease. Nat Med 26 (3) : 398-407, 2020.
16) Chen Z, Mengel D, Keshavan A, et al : Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer's disease. Alzheimers Dement 15 (3) : 487-496, 2019.
17) Sato C, Barthelemy NR, Mawuenyega KG, et al : Tau Kinetics in Neurons and the Human Cen tral Nervous System. Neuron 97 (6) : 1284-1298 e1287, 2018.
18) Zetterberg H, Bendlin BB : Biomarkers for Alzheimer's disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry 26 (1) : 296-308, 2021.
19) Bridel C, van Wieringen WN, Zetterberg H, et al : Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology : A Systematic Review and Meta-analysis. JAMA Neurol 76 (9) : 1035-1048, 2019.
20) Olsson B, Portelius E, Cullen NC, et al : Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol 76 (3) : 318-325, 2019.
21) Kern S, Syrjanen JA, Blennow K, et al : Association of Cerebrospinal Fluid Neurofilament Light Protein With Risk of Mild Cognitive Impairment Among Individuals Without Cognitive Impairment. JAMA Neurol 76 (2) : 187-193, 2019.
22) Zetterberg H, Skillback T, Mattsson N, et al : Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression. JAMA Neurol 73 (1) : 60-67, 2016.
23) Mattsson N, Insel PS, Palmqvist S, et al : Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer's disease. EMBO Mol Med 8 (10) : 1184-1196, 2016.
24) Tijms BM, Teunissen CE : Concatenating plasma p-tau to Alzheimer's disease. Brain 144 (1) : 14-17, 2021.
25) Karikari TK, Pascoal TA, Ashton NJ, et al : Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease : a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 19 (5) : 422-433, 2020.
26) Lantero Rodriguez J, Karikari TK, Suarez-Calvet M, et al : Plasma p-tau 181 accurately predicts Alzheimer's disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol 140 (3) : 267-278, 2020.
27) Janelidze S, Berron D, Smith R, et al : Associations of Plasma Phospho-Tau 217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease. JAMA Neurol 78 (2) : 149-156, 2021.
28) Palmqvist S, Janelidze S, Quiroz YT, et al : Discriminative Accuracy of Plasma Phospho-tau 217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 324 (8) : 772-781, 2020.
29) Mattsson-Carlgren N, Janelidze S, Palmqvist S, et al : Longitudinal plasma p-tau 217 is increased in early stages of Alzheimer's disease. Brain 143 (11) : 3234-3241, 2020.
30) Mattsson-Carlgren N, Janelidze S, Bateman RJ, et al : Soluble P-tau 217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol Med 13 (6) : e14022, 2021.
31) Ashton NJ, Janelidze S, Al Khleifat A, et al : A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun 12 (1) : 3400, 2021.
32) Preische O, Schultz SA, Apel A, et al : Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat Med 25 (2) : 277-283, 2019.
33) Disanto G, Barro C, Benkert P, et al : Serum Neurofilament light : A biomarker of neuronal damage in multiple sclerosis. Ann Neurol 81 (6) : 857-870, 2017.
34) Mattsson N, Andreasson U, Persson S, et al : CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimers Dement 9 (3) : 251-261, 2013.
35) Hansson O, Seibyl J, Stomrud E, et al : CSF biomarkers of Alzheimer's disease concord with amyloid-beta PET and predict clinical progression : A study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement 14 (11) : 1470-1481, 2018.
36) Keshavan A, Wellington H, Chen Z, et al : Concordance of CSF measures of Alzheimer's pathology with amyloid PET status in a preclinical cohort. Alzheimers Dement (Amst) 12 (1) : e12097, 2020.
37) Hansson O, Batrla R, Brix B, et al : The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid beta and tau. Alzheimers Dement, 2021.
38) Robinson JL, Richardson H, Xie SX, et al : The development and convergence of co-pathologies in Alzheimer's disease. Brain 144 (3) : 953-962, 2021.
39) Yu L, Boyle PA, Dawe RJ, et al : Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology 94 (2) : e142-e152, 2020.
P.32 掲載の参考文献
1) De Leon MJ, George AE, Stylopoulos LA, et al : Early marker for Alzheimer's disease : the atrophic hippocampus. Lance 2 (8664) : 672-673, 1989.
2) Seab JP, Jagust WJ, Wong STS, et al : Quantitative NMR measurements of hippocampal atrophy in Alzheimer's disease. Magn Reson Med 8 : 200-208, 1988.
3) Press GA, Amaral DG, Squire LR : Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature 341 : 54-57, 1989.
4) Jack CR Jr, Twomey CK, Zinsmeister AR, et al : Anterior temporal lobes and hippocampal formations : normative volumetric measurements from MR images in young adults. Radiology 172 : 549-554, 1989.
5) Barclay LL, Linden C, Murtagh R : Medial temporal atrophy as a magnetic resonance imaging marker for Alzheimer's disease. J Neuroimaging 2 : 131-135, 1992.
6) Kesslak JP, Nalcioglu O, Cotman CW : Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer's disease. Neurology 41 : 51-54, 1991.
7) Scheltens P, Leys D, Barkhof F, et al : Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing : diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55 (10) : 967-972, 1992.
8) Gupta Y, Lee KH, Choi KY, et al : Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. PLoS One 14 (10) : e0222446, 2019.
