腸内細菌を正しく理解する ―入門・基礎編―

出版社: 総合医学社
著者:
発行日: 2022-03-07
分野: 基礎医学  >  病原微生物学
ISBN: 9784883789481
電子書籍版: 2022-03-07 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:約3営業日

5,830 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

5,830 円(税込)

商品紹介

「『腸内細菌を理解すること』は同時に『人体そのものを理解する』ことになる」。基礎・臨床医学、微生物学、薬学の専門家が執筆した、臨床につながる腸内細菌学の入門書籍です。
必要不可欠な基礎的知識を網羅したうえで、疾患と腸内細菌のかかわりについても最新の研究から解き明かしていきます。栄養との関係、プロバイオティクスとプレバイオティクスなど、近年多数の情報が発信され整理しづらい分野についても、たしかな根拠に基づく知見をご提供します。
医学生から臨床医まで、腸内細菌についてたしかな知識を得たい方におすすめの1冊です。  

目次

  • 第1章 腸内細菌研究の歴史と発展
     1.微生物の発見
     2.顕微鏡観察法の発展
     3.ルイ・パスツール
     4.ロベルト・コッホ
     5.北里柴三郎
     6.エリー・メチニコフとプロバイオティクス概念の構築
     7.ISAPPと現在のプロバイオティクスの理解
     8.培養法の進歩
     9.分子微生物学的な解析方法の進展
     10.広いダイナミックレンジを有する腸内細菌叢を精度よく解析する方法:定量的RT-PCR法
     11.動物実験モデル
     12.腸内細菌の代謝能
     13.コロナイゼーションレジスタンスと便微生物移植

    第2章 腸内細菌の分類と働き
     1.腸内細菌の分類法
     2.腸内細菌の命名
     3.ヒト腸内細菌叢を構成する細菌
     4.代表的な腸内細菌とその機能的特徴
     5.ヒト腸内の真核生物(Eukarya)
     コラム

    第3章 腸内細菌叢の基礎分野における技術
     1.腸内細菌の特徴と培養法
     2.腸内細菌叢の遺伝子解析
     3.腸内細菌叢関連代謝産物の解析
     4.腸内細菌叢関連解析の委託
     コラム

    第4章 腸内細菌の成り立ちと成長
     1.分娩様式が及ぼす腸内細菌叢組成への影響
     2.新生児の腸上皮と腸内細菌
     3.母乳
     4.早産
     5.離乳
     6.まとめ
     コラム

    第5章 腸内細菌叢と疾患
     I.腸内細菌叢のバランス異常がもたらすもの
     II.近年増加した現代の病気と腸内細菌叢との関連
       1.肥満・生活習慣病
       2.炎症性腸疾患
       3.大腸がん
       4.アレルギー性疾患
       5.関節リウマチ
       6.多発性硬化症
       7.筋委縮性側索硬化症
       8.自閉スペクトラム症
     III.どのような腸内細菌叢が理想なのか?

    第6章 栄養学(食事)と腸内細菌
     I.乳幼児期の腸内細菌叢の移り変わり
     II.食とヒトの腸内細菌叢の経時的な関連
       1.レジスタントスターチ
       2.食物繊維
       3.難消化性オリゴ糖
       4.食事性脂質
       5.食事性タンパク質
     III.食と腸内細菌と健康
       1.腸内細菌叢の恒常性
       2.食事や栄養が腸内細菌叢構成に影響を与えるか:
         世界のさまざまな地域におけるコホート研究
       3.食物因子、特に食物繊維類の特徴的な作用
       4.ディスバイオーシス(dysbiosis)と代謝性内毒素血症
       5.腸内細菌叢と健康に関する今後の研究のポイント

    第7章 プロバイオティクスとプレバイオティクスの登場と研究
     I.プロバイオティクスについて
       1.プロバイオティクス製品の特徴、医療用医薬品または保健機能食品としての
         プロバイオティクス製品の違い
       2.ヒトにおいて報告されている多様な有益作用―ヒトにおける臨床応用研究を中心に
       3.プロバイオティクスによる有益作用の作用メカニズム
       4.プロバイオティクス作用に影響を及ぼす因子
     II.プレバイオティクスについて
       1.食物繊維・FODMAPs・プレバイオティクスの定義
       2.プレバイオティクスの種類
       3.プレバイオティクスの健康への影響
       4.プレバイオティクスの副作用
       5.食物繊維(全粒穀物)とプレバイオティクスの効果の違い
       コラム

    第8章 プロバイオティクスの臨床応用
     はじめに
     ◇メタアナリシスの見方
     ◇プロバイオティクスの略語
     I.プロバイオティクスの有効性が期待できる疾患(エビデンスが既にあるもの)
       1.整腸作用
       2.感染予防
       3.アレルギー
       4.生活習慣病
       5.炎症性腸疾患
       6.腸脳相関
       7.その他
     II.悪性腫瘍とプロバイオティクス
       1.表層性膀胱がん
       2.大腸がん
       3.乳がん
       4.まとめ
     III.腸内細菌移植(便微生物移植)の現状と問題点
       1.Clostridioides (Clostridium) difficle感染症
       2.炎症性腸疾患
       3.まとめ

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1章 腸内細菌研究の歴史と発展

P.15 掲載の参考文献
1) 檀原宏文・田口文章編:志賀潔. 細菌学を創ったひとびと~大発見にまつわるエピソード~. 基礎病原微生物学, 廣川書店, 東京, 2005, p. 743-787.
2) E. メチニコフ(著) 平野威馬雄(訳):長寿の研究楽観論者のエッセイ, 幸書房, 東京, 2006, p. 184-223.
3) Vergin F:Anti-und Probiotica. Hipokrates 1954;25:116-119.
4) Lilly DM, Stillwell RH:Probiotics;Growth promoting factors produced by microorganisms. Science 1965;147:747-748.
5) Parker RB:Probiotics;The other half of the antibiotic story. Anim Nut Health 1974;29:4-8.
6) Fuller R:Probiotics in man and animals. J Appl Bacteriol 1989;66:365-378.
7) 代田稔, 他:腸内細菌叢の研究1 健康幼児の腸内菌叢の構成とL. acidophilus strain Shirota投与の影響について. 日本細菌学雑誌 1966;21:274-283.
8) Hill C, Guarner F, Reid G, et al.:Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506-514.
9) Eggerth AH, Gagnon BH:The Bacteroides of human feces. J Bacteriol 1933;25:389-413.
10) 光岡知足:腸内菌叢研究の歩み. 腸内細菌学雑誌 2011;25:113-124.
11) 平山和宏:ヒトの腸内菌の分類に関する総論. 腸内細菌学雑誌 2016;30:5-15.
12) Tsuji T, Matsuda K, Nomoto K:Counting the countless:Bacterial quantification by targeting rRNA molecules to explore the human gut microbiota in health and disease. Front Microbiol 2018;9:1417. 2018 Jun 29. doi:10.3389/fmicb.2018.01417.
13) Kurokawa K, Itoh T, Kuwahara T, et al.:The integrative HMP (iHMP) research Network consortium:The Integrative Human Microbiome Project. Nature 2019;569:641-648.
14) Kurokawa K, et al.:Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research 2007;14:169-181. doi:10.1093/dnares/dsm018.
15) Nishijima S, Suda W, Ushima K, et al.:The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research 2016;23:125-133. doi:10.1093/dnares/dsw002.
16) 野本康二, 他:腸内フローラ解析システム YIF-SCAN(R). 腸内細菌学雑誌 2015;29:9-18.
17) Arumugam M, Raes J, Pelletier E, et al.:Enterotypes of the human gut microbiome. Nature 2011;473:174-180. doi:10.1038/nature09944.
18) Reyniers JA, Trexler PC, Ervin RF:Rearing germfree albino rats. Lobund Rep 1946;1:1-84.
19) Gustafsson B:Germfree rearing of rats. Acta Pathol Microbiol Scand 1948;71:1
20) Turnbaugh PJ, Ley RE, Mahowald MA, et al.:An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031. doi:10.1038/nature05414.
21) Smith MI, Yatsunenko 1 T, Manary MJ, et al.:Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:2013;548-554. doi:10.1126/science.1229000.
22) Atarashi K, Tanoue T, Shima T, et al.:Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:337-341. doi:10.1126/science.1198469.
23) Tanoue T, Morita S, Plichta DR, et al.:A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019;565:600-605.
24) 金城順英, 土橋良太:腸内細菌による配糖体の加水分解と代謝活性化. 腸内細菌学雑誌 2012;26:223-233.
25) Tsuji H, Moriyama K, Nomoto K, et al.:Isolation and characterization of the equolproducing bacterium Slackia sp. strain NATTS. Arch Microbiol 2010;192:279-287.
26) Tsuji H, Moriyama K, Nomoto K, et al.:Identification of an enzyme system for daidzein-toequol conversion in Slackia sp. strain NATTS. Appl Environ Microbiol 2012;78:1228-1236.
27) Lewis K, Strandwitz P:Microbes make metabolic mischief by targeting drugs. Nature 2019;570:453-454.
28) Zimmermann M, Zimmermann-Kogadeeva M, Wegmann1 R, et al.:Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019;570:462-467. doi:10.1038/s41586-019-1291-3.
29) Wallace BD, et al.:Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:831-835.
30) van der Waaij D, Berghuis-de Vries JM, Lekkerkerk-van der Wees JEC.:Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg 1971;69:405-411.
31) Eiseman B, Silen W, Bascom GS, et al.:Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958;44:854-859.
32) van Nood E, Vrieze A, Nieuwdorp M, et al.:Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-415. doi:10.1056/NEJMoa1205037.
33) Wang J-W, Kuo C-H, Kuo F-C, et al.:Fecal microbiota transplantation:Review and update. J Formos Med Assoc 2019;118 Suppl 1:S23-S31. doi:10.1016/j.jfma.2018.08.011.