9) Querbes O, Aubry F, Pariente J, et al : Early diagnosis of Alzheimer's disease using cortical thickness : impact of cognitive reserve. Brain 132 (Pt 8) : 2036-2047, 2009.
10) Matsuda H, Mizumura S, Nemoto K, et al : Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer Disease. AJNR Am J Neuroradiol 33 (6) : 1109-1114, 2012.
11) Sone D, Imabayashi E, Maikusa N, et al : Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) on 3-tesla Normal Database : Diagnostic Accuracy in Two Independent Cohorts with Early Alzheimer's Disease. Aging Dis 9 (4) : 755-760, 2018.
12) Taswell C, Villemagne VL, Yates P, et al : 18FFDG PET Improves Diagnosis in Patients with Focal-Onset Dementias. J Nucl Med 56 (10) : 1547-1553, 2015
13) Minoshima S, Frey KA, Koeppe RA, et al : A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36 (7) : 1238-1248, 1995.
14) Singleton EH, Pijnenburg YAL, Sudre CH, et al : Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. Alzheimers Res Ther 12 (1) : 148, 2020.
15) Lim SM, Katsifis A, Villemagne VL, et al : The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 50 (10) : 1638-1645, 2009.
16) Sato T, Hanyu H, Hirao K, et al : Deep gray matter hyperperfusion with occipital hypoperfusion in dementia with Lewy bodies. Eur J Neurol 14 (11) : 1299-1301, 2007.
17) Katako A, Shelton P, Goertzen AL, et al : Machine learning identified an Alzheimer's disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson's disease dementia. Sci Rep 8 (1) : 13236, 2018.
18) Iizuka T, Fukasawa M, Kameyama M : Deeplearning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies. Sci Rep 9 (1) : 8944, 2019.
19) Morinaga A, Ono K, Ikeda T, et al : A comparison of the diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and cerebrospinal fluid biomarkers for detecting Alzheimer's disease in a memory clinic. Dement Geriatr Cogn Disord 30 (4) : 285-292, 2010.
20) Ferreira D, Verhagen C, Hernandez-Cabrera JA, et al : Distinct subtypes of Alzheimer's disease based on patterns of brain atrophy : longitudinal trajectories and clinical applications. Sci Rep 7 : 46263, 2017.
21) Risacher SL, Anderson WH, Charil A, et al : Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology 89 (21) : 2176-2186, 2017.
22) Rahimi J, Kovacs GG : Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther 6 (9) : 82, 2014.
23) Mori K, Iwasaki Y, Ito M, et al : [Decreased myocardial uptake of meta-iodobenzylguanidine in an autopsy-confirmed case of corticobasal degeneration with Lewy bodies restricted to the sympathetic ganglia]. Rinsho Shinkeigaku 52 (6) : 405-410, 2012.
24) Scheltens P, Leys D, Barkhof F, et al : Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing : diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55 (10) : 967-972, 1992.
25) Shimada H, Shinotoh H, Hirano S, et al : β-Amyloid in Lewy body disease is related to Alzheimer's disease-like atrophy. Mov Disord 28 (2) : 169-175, 2013.
26) Kitagaki H, Mori E, Yamaji S, et al. Frontotemporal dementia and Alzheimer disease : evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208 (2) : 431-439, 1998.
27) Sakurai K, Tokumaru AM, Ikeda T, et al : Characteristic asymmetric limbic and anterior temporal atrophy in demented patients with pathologically confirmed argyrophilic grain disease. Neuroradiology 61 (11) : 1239-1249, 2019
28) Botha H, Mantyh WG, Murray ME, et al. FDGPET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 141 (4) : 1201-1217, 2018.
29) Ikeuchi T, Imamura T, Kawase Y, et al : Evidence for a Common Founder and Clinical Characteristics of Japanese Families with the MAPT R406W Mutation. Dement Geriatr Cogn Dis Extra 1 (1) : 267-275, 2011.
30) Klunk WE, Engler H, Nordberg A, et al : Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55 (3) : 306-319, 2004.
31) Clark CM, Schneider JA, Mintun MA, et al : Phase III trial results for the amyoid PET imaging agent Florbetapir F 18 (18F-AV-45) : imaging to histopathologic correlations in an end-of-life human subject study. Alzheimers Dement 6 (4) : 71, 2010.
32) Curtis C, Gamez JE, Singh U, et al : Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72 (3) : 287-294, 2015.
33) Sabri O, Sabbagh MN, Seibyl J, et al : Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease : phase 3 study. Alzheimers Dement 11 (8) : 964-974, 2015.
34) PET核医学委員会PET撮像法標準化専門委員会 : アミロイドイメージング剤を用いた脳PET撮像の標準的プロトコール公開版 第5版. http://jsnm.org/archives/5792/
35) ガイドライン作成ワーキンググループ : アミロイドPETイメージング剤の適正使用ガイドライン (第2版). http://jsnm.org/archives/655/
36) Iwatsubo T, Iwata A, Suzuki K, et al : Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies : Harmonization for international trials. Alzheimers Dement 14 (8) : 1077-1087, 2018.
37) Landau SM, Horng A, Fero A, et al, and For the Alzheimer's Disease Neuroimaging Initiative : Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86 (15) : 1377-1385, 2016.
38) Iwatsubo T, Iwata A, Suzuki K, et al. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies : Harmonization for international trials. Alzheimers Dement 14 (8) : 1077-1087, 2018.