第2章 腸内細菌の分類と働き

P.36 掲載の参考文献
1) Euzeby JP:List of Bacterial Names with Standing in Nomenclature:a folder available on the Internet. Int J Syst Bacteriol 1997;47:590-592.
2) Arumugam M, et al.:Enterotypes of the human gut microbiome. Nature 2011;473:174-180.
3) Palmer C, Bik EM, DiGiulio DB, et al.:Development of the human infant intestinal microbiota. PLoS Biol 2007;5:e177
4) Benno Y, et al.:Comparison of the fecal microflora in rural Japanese and urban Canadians. Microbiol Immunol 1986;30:521-532.
5) Eggerth AH, Gagnon BH:The Bacteroides of Human Feces. J Bacteriol 1933:25:389-413.
6) Moore WE, Holdeman LV:Human fecal flora:the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974;27:961-979.
7) Marcobal A, et al.:Bacteroides in the infant gut consume milk oligosaccharides via mucusutilization pathways. Cell Host Microbe 2011;10:507-514.
8) Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al.:Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229-241.
9) Round JL, et al.:The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332:974-977.
10) Morotomi M, Nagai F, Sakon H, et al.:Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family 'Prevotellaceae' isolated from human faeces. Int J Syst Evol Microbiol 2009;59:1895-1900.
11) Sakamoto M, Ohkuma M:Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int J Syst Evol Microbiol 2012;62:2637-2642.
12) Wu CC, Johnson JL, Moore WE, et al.:Emended descriptions of Prevotella denticola, Prevotella loescheii, Prevotella veroralis, and Prevotella melaninogenica. Int J Syst Bacteriol 1992;42:536-541.
13) Macfarlane GT, Allison C, Gibson SA, et al.:Cummings, Contribution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol 1988;64:37-46.
14) Macfarlane GT, Cummings JH, Allison C:Protein degradation by human intestinal bacteria. J Gen Microbiol 1986;132:1647-1656.
15) Yatsunenko T, et al.:Human gut microbiome viewed across age and geography. Nature 2012;486:222-227.
16) Narushima S, et al.:Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 2006;41:835-843.
17) Leitch EC, Walker AW, Duncan SH, et al.:Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 2007;9:667-679.
18) Rajilic-Stojanovic M, Heilig HG, Tims S, et al.:Long- term monitoring of the human intestinal microbiota composition. Environ Microbiol 2012;Oct 15. doi:10.1111/1462-2920.12023.
19) Dubourg G, et al.: The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 2013;32:637-645.
20) Ley RE:Obesity and the human microbiome. Curr Opin Gastroenterol 2010;26:5-11.
21) Rajilic-Stojanovic M, et al.:Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011;141:1792-1801.
22) Larsen N, et al.:Gut microbiota in human adults with type 2 diabetes differs from nondiabetic adults. PLoS One 2010;5:e9085.
23) Le Chatelier E, et al.:Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-546.
24) Frank DN, et al.:Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007;104:13780-13785.
25) Duncan SH, Hold GL, Harmsen HJM, et al.:Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002;52:2141-2146.
26) Morotomi M, Nagai F, Watanabe Y:Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol 2012;62:144-149.
27) Marchandin H, et al.:Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol 2010;60:1271-1279.
28) Finegold SM, et al.:Anaerofustis stercorihominis gen. nov., sp. nov., from human feces. Anaerobe 2004;10:41-45.
29) Hold GL, Pryde SE, Russell VJ, et al.:Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 2002;39:33-39.
30) Manson JM, Rauch M, Gilmore MS:The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol 2008;635:15-28.
31) Buffie CG, et al.:Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205-208.
32) Gerard P:Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013;3:14-24.
33) Kim YG, et al.:Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 2017;356:315-319.
34) Rajilic-Stojanovic M, Smidt H, de Vos WM:Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007;9:2125-2136.
35) Holdeman LV, Good IJ, Moore WE:Human fecal flora:variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 1976;31:359-375.
36) Shulman ST, Friedmann HC, Sims RH:Theodor Escherich:the first pediatric infectious diseases physician? Clin Infect Dis 2007;45:1025-1029.
37) Thielman NM, Guerrant RL:Clinical practice. Acute infectious diarrhea. N Engl J Med 2004;350:38-47.
38) Favier CF, Vaughan EE, De Vos WM, et al.:Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002;68:219-226.
39) Hopkins MJ, Sharp R, Macfarlane GT:Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001;48:198-205.
40) Kruis W, et al.:Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004;53:1617-1623.
41) Ron EZ:Host specificity of septicemic Escherichia coli:human and avian pathogens. Curr Opin Microbiol 2006;9:28-32.
42) Benno Y, et al.:Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 1989;55:1100-1105.
43) Swidsinski A, et al.:Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 2011;60:34-40.
44) Rajilic-Stojanovic M, Shanahan F, Guarner F, et al.:Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 2013;19:481-488.
45) Castellarin M, et al.:Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.
46) Kostic AD, et al.:Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292-298.
47) Derrien M, Vaughan EE, Plugge CM, et al.:Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54:1469-1476.
48) Collado MC, Derrien M, Isolauri E, et al.:Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 2007;73:7767-7770.
49) Vigsnaes LK, Brynskov J, Steenholdt C, et al.:Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls. Benef Microbes 2012;3:287-297.
50) Wang L, et al.:Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011;77:6718-6721.
51) Candela M, et al.:Unbalance of intestinal microbiota in atopic children. BMC Microbiol 2012;12:95.
52) Karlsson CL, et al.:The microbiota of the gut in preschool children with normal and excessive body weight. Obesity(Silver Spring) 2012;20:2257-2261.
53) Everard A, et al.:Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110:9066-9071.
54) McLaughlin SD, et al.:The bacteriology of pouchitis:a molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann Surg 2010;252:90-98.
55) Carr NJ, Mahajan H, Tan KL, et al.:The histological features of intestinal spirochetosis in a series of 113 patients. Int J Surg Pathol 2010;18:144-148.
56) Harland WA, Lee FD:Intestinal spirochaetosis. Br Med J 1967;3:718-719.
57) Gad A, Willen R, Furugard K, et al.:Intestinal spirochaetosis as a cause of longstanding diarrhoea. Ups J Med Sci 1977;82:49-54.
58) Westerman LJ, et al.:Development of a real-time PCR for identification of Brachyspira species in human colonic biopsies. PLoS One 2012;7:e52281.
59) De Filippo C, et al.:Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107:14691-14696.
60) Ou J, et al.:Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013;98:111-120.
61) Schnorr SL, et al.:Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014;5:3654.
62) Tito RY, et al.:Insights from characterizing extinct human gut microbiomes. PLoS One 2012;7:e51146.
63) Giacani L, Lukehart SA:The endemic treponematoses. Clin Microbiol Rev 2014;27:89-115.
64) Hugenholtz P, Tyson GW, Webb RI, et al.:Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 2001;67:411-419.
65) Stearns JC, et al.:Bacterial biogeography of the human digestive tract. Sci Rep 2011;1:170.
66) Kuehbacher T, et al.:Intestinal TM 7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 2008;57:1569-1576.
67) Bond JH, Engel Jr. RR, Levitt MD:Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 1971;133, 572-588.
68) Nottingham PM, Hungate RE:Isolation of methanogenic bacteria from feces of man. J Bacteriol 1968;96:2178-2179.
69) Dridi B, Henry M, El Khechine A, et al.:High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 2009;4:e7063.
70) Dridi B, Fardeau ML, Ollivier B, et al.:Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 2012;62:1902-1907.
71) Nam YD, et al.:Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. J Microbiol 2008;46:491-501.
72) Oxley AP, et al.:Halophilic archaea in the human intestinal mucosa. Environ Microbiol 2010;12:2398-2410.
73) Dridi B, Raoult D, Drancourt M:Archaea as emerging organisms in complex human microbiomes. Anaerobe 2011;17:56-63.
74) 渡辺幸一:ビフィズス菌の分類法の現状と動向. 腸内細菌学雑誌 2016;30:129-139.
75) Asahara T, et al.:Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 2004;72:2240-2247.
76) Fukuda S, et al.:Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547.
77) Martin R, Bermudez-Humaran LG, Langella P:Searching for the Bacterial Effector:The Example of the Multi-Skilled Commensal Bacterium Faecalibacterium prausnitzii. Front Microbiol 2018;9:346.
78) Martin R, et al.:Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers:A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Front Microbiol 2017;8:1226.
79) Matsuoka K, Kanai T:The gut microbiota and inflammatory bowel disease. Semin Immunopathol 2015;37:47-55.
80) Song H, Yoo Y, Hwang J, et al.:Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol 2016;137:852-860.
81) Cani PD:Human gut microbiome:hopes, threats and promises. Gut 2018;67:1716-1725.
82) Cani PD, de Vos WM:Next-Generation Beneficial Microbes:The Case of Akkermansia muciniphila. Front Microbiol 2017;8:1765.
83) Plovier H, et al.:A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23:107-113.
84) Depommier C, et al.:Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study. Nat Med 2019;25:1096-1103.
85) Pudlo NA, et al.:Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans. mBio 2015;6:e01282-01215.
86) Tamura K, et al.:Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Cell Rep 2017;21:2030.
87) Ramakrishna C, et al.:Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun 2019;10:2153.
88) Kurakawa T, Kubota H, Nomoto K, et al.:Diversity of intestinal Enterobacteriaceae populations in Japanese adults by the reverse transcription-quantitative PCR and the clone library analysis. J Microbiol Meth 2013;92:213-219.
89) Sonnenborn U:Escherichia coli strain Nissle 1917-from bench to bedside and back:history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 2016;363.
90) Matsuda K, et al.:Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol 2009;75:1961-1969.
91) Tsuji H, Matsuda K, Nomoto K:Counting the Countless:Bacterial Quantification by Targeting rRNA Molecules to Explore the Human Gut Microbiota in Health and Disease. Front Microbiol 2018;9:1417.
92) Zheng J, et al.:A taxonomic note on the genus Lactobacillus:Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020;70:2782-2858.
93) Kurakawa T, et al.:Establishment of a sensitive system for analysis of human vaginal microbiota on the basis of rRNA-targeted reverse transcription-quantitative PCR. J Microbiol Methods 2015;111:93-104.
94) Kubota H, et al.:Detection of human intestinal catalase-negative, Gram-positive cocci by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 2010;76:5440-5451.
95) Matsuda K, et al.:Sensitive quantification of Clostridium difficile cells by reverse transcription-quantitative PCR targeting rRNA molecules. Appl Environ Microbiol 2012;78:5111-5118.
96) Scanlan PD, Marchesi JR:Micro-eukaryotic diversity of the human distal gut microbiota:qualitative assessment using culture-dependent and-independent analysis of faeces. ISME J 2008;2:1183-1193.
97) Ott SJ, et al.:Fungi and inflammatory bowel diseases:Alterations of composition and diversity. Scand J Gastroenterol 2008;43:831-841.
98) Kumamoto CA, Vinces MD:Alternative Candida albicans lifestyles:growth on surfaces. Annu Rev Microbiol 2005;59:113-133.
99) Schulze J, Sonnenborn U:Yeasts in the gut:from commensals to infectious agents. Dtsch Arztebl Int 2009;106:837-842.
100) Santelmann H, Howard JM:Yeast metabolic products, yeast antigens and yeasts as possible triggers for irritable bowel syndrome. Eur J Gastroenterol Hepatol 2005;17:21-26.
101) Kim YG, et al.:Gut dysbiosis promotes M 2 macrophage polarization and allergic airway inflammation via fungi-induced PGE(2). Cell Host Microbe 2014;15:95-102.
102) Gouba N, Raoult D, Drancourt M:Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 2013;8:e59474.
103) Hamad I, Sokhna C, Raoult D, et al.:Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS One 2012;7:e40888.
104) Finegold SM, et al.:Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 1977;30:1781-1792.
105) Taylor GR, Kropp KD, Molina TC:Nine-year microflora study of an isolator-maintained immunodeficient child. Appl Environ Microbiol 1985;50:1349-1356.
106) Farthing MJ:Treatment options for the eradication of intestinal protozoa. Nat Clin Pract Gastroenterol Hepatol 2006;3:436-445.
107) Checkley W, et al.:Asymptomatic and symptomatic cryptosporidiosis:their acute effect on weight gain in Peruvian children. Am J Epidemiol 1997;145:156-163.
108) Arisue N, Hashimoto T, Yoshikawa H:Sequence heterogeneity of the small subunit ribosomal RNA genes among blastocystis isolates. Parasitology 2003;126:1-9.
109) Zierdt CH:Blastocystis hominis--past and future. Clin Microbiol Rev 1991;4:61-79.
110) Dogruman-Al F, et al.:Blastocystis subtypes in irritable bowel syndrome and inflammatory bowel disease in Ankara, Turkey. Mem Inst Oswaldo Cruz 2009;104:724-727.
111) Cekin AH, et al.:Blastocystosis in patients with gastrointestinal symptoms:a case-control study. BMC Gastroenterol 2012;12:122.
112) Fotedar R, et al.:Laboratory diagnostic techniques for Entamoeba species. Clin Microbiol Rev 2007;20:511-532, table of contents.
113) Desportes I, et al.:Occurrence of a new microsporidan:Enterocytozoon bieneusi n. g., n. sp., in the enterocytes of a human patient with AIDS. J Protozool 1985;32:250-254.
114) Weber R, et al.:Detection of Septata intestinalis in stool specimens and coprodiagnostic monitoring of successful treatment with albendazole. Clin Infect Dis 1994;19:342-345.
115) Franzen C, et al.:Immunologically confirmed disseminated, asymptomatic Encephalitozoon cuniculi infection of the gastrointestinal tract in a patient with AIDS. Clin Infect Dis 1995;21:1480-1484.
116) Jones-Engel L, et al.:Prevalence of enteric parasites in pet macaques in Sulawesi, Indonesia. Am J Primatol 2004;62:71-82.
117) Hogue MJ:A new variety of Retortamonas Embadomonas intestinalis from man. Am J Epidemiol 1933;18:433-441.
118) Cegielski JP, et al.:Cryptosporidium, Enterocytozoon, and cyclospora infections in pediatric and adult patients with diarrhea in Tanzania. Clin Infect Dis 1999;28:314-321.
119) Mungthin M, et al.:Spore shedding pattern of Enterocytozoon bieneusi in asymptomatic children. J Med Microbiol 2005;54:473-476.
120) Wichro E, et al.:Microsporidiosis in travel-associated chronic diarrhea in immunecompetent patients. Am J Trop Med Hyg 2005;73:285-287.
121) Johnson EH, Windsor JJ, Clark CG:Emerging from obscurity:biological, clinical, and diagnostic aspects of Dientamoeba fragilis. Clin Microbiol Rev 2004;17:553-570, table of contents.
122) Johnson JA, Clark CG:Cryptic genetic diversity in Dientamoeba fragilis. J Clin Microbiol 2000;38:4653-4654.
123) Wolfe MS:Giardiasis. Clin Microbiol Rev 1992;5:93-100.
124) Tandon BN, Tandon RK, Satpathy BK, et al.:Mechanism of malabsorption in giardiasis:a study of bacterial flora and bile salt deconjugation in upper jejunum. Gut 1977;18:176-181.
125) Hanevik K, Dizdar V, Langeland N, et al.:Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol 2009;9:27.
126) Spiller R, Garsed K:Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-1988.
127) Jalanka-Tuovinen J, et al.:Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 2014;63:1737-1745.
128) 岡田早苗:植物乳酸菌世界とその秘める可能性. Jap J Lactic Acid Bact 2002;13:23-36.
129) e-Gov(電子政府の窓口). 乳及び乳製品の成分規格等に関する省令. https://elaws.e-gov.go.jp/search/elawsSearch/elaws_search/lsg0500/detail?lawId=326M50000100052