39) Yamada M : [Senile Dementia of the Neurofibrillary Tangle Type (SD-NFT)]. Brain Nerve 70 (5) : 533-541, 2018.
40) Curtis C, Gamez JE, Singh U, et al : Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72 (3) : 287-294, 2015.
41) Crary JF, Trojanowski JQ, Schneider JA, et al : Primary age-related tauopathy (PART) : a common pathology associated with human aging. Acta Neuropathol 128 (6) : 755-766, 2014.
42) Chien DT, Bahri S, Szardenings AK, et al : Early clinical PET imaging results with the novel PHFtau radioligand [F-18]-T807. J Alzheimers Dis. 34 (2) : 457-468, 2013.
43) Maruyama M, Shimada H, Suhara T, et al : Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79 (6) : 1094-1108, 2013.
44) Okamura N, Furumoto S, Harada R, et al : Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54 (8) : 1420-1427, 2013.
45) Aguero C, Dhaynaut M, Normandin MD, et al : Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun 7 (1) : 37, 2019.
46) Wong DF, Comley RA, Kuwabara H, et al : Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59 (12) : 1869-1876, 2018.
47) Sanabria Bohorquez S, Marik J, Ogasawara A, et al : [18F] GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 46 (10) : 2077-2089, 2019.
48) Kroth H, Oden F, Molette J, et al : Discovery and preclinical characterization of [ (18) F] PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging 46 (10) : 2178-2189, 2019.
49) Schmidt ME, Janssens L, Moechars D, et al : Clinical evaluation of [ (18) F] JNJ-64326067, a novel candidate PET tracer for the detection of tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 47 (13) : 3176-3185, 2020.
50) Tagai K, Ono M, Kubota M, et al : High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies. Neuron 109 (1) : 42-58.e8, 2021.
51) Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART) : a common pathology associated with human aging. Acta Neuropathol 128 (6) : 755-766, 2014.
52) Johnson KA, Schultz A, Betensky RA, et al : Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79 (1) : 110-119, 2016.
53) Jack CR Jr, Wiste HJ, Schwarz CG, et al : Longitudinal tau PET in ageing and Alzheimer's disease. Brain 141 (5) : 1517-1528, 2018.
54) Shimada H, Kitamura S, Shinotoh H, et al : Association between Abeta and tau accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains : A [11C] PBB3-PET study. Alzheimers Dement (Amst) 6 : 11-20, 2016.
55) Sintini I, Graff-Radford J, Senjem ML, et al : Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes. Brain 143 (7) : 2281-2294, 2020.
56) Ossenkoppele R, Lyoo CH, Sudre CH, et al : Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer's disease. Alzheimers Dement 16 (2) : 335-344, 2020.
57) Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nat Med 27 (5) : 871-881, 2021.
58) Mintun MA, Lo AC, Duggan Evans C, et al : Donanemab in Early Alzheimer's Disease. N Engl J Med 384 (18) : 1691-1704, 2021.
P.39 掲載の参考文献
1) Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease : progress and problems on the road to therapeutics. Science. 297 : 353-356, 2002.
2) Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400 : 173-177, 1999.
4) Holmes C, Boche D, Wilkinson D, et al : Long-term effects of Abeta 42 immunisation in Alzheimer's disease : follow-up of a randomised, placebo-controlled phase I trial. Lancet 372 : 216-23, 2008.
6) Rinne JO, Brooks DJ, Rossor MN, et al : 11CPiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab : a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9 : 363-372, 2010.
7) Farlow M, Arnold SE, van Dyck CH, et al : Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimers Dement 8 : 261-271, 2012.
8) Doody RS, Thomas RG, Farlow M, et al : Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med 370 : 311-321, 2014.
9) Sevigny J, Chiao P, Bussiere T, et al : The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537 : 50-56, 2016.
10) Aducanumab Phase 3 Topline Results at CTAD (replay). https://investors.biogen.com/static-files/ddd45672-9c7e-4c99-8a06-3b557697c06f
11) Early Alzheimer's Disease : Developing Drugs for Treatment Guidance for Industry. https://www.fda.gov/media/110903/download
12) Swanson CJ, Zhang Y, Dhadda S, et al : A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 13 : 80, 2021.
13) Mintun MA, Lo AC, Duggan Evans C, et al : Donanemab in Early Alzheimer's Disease. N Engl J Med 384 : 1691-1704, 2021.
P.48 掲載の参考文献
1) U. S. Food and Drug Administration : FDA NEWS RELEASE, FDA Grants Accelerated Approval for Alzheimer's Drug. https://www.fda.gov/newsevents/press-announcements/fda-grantsaccelerated-approval-alzheimers-drug
2) U. S. Food and Drug Administration : Fact Sheet : Breakthrough Therapies. https://www.fda.gov/regulatory-information/food-and-drugadministration-safety-and-innovation-actfdasia/fact-sheet-breakthrough-therapies
3) Alzheimer's Association : Facts and Figures. https://www.alz.org/alzheimers-dementia/facts-figures
4) Alzheimer's Disease International : FDA approves Biogen's aducanumab. https://www.alzint.org/news/fda-approves-biogens-aducanumab/
5) Scott TJ, O'Connor AC, Link AN, et al : Economic analysis of opportunities to accelerate Alzheimer's disease research and development. Ann N Y Acad Sci 1313 (1) : 17-34, 2014.