第3章 腸内細菌叢の基礎分野における技術

P.60 掲載の参考文献
1) Tremaroli V, Backhed F:Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242-249.
2) 光岡知足:腸内菌叢研究の歴史. 実験医学 2014;32:652-657.
3) 光岡知足:腸内細菌学, 朝倉書店, 東京, 1990.
4) 光岡知足:健康長寿のための食生活, 岩波書店, 東京, 2002.
5) 福田真嗣:もっとよくわかる! 腸内細菌叢. 羊土社, 東京, 2019.
6) Tanaka Y, Benno Y:Application of a single-colony coculture technique to the isolation of hitherto unculturable gut bacteria. Microbiology and Immunology 2015;59:63-70.
7) Handelsman J, Metagenomics:Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 2004;68:669-685.
8) Thomas AM, Manghi P, Asnicar F, et al.:Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019;25:667-678.
9) Wirbel J, Pyl PT, Kartal E, et al.:Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med 2019;25:679-689.
10) Yoshida N, Emoto T, Yamashita T, et al.:Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018;138:2486-2498.
11) Matsuda K, Tsuji H, Nomoto K, et al.:Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Applied and Environmental Microbiology 2007;73:32-39.
12) Matsuda K, Tsuji H, Nomoto K, et al.:Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Applied and Environmental Microbiology 2009;75:1961-1969.
13) Tsuji H, Matsuda K, Nomoto K:Counting the countless:bacterial quantification by targeting rRNA molecules to explore the human gut microbiota in health and disease. Front Microbiol 2018;9:1417.
14) Kubota H, Tsuji H, Nomoto K, et al.:Detection of human intestinal catalase-negative, Gram-positive cocci by rRNA-targeted reverse transcription-PCR. Applied and Environmental Microbiology 2010;76:5440-5451.
15) Kurakawa T, Kubota H, Tsuji H, et al.:Development of a sensitive rRNA-targeted reverse transcription-quantitative polymerase chain reaction for detection of Vibrio cholerae/mimicus, V. parahaemolyticus/alginolyticus and Campylobacter jejuni/coli. Microbiology and Immunology 2012;56:10-20.
16) Engelhardt Von W, Ronnau K, Rechkemmer G, et al.:Absorption of short-chain fatty acids and their role in the hindgut of monogastric animals. Animal Feed Science and Technology 1989;23:43-53.
17) Roadiger R:The place of short-chain fatty acids in colonocyte metabolism in health and ulcerative colitis. In:JH C, JL R, T S, editors. Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge:1993. p. 337-351.
18) Erny D, Hrabe de Angelis AL, Jaitin D, et al.:Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015;18:965-977.
19) Kelly CJ, Zheng L, Campbell EL, et al. :Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015;17:662-671.
20) Rivera-Chavez F, Zhang LF, Faber F, et al.:Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe 2016;19:443-454.
21) Furusawa Y, Obata Y, Fukuda S, et al.:Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446-450.
22) Schroeder FA, Lin CL, Crusio WE, et al.:Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62:55-64.
23) Benton D, Williams C, Brown A:Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 2007;61:355-361.
24) Zhao L, Zhang F, Ding X, et al.:Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018;359:1151-1156.
25) Fukuda S, Toh H, Hase K, et al.:Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547.
26) Thorburn AN, McKenzie CI, Shen S, et al.:Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015;6:7320.
27) Marino E, Richards JL, McLeod KH, et al.:Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 2017;18:552-562.
28) Frost G, Sleeth ML, Sahuri-Arisoylu M, et al.:The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014;5:3611.
29) Maslowski KM, Vieira AT, Ng A, et al.:Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-1286.
30) Smith PM, Howitt MR, Panikov N, et al.:The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-573.
31) Chambers ES, Viardot A, Psichas A, et al.:Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015;64:1744-1754.
32) Kimura I, Miyamoto J, Ohue-Kitano R, et al.:Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 2020;367:eaaw8429.
33) Sanna S, van Zuydam NR, Mahajan A, et al.:Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 2019;51:600-605.
34) Tirosh A, Calay ES, Tuncman G, et al.:The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine 2019;11:eaav0120.
35) Morita N, Umemoto E, Fujita S, et al.:GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 2019;566:110-114.
36) Lee Y-S, Kim T-Y, Kim Y, et al.:Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. Cell Host Microbe 2018;24:833-836.
37) Okada T, Fukuda S, Hase K, et al.:Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. Nat Commun 2013;4:1654.
38) Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al.:Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune Circuit. Immunity 2018;49:33-37.
39) Ferreyra JA, Wu KJ, Hryckowian AJ, et al.:Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 2014;16:770-777.
40) Gill CIR, Rowland IR:Diet and cancer:assessing the risk. The British Journal of Nutrition 2002;88 Suppl 1:S73-87.
41) Yoshimoto S, Loo TM, Atarashi K, et al.:Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499:97-101.
42) Buffie CG, Bucci V, Stein RR, et al.:Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205-208.
43) Sun X, Winglee K, Gharaibeh RZ, et al.:Microbiota-derived metabolic factors reduce campylobacteriosis in mice. Gastroenterology 2018;154:1751-1752.
44) Franzosa EA, Hsu T, Sirota-Madi A, et al.:Sequencing and beyond:integrating molecular 'omics' for microbial community profiling. Nat Rev Microbiol 2015;13:360-372.
45) Sun L, Xie C, Wang G, et al.:Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24:1919-1929.
46) Begley M, Hill C, Gahan CGM:Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology 2006;72:1729-1738.
47) Tang WHW, Wang Z, Levison BS, et al.:Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575-1584.
48) Koeth RA, Wang Z, Levison BS, et al.:Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576-585.
49) Tang WHW, Wang Z, Kennedy DJ, et al.:Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015;116:448-455.
50) Heianza Y, Sun D, Li X, et al.:Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism:the POUNDS Lost trial. Gut 2019;68:263-270.
51) Zhu W, Gregory JC, Org E, et al.:Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016;165:111-124.
52) Lamas B, Richard ML, Leducq V, et al.:CARD 9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016;22:598-605.
53) Mishima E, Fukuda S, Mukawa C, et al.:Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int 2017;92:634-645.
54) Steed AL, Christophi GP, Kaiko GE, et al.:The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 2017;357:498-502.
55) Daily JW, Ko B-S, Ryuk J, et al.:Equol decreases hot flashes in postmenopausal women:A systematic review and meta-analysis of randomized clinical trials. J Med Food 2019;22:127-139.
56) Sekikawa A, Ihara M, Lopez O, et al.:Effect of s-equol and soy isoflavones on heart and brain. Curr Cardiol Rev 2019;15:114-135.
57) Wei P, Liu M, Chen Y, et al.:Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med 2012;5:243-248.
58) Pawlowski JW, Martin BR, McCabe GP, et al.:Impact of equol-producing capacity and soyisoflavone profiles of supplements on bone calcium retention in postmenopausal women:a randomized crossover trial. The American Journal of Clinical Nutrition 2015;102:695-703.
59) Mahmoud AM, Yang W, Bosland MC:Soy isoflavones and prostate cancer:a review of molecular mechanisms. J Steroid Biochem Mol Biol 2014;140:116-132.
60) Fritz H, Seely D, Flower G, et al.:Soy, red clover, and isoflavones and breast cancer:a systematic review. PloS one 2013;8:e81968.
61) Liu Z-M, Ho SC, Woo J, et al.:Randomized controlled trial of whole soy and isoflavone daidzein on menopausal symptoms in equol-producing Chinese postmenopausal women. Menopause 2014;21:653-660.
62) Arai Y, Uehara M, Sato Y, et al.:Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 2000;10:127-135.
63) Lampe JW, Karr SC, Hutchins AM, et al.:Urinary equol excretion with a soy challenge:influence of habitual diet. Proc Soc Exp Biol Med 1998;217:335-339.
64) Rowland IR, Wiseman H, Sanders TA, et al.:Interindividual variation in metabolism of soy isoflavones and lignans:influence of habitual diet on equol production by the gut microflora. Nutr Cancer 2000;36:27-32.
65) Setchell KDR, Cole SJ:Method of defining equol-producer status and its frequency among vegetarians. The Journal of Nutrition 2006;136:2188-2193.
66) Wada K, Nakamura K, Tamai Y, et al.:Soy isoflavone intake and breast cancer risk in Japan:from the Takayama study. International Journal of Cancer 2013;133:952-960.
67) Messina M, Rogero MM, Fisberg M, et al.:Health impact of childhood and adolescent soy consumption. Nutr Rev 2017;75:500-515.
68) 大賀拓史:網羅的代謝物質解析技術(メタボロミクス)とその応用. 血栓止血誌. 2014;25(3):357-362.
69) Martinez I, Stegen JC, Maldonado-Gomez MX, et al.:The gut microbiota of rural papua new guineans:composition, diversity patterns, and ecological processes. Cell Reports 2015;11:527-538.

第4章 腸内細菌の成り立ちと成長

P.87 掲載の参考文献
1) Wu GD, Chen J, Hoffmann C, et al.:Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108.
2) Arumugam M, Raes J, Pelletier E, et al.:Enterotypes of the human gut microbiome. Nature 2011;473:174-180.
3) Rinninella E, Raoul P, Cintoni M, et al.:What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7, 10.3390/microorganisms7010014.
4) Moore RE, Townsend SD:Temporal development of the infant gut microbiome. Open Biol 2019;9:190128.
5) Davenport ER, Sanders JG, Song SJ, et al.:The human microbiome in evolution. BMC Biol 2017;15:10.1186/s12915-12017-10454-12917.
6) Shao Y, Forster SC, Lawley TD, et al.:Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019;574:117-121.
7) Stanislawski MA, Dabelea D, Wagner BD, et al.:Gut microbiota in the first 2 years of life and the association with body mass Index at age 12 in a norwegian birth cohort. mBio 2018;9:e01751-01718.
8) Chu DM, Ma J, Aagaard KM, et al.:Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 2017;23:314-326.
9) Wampach L, Heintz-Buschart A, Fritz JV, et al.:Birth mode is associated with earliest strainconferred gut microbiome functions and immunostimulatory potential.:Nat Commun 2018;9:10.1038/s41467-41018-07631-x.
10) Backhed F, Roswall J, Peng Y, et al.:Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-703.
11) Yassour M, Vatanen T, Siljander H, et al.:Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016;8:343ra381.
12) Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al.:Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014;63:559-566.
13) Yassour M, Jason E, Hogstrom LJ, et al.:Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 2018;24:146-154.
14) Nayfach S, Rodriguez-Mueller B, Garud N, et al.:An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res 2016;26:1612-1625.
15) 三鴨廣繁, 和泉孝治, 伊藤邦彦 他:羊水感染症での羊水中の抗菌関連物質についての検討. Chemotherapy 1991;40:179-182.
16) Nagpal R, Tsuji H, Takahashi T, et al.:Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section. Front Microbiol 2016;7:10.3389/fmicb.2016.01997.
17) Tsuji H, Oozeer R, Matsuda K, et al.:Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes 2012;3:113-125.
18) Houghteling PD, Walker WA:Why is initial bacterial colonization of the intestine important to infants, and children's health? J Pediatr Gastroenterol Nutr 2015;60:294-307.
19) Rutayisire E, Huang K, Liu Y, et al.:The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants, life:a systematic review. BMC Gastroenterol 2016;16:10.1186/s12876-12016-10498-12870.
21) Azad MB, Konya T, Maughan H, et al.:Gut microbiota of healthy Canadian infants:profiles by mode of delivery and infant diet at 4 months. CMAJ 2013;185:385-394.
22) 厚生労働省:平成29年医療施設調査. 周産期医療の体制構築に係る指針 2017;https://www.mhlw.go.jp/file/06-Seisakujouhou-10800000-Iseikyoku/4_2.pdf.
23) Davis EC, Dinsmoor AM, Wang M, et al.:Microbiome composition in pediatric populations from birth to adolescence:impact of diet and prebiotic and probiotic interventions. Dig Dis Sci 2020;65:706-722.
24) Fujimura KE, Sitarik AR, Havstad S, et al.:Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016;22:1187-1191.
26) Lax S, Smith DP, Hampton-Marcell J, et al.:Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014;345:1048-1052.
27) Lesher S, Walburg HE, Jr., Sacher GA, Jr.:Generation cycle in the duodenal crypt cells of germ-free and conventional mice. Nature 1964;202:884-886.
28) 佐々木正五:無菌動物の医学への応用. 感染症学雑誌 1971;45:179-184.
29) Abo H, Chassaing B, Harusato A, et al.:Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun 2020;11:513:10.1038/s41467-41019-14258-z.
30) Neal MD, Sodhi CP, Jia H, et al.:Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem 2012;287:37296-37308.
31) Fulde M, Hornef MW:Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2014;260:21-34.
32) Gribar SC, Sodhi CP, Richardson WM, et al.:Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 2009;182:636-646.
33) Sodhi CP, Neal MD, Siggers R, et al.:Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 2012;143:708-718e705.
34) Good M, Siggers RH, Sodhi CP, et al.:Amniotic fluid inhibits Toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proc Natl Acad Sci USA 2012;109:11330-11335.
35) Abrahams VM, Bole-Aldo P, Kim YM, et al.:Divergent trophoblast responses to bacterial products mediated by TLRs. J Immunol 2004;173:4286-4296.
36) Hackam DJ, Sodhi CP:Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell Mol Gastroenterol Hepatol 2018;6:229-238 e221.
37) Comelli EM, Simmering R, Faure M, et al.:Multifaceted transcriptional regulation of the murine intestinal mucous layer by endogenous microbiota. Genomics 2008;91:70-77.
38) Zheng L, Kelly CJ, Colgan SP:Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme:cellular responses to hypoxia. Am J Physiol Cell Physiol 2015;309:C350-360.
39) Friedman ES, Bittinger K, Esipova TV, et al.:Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci USA 2018;115:4170-4175.
40) Hill DR, Huang S, Nagy MS, et al.:Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife 2017;6, 10.7554/eLife.29132.
41) Bittinger K, Zhao C, Li Y, et al.:Bacterial colonization reprograms the neonatal gut metabolome. Nat Microbiol 2020;5:838-847.
42) Shaffiey SA, Jia H, Keane T, et al.:Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med 2016;11:45-61.
43) Hou Q, Ye L, Liu H, et al.:Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ 2018;25:1657-1670.
44) Bergstrom A, Kristensen MB, Bahl MI, et al.:Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes 2012;5:10.1186/1756-0500-1185-1402.
45) Mowat AM, Agace WW:Regional specialization within the intestinal immune system. Nat Rev Immunol 2014;14:667-685.
46) WHO, UNICEF:Global strategy for infant and young child feeding. 2003;Geneva, 14-15 pp.
47) 厚生労働省:授乳・離乳の支援ガイド. 2007;https://wwwmhlwgojp/shingi/2007/03/dl/s0314-17pdf.
48) Zuurveld M, van Witzenburg NP, Garssen J, et al.:Immunomodulation by human milk oligosaccharides:the potential role in prevention of allergic diseases. Front Immunol 2020;11:801:10.3389/fimmu.2020.00801.
49) Nagpal R, Kurakawa T, Tsuji H, et al.:Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life:a quantitative assessment. Sci Rep 2017;7:10097:10.1038/s41598-41017-10711-41595.
50) Urashima T, Asakuma S, Leo F, et al.:The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 2012;3:473S-482S.
51) Sprenger N, Lee LY, De Castro CA, et al.:Longitudinal change of selected human milk oligosaccharides and association to infants, growth, an observatory, single center, longitudinal cohort study. PLoS One 2017;12:e0171814.
52) Kunz C, Meyer C, Collado MC, et al.:Influence of gestational age, secretor, and Lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr 2017;64:789-798.
53) Tannock GW, Lawley B, Munro K, et al.:Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol 2013;79:3040-3048.
54) Makino H, Martin R, Ishikawa E, et al.:Multilocus sequence typing of bifidobacterial strains from infant's faeces and human milk:are bifidobacteria being sustainably shared during breastfeeding? Benef Microbes 2015;6:563-572.
55) Odamaki T, Horigome A, Sugahara H, et al.:Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int J Genomics 2015;ID 567809 10.1155/2015/567809.
56) Katayama T:Host-derived glycans serve as selected nutrients for the gut microbe:human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem 2016;80:621-632.
57) Thomson P, Medina DA, Garrido D:Human milk oligosaccharides and infant gut bifidobacteria:Molecular strategies for their utilization. Food Microbiol 2018;75:37-46.
59) Coppa GV, Zampini L, Galeazzi T, et al.:Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens:Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 2006;59:377-382.
60) Sakanaka M, Gotoh A, Yoshida K, et al.:Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides:prevalence of the gene set and its correlation with Bifidobacteria-rich microbiota formation. Nutrients 2019;12:10.3390/nu12010071.
61) Katayama T, Sakuma A, Kimura T, et al.:Molecular cloning and characterization of Bifidobacterium bifidum 1, 2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 2004;186:4885-4893.