6) Alzheimer's Association : Facts and Figures. https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf
7) Alzforum : In Year Three, GAP Trial Network Is Starting to Hum. https://www.alzforum.org/news/conference-coverage/year-three-gaptrial-network-starting-hum
8) Salloway S, Farlow M, McDade E, et al, Dominantly Inherited Alzheimer Network-Trials Unit : A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. Nat Med 27 (7) : 1187-1196, 2021.
9) Aisen PS, Sperling RA, Cummings J, et al : The Trial-Ready Cohort for Preclinical/Prodromal Alzheimer's Disease (TRC-PAD) Project : An Overview. J Prev Alzheimers Dis 7 (4) : 208-212, 2020.
10) EPAD : Global efforts and cooperation to advance research in Alzheimer's disease and prevent dementia. Dementia in Europe magazine, issue 35, February 2021.
11) Sato K, Ihara R, Suzuki K, et al : Predicting amyloid risk by machine learning algorithms based on the A4 screen data : Application to the Japanese Trial-Ready Cohort study. Alzheimers Dement (NY) 7 (1) : e12135, 2021.
P.55 掲載の参考文献
1) 坂田智子, 二宮利治, 清原裕 : 高血圧と認知症予防. 神経治療 32 (6) : 905-910, 2015.
2) 令和元年度 厚生労働省老人保健健康増進等事業, 海外認知症予防ガイドラインの整理に関する調査研究事業 WHOガイドライン「認知機能低下及び認知症のリスク低減」邦訳検討委員会.
3) Ninomiya T : Diabetes mellitus and dementia. Curr Diab Rep 14 (5) : 487, 2014.
4) Chu CS, Tseng PT, Stubbs B, et al : Use of statins and the risk of dementia and mild cognitive impairment : A systematic review and meta-analysis. Sci Rep 8 (1) : 5804, 2018
5) Ohara T, Ninomiya T, Hata J, et al : Midlife and late-life smoking and risk of dementia in the community : the Hisayama Study. J Am Geriatr Soc 63 (11) : 2332-2339, 2015
6) Anstey KJ, Mack HA, Cherbuin N : Alcohol consumption as a risk factor for dementia and cognitive decline : meta-analysis of prospective studies. Am J Geriatr Psychiatry 17 (7) : 542-555, 2009.
7) Xu W, Wang H, Wan Y, et al : Alcohol consumption and dementia risk : a dose-response meta-analysis of prospective studies. Eur J Epidemiol 32 (1) : 31-42, 2017
9) Ozawa M, Ninomiya T, Ohara T, et al : Dietary patterns and risk of dementia in an elderly Japanese population : the Hisayama Study. Am J Clin Nutr 97 (5) : 1076-1082, 2013.
10) Ngandu T, Lehtisalo J, Solomon A, et al : A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER) : a randomised controlled trial. Lancet 385 (9984) : 2255-2263, 2015.
11) Andrieu S, Guyonnet S, Coley N, et al : Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT) : a randomised, placebo-controlled trial. Lancet Neurol 16 (5) : 377-389, 2017.
12) Moll van Charante EP, Richard E, Eurelings LS, et al : Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA) : a cluster-randomised controlled trial. Lancet 388 (10046) : 797-805, 2016.
13) Kivipelto M, Mangialasche F, Snyder HM, et al : World-Wide FINGERS Network : A global approach to risk reduction and prevention of dementia. Alzheimers Dement 16 (7) : 1078-1094, 2020.
P.61 掲載の参考文献
1) 朝田隆 : 都市部における認知症有病率と認知症の生活機能障害への対応, 厚生労働科学研究費補助金疾病・障害対策研究分野 認知症対策総合研究 総括・分担研究報告書.
2) 二宮利治 : 日本における認知症の高齢者人口の将来推計に関する研究, 厚生労働科学研究費補助金 行政政策研究分野厚生労働科学特別研究 総括・分担研究報告書.
P.68 掲載の参考文献
1) Awata S, Edahiro A, Arai T, et al : Prevalence and subtype distribution of early-onset dementia in Japan. Psychogeriatrics 20 (6) : 817-823, 2020.
2) 日本医療研究開発機構 (AMED) 委託研究開発事業 : 若年性認知症の有病率・生活実態把握と多元的データ共有システム2017-2019年度総括・分担報告書 (研究開発責任者 : 粟田主一), 2021年3月31日.
3) 厚生労働省 : 若年性認知症の実態などに関する調査結果の概要及び厚生労働省の若年性認知症対策について. http://www.mhlw.go.jp/houdow/2009/03/h0319-2.html
4) 厚生労働省 : 若年性認知症実態調査結果概要. https://www.mhlw.go.jp/content/12300000/000706870.pdf
5) Edahiro A, Miyamae F, Taga T, et al : Incidence and distribution of subtypes of early-onset dementia in Japan : A nationwide analysis based on annual performance reports of the Medical Centers for Dementia. Geriatr Gerontol Int 20 (11) : 1050-1055, 2020.
6) 粟田主一 : わが国における若年性認知症の有病率と生活実態調査. 精神医学 62 (11) : 1429-1444, 2020.
7) 宮永和夫 : 若年性認知症の社会的課題. 精神医学 62 (11) : 1445-1454, 2020.