62) Yamada C, Gotoh A, Sakanaka M, et al.:Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem Biol 2017;24:515-524 e511-e515.
63) Katayama T, Fujita K:Yamamoto K:Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 2005;99:457-465.
64) Kitaoka M, Tian J, Nishimoto M:Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 2005;71:3158-3162.
65) Matsuki T, Yahagi K, Mori H, et al.:A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 2016;7:11939:10.1038/ncomms11939.
66) Garrido D, Kim JH, German JB, et al.:Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011;6:e17315.
67) Sakanaka M, Hansen ME, Gotoh A, et al.:Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 2019;5:eaaw7696.
68) Gotoh A, Katoh T, Sakanaka M, et al.:Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep 2018;8:10.1038/s41598-41018-32080-41593.
69) Asakuma S, Hatakeyama E, Urashima T, et al.:Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011;286:34583-34592.
70) Garrido D, Ruiz-Moyano S, Kirmiz N, et al.:A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 2016;6:10.1038/srep35045.
71) Bottacini F, Morrissey R, Esteban-Torres M, et al.:Comparative genomics and genotypephenotype associations in Bifidobacterium breve. Sci Rep 2018;8:10633, 10610.11038/srep35045.
72) Oozeer R, van Limpt K, Ludwig T, et al.:Intestinal microbiology in early life:specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am J Clin Nutr 2013;98:561S-571S.
73) Simeoni U, Berger B, Junick J, et al.:Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446. Environ Microbiol 2016;18:2185-2195.
74) Charbonneau MR, O'Donnell D, Blanton LV, et al.:Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 2016;164:859-871.
75) Quigley M, Embleton ND, McGuire W:Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2019;7:CD002971.
76) Biagi E, Aceti A, Quercia S, et al.:Microbial community dynamics in mother's milk and infant's mouth and gut in moderately preterm infants. Front Microbiol 2018;9:10.3389/fmicb.2018.02512.
77) Butcher J, Unger S, Li J, et al.:Independent of birth mode or gestational age, very-low-birthweight infants fed their mothers, milk rapidly develop personalized microbiotas low in Bifidobacterium. J Nutr 2018;148:326-335.
78) Chen S, Tukey RH: Humanized UGT1 mice, regulation of UGT1A1, and the role of the intestinal tract in neonatal hyperbilirubinemia and breast milk-induced jaundice. Drug Metab Dispos 2018;46:1745-1755.
79) Gomez M, Moles L, Melgar A, et al.:Early gut colonization of preterm infants:effect of enteral feeding tubes. J Pediatr Gastroenterol Nutr 2016;62:893-900.
80) Moles L, Gomez M, Heilig H, et al.:Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One 2013;8:e66986.
81) Battersby C, Longford N, Mandalia S, et al.:Incidence and enteral feed antecedents of severe neonatal necrotising enterocolitis across neonatal networks in England, 2012-13:a whole-population surveillance study. Lancet Gastroenterol Hepatol 2017;2:43-51.
82) Bauer J, Gerss J:Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin Nutr 2011;30:215-220.
83) Pacheco AR, Barile D, Underwood MA, et al.:The impact of the milk glycobiome on the neonate gut microbiota. Annu Rev Anim Biosci 2015;3:419-445.
84) Warner BB, Deych E, Zhou Y, et al.:Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants:a prospective case-control study. Lancet 2016;387:1928-1936.
85) Morrow AL, Meinzen-Derr J, Huang P, et al.:Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J Pediatr 2011;158:745-751.
86) Underwood MA, Umberger E, Patel RM:Safety and efficacy of probiotic administration to preterm infants:ten common questions. Pediatr Res 2020;88:48-55.
87) Nino DF, Sodhi CP, Hackam DJ:Necrotizing enterocolitis:new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 2016;13:590-600.
88) Nakatani M, Inoue R, Tomonaga S, et al.:Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the sucklingweaning period. Nutrients 2018;10:10.3390/nu10091220.
89) Al Nabhani Z, Dulauroy S, Marques R, et al.:A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 2019;50:1276-1288 e1275.
90) Pluymen LPM, Wijga AH, Gehring U, et al.:Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands:the PIAMA birth cohort study. Eur J Nutr 2018;57:1985-1993.
91) Nwaru BI, Takkinen HM, Niemela O, et al.:Timing of infant feeding in relation to childhood asthma and allergic diseases. J Allergy Clin Immunol 2013;131:78-86.
92) McKeen S, Young W, Mullaney J, et al.:Infant complementary feeding of prebiotics for themicrobiome and immunity. Nutrients 2019;11:10.3390/nu11020364.
93) Hamosh M, Henderson TR, Ellis LA, et al.:Digestive enzymes in human milk:stability at suboptimal storage temperatures. J Pediatr Gastroenterol Nutr 1997;24:38-43.
94) Bergstrom A, Skov TH, Bahl MI, et al.:Establishment of intestinal microbiota during early life:a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014;80:2889-2900.
95) Fallani M, Amarri S, Uusijarvi A, et al.:Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 2011;157:1385-1392.
96) Koenig JE, Spor A, Scalfone N, et al.:Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 2011;108 Suppl 1:4578-4585.
97) McKeen S, Young W, Fraser K, et al.:Glycan utilisation and function in the microbiome of weaning infants. Microorganisms 2019;7:10.3390/microorganisms7070190.
98) Differding MK, Benjamin-Neelon SE, Hoyo C, et al.:Timing of complementary feeding is associated with gut microbiota diversity and composition and short chain fatty acid concentrations over the first year of life. BMC Microbiol 2020;20:56:10.1186/s12866-12020-01723-12869.
99) Sugahara H, Odamaki T, Hashikura N, et al.:Differences in folate production by bifidobacteria of different origins. Biosci Microbiota Food Health 2015;34:87-93.
100) Depommier C, Everard A, Druart C, et al.:Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study. Nat Med 2019;25:1096-1103.
101) Riedler J, Braun-Fahrlander C, Eder W, et al.:Exposure to farming in early life and development of asthma and allergy:a cross-sectional survey. Lancet 2001;358:1129-1133.
102) Gollwitzer ES, Saglani S, Trompette A, et al.:Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 2014;20:642-647.
103) Ohnmacht C, Park JH, Cording S, et al.:The microbiota regulates type 2 immunity through RORγt+ T cells. Science 2015;349:989-993.
104) Sefik E, Geva-Zatorsky N, Oh S, et al.:Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 2015;349:993-997.
105) Bashir ME, Louie S, Shi HN, et al.:Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 2004;172:6978-6987.
106) Russell SL, Gold MJ, Hartmann M, et al.:Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-447.
107) Olszak T, An D, Zeissig S, et al.:Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012;336:489-493.
108) Walker WA:The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res 2017;82(3):387-395.
109) Thorburn AN, McKenzie CI, Shen S, et al.:Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015;6:7320.
110) Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T:The maternal microbiota drives early postnatal innate immune development. Science 2016;351:1296-1302.
111) Ennamorati M, Vasudevan C, Clerkin K, et al.:Intestinal microbes influence development of thymic lymphocytes in early life. Proc Natl Acad Sci USA 2020;117:2570-2578.
112) Li N, van Unen V, Abdelaal T, et al.:Memory CD4(+)T cells are generated in the human fetal intestine. Nat Immunol 2019;20.
113) Han YW, Fardini Y, Chen C, et al.:Term stillbirth caused by oral Fusobacterium nucleatum. Obstet Gynecol. 2010;115:442-445.
114) Aagaard K, Riehle K, Ma J, et al.:A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 2012;7:e36466.
115) Mitchell CM, Haick A, Nkwopara E:Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015;212:611. e1-9.
116) Onderdonk AB, Hecht JL, McElrath TF, et al.:ELGAN Study Investigators. Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol. 2008;199:52. e1-52. e10.
117) DiGiulio DB, Romero R, Kusanovic JP, et al.:Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol 2008;199:52. e1-52.
119) Prince AL, Ma J, Kannan PS, et al.:The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol 2016;214:627. e1-627. e16.