8) Hendriks S, Peetoom K, Bakker C, et al : Global Prevalence of Young-Onset Dementia A Systematic Review and Meta-analysis. JAMA Neurol : e212161, 2021. [Online ahead of print]
9) 中西亜紀 : 若年性認知症の現状. 内科 120 (2) : 203-208, 2017.
10) Mendez MF : Early-onet Alzheimer Disease ant Its Variants. Continuum (Minneap Minn) 25 (1) : 34-51, 2019.
11) 數井裕光 : 神経画像による鑑別診断. 日本精神神経学会認知症診療医テキスト, pp.40-50, 新興医学出版社, 東京, 2019.
12) 池内健, 荒木亜希 : 遺伝が関与する若年性認知症. 精神医学 62 (11) : 1481-1491, 2020.
13) 日本神経学会監,「認知症疾患診療ガイドライン」作成委員会編 : 認知症疾患診療ガイドライン 2017, pp.50-51, 医学書院, 東京, 2017.
14) Tang M, Ryman DC, McDade E, et al, and Dominantly Inherited Alzheimer Network : Neurological Manifestations of Autosomal Dominant Alzheimer's Disease from the DIAN cohort and a meta-analysis. Lancet Neurol 15 (13) : 1317-1325, 2016.
15) Shimada H, Shoji M, Ikeuchi T, et al : DIAN/DIAN-J/DIAN-TU. Brain Nerve 69 (7) : 701-709, 2017.
16) 杉原久仁子 : 若年性認知症の人の社会参加, 就労支援の今とこれから. 月刊福祉 2020年4月号 : 26-30, 2020
17) 独立行政法人高齢・障害・求職者雇用支援機構 障害者職業総合センター : 若年性認知症者の就労継続に関する研究 II-事業所における対応の現状と支援のあり方の検討-, 調査研究報告書 No.111, 2012.
18) 社会福祉法人仁至会 認知症介護研究・研修大府センター編 : 若年性認知症ハンドブック 若年性認知症と診断された本人・家族が知っておきたいこと (改訂4版), 2020. https://y-ninchisyotel.net/wpcontent/uploads/2020_jyakubook.pdf
19) 中西亜紀監, 特定非営利活動法人認知症の人とみんなのサポートセンター編 : 本人・家族のための 若年性認知症支援ハンドブック, 2019 (改訂). https://www.pref.osaka.lg.jp/attach/24893/00227472/handbook2017.pdf
20) 厚生労働省 : 認知症施策の動向 (チームオレンジについて), 令和2年11月13日. https://kouseikyoku.mhlw.go.jp/shikoku/chiiki_houkatsu/000166520.pdf

【Diagnosis】

P.79 掲載の参考文献
1) 朝田隆 : 都市部における認知症有病率と認知症の生活機能障害への対応. 認知症対策総合研究事業 総合研究報告書 2013.
2) Jack CR Jr, Knopman DS, Jagustet WJ, et al : Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9 : 119-128, 2010.
3) 認知症疾患診療ガイドライン 2017 日本神経学会監, 「認知症疾患診療ガイドライン」作成委員会編, 医学書院, 東京, 2017.
4) Janelidze S, Zetterberg H, Mattsson N, et al : CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios : better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol 3 : 154-165, 2016.
5) Lewczuk P, Matzen A, Blennow K, et al : Cerebrospinal Fluid Aβ42/40 Corresponds Better than Aβ42 to Amyloid PET in Alzheimer's Disease. J Alzheimers Dis 55 : 813-822, 2017.
6) Schindler SE, Gray JD, Gordon BA, et al : Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement 14 : 1460-1469, 2018.
7) 池内健 : 認知症に関する脳脊髄液・血液バイオマーカーの適正使用指針 日本認知症学会, 日本老年精神医学会, 日本神経学会 監修, 2021.
9) Lauridsen C, Sando SB, Shabnam A, et al : Cerebrospinal Fluid Levels of Amyloid Beta 1-43 in Patients with Amnestic Mild Cognitive Impairment or Early Alzheimer's disease : A 2-Year Follow-Up Study. Front Aging Neurosci 8 : 30, 2016.
10) Mattsson N, Andreasson U, Persson S, et al : CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimers Dement 9 : 251-261, 2013.
11) Hansson O, Batrla R, Brix B, et al : The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau. Alzheimers Dement 17 : 1575-1582, 2021.
P.88 掲載の参考文献
1) 認知症の発症遅延策の有効性と普及を加速するために必要なルール形成. 提言レポート 2018.
2) Gauthier S, Rosa-Neto P, Morais JA et, al : World Alzheimer Report 2021. Alzheimer's Disease International 2021.
3) 朝田隆 : まだ間に合う! 今すぐ始める認知症予防. 講談社, 東京, 2014.
4) Petersen RC, Smith GE, Waring SC, et al : Mild cognitive impairment : clinical characterization and outcome. Arch Neurol 56 : 303-308, 1999.
5) Petersen RC : Mild cognitive impairment as a diagnostic entity. J Intern Med 256 : 183-194, 2004.
6) Roberts R, Knopman DS : Classification and epidemiology of MCI. Clin Geriatr Med 29 : 753-772, 2013.
7) 認知症疾患診療ガイドライン 2017 日本神経学会監, 「認知症疾患診療ガイドライン」作成委員会編, 医学書院, 東京, 2017.
8) Li J, Wang YJ, Zhang M, et al : Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76 : 1485-1491, 2011.
9) Iwatsubo T, Iwata A, Suzuki K, et al : Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies : Harmonization for international trials. Alzheimers Dement 14 : 1077-1087, 2018.
10) 朝田隆 : 都市部における認知症有病率と認知症の生活機能障害への対応. 認知症対策総合研究事業総合研究報告書 2013.
11) Jack CR Jr, Knopman DS, Jagustet WJ, et al : Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9 : 119-128, 2010.
12) Albert MS, DeKosky ST, Dickson D, et al : The diagnosis of mild cognitive impairment due to Alzheimer's disease : recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7 : 270-279, 2011.
13) Dubois B, Feldman HH, Claudia Jacova C, et al : Advancing research diagnostic criteria for Alzheimer's disease : the IWG-2 criteria. Lancet Neurol 13 : 614-629, 2014.
14) Jack CR Jr, Bennett DA, Blennow K, et al : NIA-AA Research Framework : Toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018 14 : 535-562, 2018.
15) Dubois B, Villain N, Frisoni GB, et al : Clinical diagnosis of Alzheimer's disease : recommendations of the International Working Group. Lancet Neurol 20 : 484-496, 2021.
16) Mattsson N, Andreasson U, Persson S, et al : CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimers Dement 9 : 251-261, 2013.
17) Hansson O, Batrla R, Brix B, et al : The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloidβand tau. Alzheimers Dement 17 : 1575-1582, 2021.
18) Janelidze S, Zetterberg H, Mattsson N, et al : CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios : better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol 3 : 154-165, 2016.
19) Lewczuk P, Matzen A, Blennow K, et al : Cerebrospinal Fluid Aβ42/40 Corresponds Better than Aβ42 to Amyloid PET in Alzheimer's Disease. J Alzheimers Dis 55 : 813-822, 2017.
20) Schindler SE, Gray JD, Gordon BA, et al : Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement 14 : 1460-1469, 2018.
21) Pouclet-Courtemanche H, Nguyen TB, Skrobala E, et al : Frontotemporal dementia is the leading cause of "true" A-/T+ profiles defined with Aβ 42/40 ratio. Alzheimers Dement 11 : 161-169, 2019.
22) Palmqvist S, Mattsson N, Hansson O : Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain 139 : 1226-1236, 2016.
23) Reimand J, Collij L, Scheltens P, et al : Association of amyloid-β CSF/PET discordance and tau load 5 years later. Neurology 95 : e2648-e2657, 2020.
24) Johnson KA, Gregas M, Becker JA, et al : Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 62 : 229-234, 2007.
25) Gomperts SN, Rentz DM, Moran E, et al : Imaging amyloid deposition in Lewy body diseases. Neurology 71 : 903-910, 2008.
26) Leuzy A, Chiotis K, Hasselbalch SG, et al : Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study. Brain 139 : 2540-2553, 2016.
27) Alcolea D, Pegueroles J, Munoz L, et al : Agreement of amyloid PET and CSF biomarkers for Alzheimer's disease on Lumipulse. Ann Clin Transl Neurol 6 : 1815-1824, 2019.
28) Morris JC, Schindler SE, McCue LM, et al : Assessment of Racial Disparities in Biomarkers for Alzheimer Disease. JAMA Neuro 76 : 264-273, 2019.
P.97 掲載の参考文献
1) Trojanowski JQ, Schuck T, Schmidt ML, et al : Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37 : 209-215, 1989.
2) Ballatore C, Lee VM, Trojanowski JQ : Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8 : 663-672, 2007.
3) Molinuevo JL, Ayton S, Batrla R,et al : Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 136 : 821-853, 2018.
4) Morris M, Maeda S, Vossel K, et al : The Many Faces of Tau. Neuron 70 : 410-426, 2011.
5) Lee VM, Goedert M, Trojanowski JQ : Neurodegenerative tauopathies. Annu Rev Neurosci 24 : 1121-1159, 2001.
6) 認知症疾患診療ガイドライン 2017 日本神経学会監, 「認知症疾患診療ガイドライン」作成委員会編, 医学書院, 東京, 2017.
7) 池内健 : 認知症に関する脳脊髄液・血液バイオマーカーの適正使用指針 日本認知症学会, 日本老年精神医学会, 日本神経学会 監修, 2021.
8) Mattsson N, Andreasson U, Persson S, et al : CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimers Dement 9 : 251-261, 2013.
10) Skillback T, Farahmand BY, Rosen C, et al : Cerebrospinal fluid tau and amyloid-b1-42 in patients with dementia. Brain 138 : 2716-2731, 2015.
11) Wagshal D, Sankaranarayanan S, Guss V, et al : Divergent CSF s alterations in two common tauopathies : Alzheimer's disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 86 : 244-250, 2015.
P.105 掲載の参考文献
1) 朝田隆 : 都市部における認知症有病率と認知症の生活機能障害への対応. 認知症対策総合研究事業 総合研究報告書 2013.
2) Jack CR Jr, Knopman DS, Jagustet WJ, et al : Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9 : 119-128, 2010.
3) 認知症疾患診療ガイドライン 2017 日本神経学会監, 「認知症疾患診療ガイドライン」作成委員会編, 医学書院, 東京, 2017.
4) 湯原麻子, 野島久, 串田祥, 他 : 全自動化学発光酵素免疫測定システムを用いた脳脊髄液中総タウ蛋白, 181位リン酸化タウ蛋白測定試薬の基礎性能評価. 医学と薬学 79 : 91-97, 2022.
6) Schoonenboom NSM, Reesink FE, Verwey NA, et al : Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78 : 47-54, 2012.
7) Stoeck K, Sanchez-Juan P, Gawinecka J, et al : Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias : A longitudinal multicentre study over 10 years. Brain 135 : 3051-3061, 2012.
8) Barthelemy NR, Bateman RJ, Hirtz C, et al : Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer's disease and PET amyloid-positive patient identification. Alzheimers Res Ther 12 : 26, 2020.
9) Janelidze S, Stomrud E, Smith R, et al : Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer's disease. Nat Commun 11 : 1683, 2020.
10) Barthelemy NR, Li Y, Joseph-Mathurin N, et al : A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer's disease. Nat Med 26 : 398-407, 2020.
11) Samimi N, Sharma G, Kimura T, et al : Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiol Aging 108 : 72-79, 2021.
12) Toledo JB, Brettschneider J, Grossman M, et al : CSF biomarkers cutoffs : The importance of coincident neuropathological diseases. Acta Neuropathol 124 : 23-35, 2012.
13) Morris JC, Schindler SE, McCue LM, et al : Assessment of Racial Disparities in Biomarkers for Alzheimer Disease. JAMA Neuro 76 : 264-273, 2019.
P.112 掲載の参考文献
2) Morawska L, Cao J : Airborne transmission of SARS-CoV-2 : the world should face the reality. Environ Int 139 : 105730, 2020.
3) Sethuraman N, Jeremiah SS, Ryo A : Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 323 (22) : 2249-2251, 2020.
4) Wolfel R, Corman VM, Guggemos W, et al : Virological assessment of hospitalized patients with COVID-2019. Nature 581 (7809) : 465-469, 2020.
5) 新型コロナウイルス感染症 (COVID-19) 病原体検査の指針 第4.1版
6) Gili A, Paggi R, Russo C, et al : Evaluation of Lumipulse(R) G SARS-CoV-2 antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening. Int J Infect Dis 105 : 391-396, 2021.
7) Loconsole D, Centrone F, Morcavallo C, et al : The Challenge of Using an Antigen Test as a Screening Tool for SARS-CoV-2 Infection in an Emergency Department : Experience of a Tertiary Care Hospital in Southern Italy. Biomed Res Int 2021 : 3893733, 2021.
8) Yokota I, Shane PY, Okada K, et al : A novel strategy for SARS-CoV-2 mass screening with quantitative antigen testing of saliva : a diagnostic accuracy study. Lancet Microbe 2 (8) : e397-e404, 2021.
9) 病原体検出マニュアル2019-nCoV Ver.2.9.1 国立感染症研究所
10) 勝見正道, 山田香織, 松原弘明, 他 : 検体中のSARS-CoV-2 ウイルスコピー数とウイルス力価に係る考察. IASR 42 : 22-24, 2021.
11) Pekosz A, Parvu V, Li M, et al : Antigen-Based Testing but Not Real-Time Polymerase Chain Reaction Correlates With Severe Acute Respiratory Syndrome Coronavirus 2 Viral Culture. Clin Infect Dis : ciaa1706, 2021. https://doi.org/10.1093/cid/ciaa1706
12) Yamamoto K, Nagashima M, Yoshida I, et al : Does the SARS-CoV-2 rapid antigen test result correlate with the viral culture result? J Infect Chemother 27 (8) : 1273-1275, 2021.
13) Uwamino Y, Nagata M, Aoki W, et al : Accuracy of rapid antigen detection test for nasopharyngeal swab specimens and saliva samples in comparison with RT-PCR and viral culture for SARS-CoV-2 detection. J Infect Chemother 27 (7) : 1058-1062, 2021.
14) Matsuzaki N, Orihara Y, Kodana M, et al : Evaluation of a chemiluminescent enzyme immunoassay-based high-throughput SARS-CoV-2 antigen assay for the diagnosis of COVID-19 : The VITROS(R) SARS-CoV-2 Antigen Test. J Med Virol 93 (12) : 6778-6781, 2021.
15) Nomoto H, Yamamoto K, Yamada G, et al : Timecourse evaluation of the quantitative antigen test for severe acute respiratory syndrome coronavirus 2 : The potential contribution to alleviating isolation of COVID-19 patients. J Infect Chemother 27 (11) : 1669-1673, 2021.
16) Hirotsu Y, Maejima M, Shibusawa M, et al : Prospective Study of 1,308 Nasopharyngeal Swabs from 1,033 Patients using the LUMIPULSE SARS-CoV-2 Antigen Test : Comparison with RT-qPCR. Int J Infect Dis 105 : 7-14, 2021.
17) Caputo V, Bax C, Colantoni L, et al : Comparative analysis of antigen and molecular tests for the detection of Sars-CoV-2 and related variants : a study on 4266 samples. Int J Infect Dis 108 : 187-189, 2021.
18) Cevik M, Tate M, Lloyd O, et al : SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness : A systematic review and meta-analysis. Lancet Microbe 2 : e13-e22, 2021.
19) Mencacci A, Gili A, Gidari A, et al : Role of Nucleocapsid Protein Antigen Detection for Safe End of Isolation of SARS-CoV-2 Infected Patients with Long Persistence of Viral RNA in Respiratory Samples. J Clin Med 10 (18) : 4037, 2021.
20) Osterman A, Iglhaut M, Lehner A, et al : Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern. Med Microbiol Immunol 210 (5-6) : 263-275, 2021.
21) Hirotsu Y, Tsutsui T, Kakizaki Y, et al : Active immunization by COVID-19 mRNA vaccine results in rapid antibody response and virus reduction in breakthrough infection by Delta (B.1.617.2). Research Square 2021. doi : https://doi.org/10.21203/rs.3.rs-957198/v1
P.128 掲載の参考文献
1) 国立感染症研究所 : インフルエンザ診断マニュアル 第3版, 2014.
2) 三田村敬子 : インフルエンザの診断. 臨床と微生物 44 (6) : 711-717, 2017.
3) 三田村敬子 : インフルエンザ迅速診断キットの精度についての最新情報を教えてください. インフルエンザ 18 (2) : 22, 2017.
4) 菅谷憲夫 : インフルエンザ診療ガイド 2017-18, 2017.
5) 川上千春, 市川正孝, 三田村敬子 : インフルエンザ迅速診断キットの現状. インフルエンザ 6 (4) : 309-316, 2005.
6) Ito M, Watanabe M, Nakagawa N, et al : Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification : comparison with immunochromatography and virus isolation. J Virol Methods 135 : 271-275, 2006.
7) 三田村敬子, 川上千春, 清水英明 : インフルエンザの迅速診断. 小児科臨床 65 : 2497-2507, 2012.
8) 原三千丸, 高尾信一 : インフルエンザ迅速診断キット クイックナビ-Fluの4シーズンにおける臨床検討. 医学と薬学 72 (9) : 1595-1602, 2015.
9) 国立感染症研究所 : インフルエンザ 2016/17 シーズン. 病原微生物検出情報 (IASR) 38 : 209-211, 2017.

【臨床試験】

P.146 掲載の参考文献
1) 後発医薬品の生物学的同等性試験ガイドライン等の一部改正について (薬食審査発0229 第10号 平成24年2月29日)
2) 医薬品の製造 (輸入) 承認申請に際して添付すべき安定性試験成績の取り扱いについて (薬審第43号 平成3年2月15日)

【研究】

P.155 掲載の参考文献
1) Mabuchi F, Yoshimura K, Kashiwagi K, et al : High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma 17 : 552-557, 2008.
2) Mabuchi F, Yoshimura K, Kashiwagi K, et al : Risk factors for anxiety and depression in patients with glaucoma. Br J Ophthalmol 96 : 821-825, 2012.
3) Japan Glaucoma Society : Guidelines for Glaucoma (3rd Edition). Nippon Ganka Gakkai Zasshi 122 : 5-53, 2018.
4) Tsai JC, McClure CA, Ramos SE et al : Compliance barrier in glaucoma : a systematic classification. J Glaucoma 12 : 393-398, 2003.
5) Quigley HA, Friedman DS, Hahn SR : Evaluation of practice patterns for the care of open-angle glaucoma compared with claims data : the Glaucoma Adherence and Persistency Study. Ophthalmology 114 : 1599-1606, 2007.
6) Kenji K,Toshie F : Persistence with topical glaucoma therapy among newly diagnosed Japanese patients. Jpn J Ophthalmol 58 : 68-74, 2014.
7) 中里克治, 水口公信 : 新しい不安尺度STAI 日本語版の作成. 心身医 22 (2) : 107-112, 1982.
8) Inoue K, Shiokawa M, Higa R, et al : Adverse periocular reactions to five types of prostaglandin analogs. Eye (Lond) 26 : 1465-1472, 2012.

【総説】

P.159 掲載の参考文献
1) 浅井利夫 : 川崎病の原因は馬ウイルス性動脈炎ウイルスか. 医学と薬学 75 : 649-651, 2018.
2) 浅井利夫 : 川崎病と馬ウイルス性動脈炎の海外発生状況について. 医学と薬学 76 : 649-651, 2019.
3) 浅井利夫, 松永保 : 川崎病の原因ウイルス培養の試み. 医学と薬学 77 : 1305-1307, 2020.
4) 浅井利夫 : 川崎病の原因について-馬ウイルス性動脈炎ウイルス説を中心に. 医学と薬学 78 : 649-651, 2021.
5) 浅井利夫 : 新型コロナウイルス感染症流行と川崎病の原因. 医学と薬学 78 : 881-883, 2021.
6) 浅井利夫 : 川崎病の原因とニドウイルス目ウイルス. 医学と薬学 78 : 1401-1404, 2021.
7) 喜田宏 : 北海道大学リサーチタイムズ 2021/09/3 人畜共通感染症と戦い. https://www.hokudai.ac.jp/researchtimes/2021/08/post32.html
8) Esper F, Shapiro ED, Weibel C, et al : Association between a nobel human coronavirus and Kawasaki disease. J Infect Dis 191 : 499-502, 2005.
9) 杉田繁夫, 今川浩, 和田隆一, 他 : ウマ動脈炎ウイルスのPCR診断法の開発. 馬の科学 35 : 381-385, 1998. (非売品 : 日本中央競馬会競走馬総合研究所)

最近チェックした商品履歴

Loading...