第5章 腸内細菌叢と疾患

P.129 掲載の参考文献
1) Sender R, et al.:Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.
2) Qin J, et al.:A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.
3) Turnbaugh PJ, et al.:An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031.
4) Ley RE, et al.:Microbial ecology:human gut microbes associated with obesity. Nature 2006;444:1022-1023.
5) Liu R, et al.:Gut microbiome and serum metabolome alterations in obesity and after weightloss intervention. Nat Med 2017;23:859-868.
6) Cani PD, et al.:Next-generation beneficial microbes:The Case of Akkermansia muciniphila. Front Microbiol 2017;8:1765.
7) Ferreira-Halder CV, et al.:Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol 2017;31:643-648.
8) Ohkusa T, et al.:Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 2002;17:849-853.
9) Png CW, et al.:Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010;105:2420-2428.
10) Turnbaugh P, et al.:A core gut microbiome in obese and lean twins. Nature 2009;457:480-484.
11) Goodrich JK, et al.:Human genetics shape the gut microbiome. Cell 2014;159:789-799.
12) Morotomi M, et al.:Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol 2012;62:144-149.
13) Ridaura VK, et al.:2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214.
14) Backhed F, et al.:The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101:15718-15723.
15) Backhed F, et al.:Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007;104:979-984.
16) Shimizu H, et al.:Regulation of host energy metabolism by gut microbiota-derived shortchain fatty acids. Glycative Stress Res 2019;6:181-191.
17) Brown AJ, et al.:The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-11319.
18) Pluznick JL, et al.:Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 2013;110:4410-4415.
19) Greiner TU, et al.:Microbial regulation of GLP-1 and L-cell biology. Mol Metabol 2016;5:753-758.
20) Samuel BS, et al.:Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008;105:16767-16772.
21) Tolhurst G, et al.:Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61:364-371.
22) Madsen, MSA, et al.:Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep 2019;9:15582.
23) Wang TJ, et al.:Metabolite profiles and the risk of developing diabetes. Nat Med 2011;17:448-453.
24) Magnusson M, et al.:A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J 2013;34:1982-1989.
25) Vieira-Silva S, et al.:Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020;581:310-315.
26) Yang T, et al.:Gut dysbiosis is linked to hypertension. Hypertension 2015;65:1331-1340.
27) Li J, et al.:Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017;5:14.
28) Jennifer L:Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol 2013;305:439-444.
29) Fuglsang A, et al.:Lactic acid bacteria:inhibition of angiotensin converting enzyme in vitro and in vivo. Antonie Van Leeuwenhoek 2003;83:27-34.
30) Seppo L, et al.:A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 2003;77:326-330.
31) Wilck N, et al.:Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017;551:585-589.
32) Emoto T, et al.:Analysis of gut microbiota in coronary artery disease patients:A possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016;23:908-921.
33) Jie Z, et al.:The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017;8:845.
34) Karlsson FH, et al.:Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245.
35) Zeng X, et al.:Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrateproducing bacteria in the gut. Front Cell Infect Microbiol 2019;9:4.
36) Zhu Q, et al.:Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 2018;50:893-903.
37) Yamashiro K, et al.:Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 2017;12:e0171521.
38) Wang Z, et al.:Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57-63.
39) Rath S, et al.:Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 2017;5:54.
40) Romano KA, et al.:Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 2015;6:e02481.
41) Ahmad AF, et al.:The gut microbiome and cardiovascular disease:current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 2019;317:H923-H938.
42) Andraws R, et al.:Effects of antibiotic therapy on outcomes of patients with coronary artery disease:a meta-analysis of randomized controlled trials. JAMA 2005;239:2641-2647.
43) Wang Z, et al.:Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163:1585-1595.
44) Roberts AB, et al.:Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 2018;24:1407-1417.
45) Forslund K, et al.:Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528:262-266.
46) Karlsson FH, et al.:Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99-103.
47) Larsen N, et al.:Gut microbiota in human adults with type 2 diabetes differs from nondiabetic adults. PLoS ONE 2010;5(2):e9085.
48) Li Q, et al.:Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep 2020;10:5450.
49) Qin J, et al.:A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.
50) Sato J, et al.:Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014;37:2343-2350.
51) Pedersen H, et al.:Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016;535:376-381.
52) Lynch CJ, et al.:Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014;10:723-736.
53) Wu H, et al.:Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017;23:850-858.
54) Sun L, et al.:Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24:1919-1929.
55) Ludwig J, et al.:Nonalcoholic steatohepatitis:Mayo clinic experience with a hitherto unnamed disease. Mayo Clin Proc 1980;55:434-438.
56) Diehl AM:Nonalcoholic steatohepatitis. Semin. Liver Dis 1999;16:221-229.
57) Green RM:NASH:hepatic metabolism and not simply the metabolic syndrome. Hepatology 2003;38:14-17.
58) Day CP, et al.:Steatohepatitis:a tale of tow "hits"? Gasteroenterology 1998;114:842-845.
59) Caussy C, et al.:A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019;10:1406.
60) Chierico FD, et al.:Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated metaomics-based approach. Hepatology 2017;65:451-464.
61) Schwimmer JB, et al.:Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019;157:1109-1122.
62) Loomba R, et al.:Gut Microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017;25:1054-1062.
63) Zhu L, et al.:Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients:a connection between endogenous alcohol and NASH. Hepatology 2013;57:601-609.
64) Boursier J, et al.:The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63:764-775.
65) Hoyles L, et al.:Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018;24:1070-1080.
66) Kakiyama G, et al.:Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013;58:949-955.
67) Luther J, et al.:Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol 2015;1:222-232.
68) Baker SS, et al.:Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One 2010;5:e9570.
69) Seki E, et al.:TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 2007;13:1324-1332.
70) Dapito DH, et al.:Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012;21:504-516.
71) Aranha MM, et al.:Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 2008;20:519-525.
72) Ferslew BC, et al.:Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 2015;60:3318-3328.
73) Yoshimoto S, et al.:Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499:97-101.
74) Jostins L, et al.:Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119-124.
75) Khor B, et al.:Genetics and pathogenesis of inflammatory bowel disease. Nature 2011;474:307-317.
76) Liu JZ, et al.:Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature genetics 2015;47:979-986.
77) Momozawa Y, et al.:IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun 2018;9:2427.
78) Sartor RB, et al.:Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 2017;152:327-339.
79) Knox NC, et al.:The gut microbiome in inflammatory bowel disease:Lessons learned from other immune-mediated inflammatory diseases. Am J Gastroenterol 2019;114:1051-1070.
80) Chehoud C, et al.:Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2015;21:1948-1956.
81) Hoarau G, et al.:Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. mBio 2016;7:e01250-16.
82) Norman JM, et al.:Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015;160:447-460.
83) Sokol H, et al.:Fungal microbiota dysbiosis in IBD. Gut 2017;66:1039-1048.
84) Atarashi K, et al.:Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500:232-236.
85) Furusawa Y, et al.:Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446-450.
86) Sokol H, et al.:Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn's disease patients. Proc Natl Acad Sci USA 2008;105:16731-16736.
87) Rossi O, et al.:Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 2016;6:18507.
88) Britton GJ, et al.:Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 2019;50:212-224.
89) Atarashi K, et al.:Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 2017;358:359-365.
90) Ni J, et al.:A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci Transl Med 2017;9:eaah6888.
91) Winter SE, et al.:The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 2013;14:319-327.
92) Amininejad L, et al.:Analysis of genes associated with monogenic primary immunodeficiency identifies rare variants in XIAP in patients with Crohn's disease. Gastroenterology 2018;154:2165-2177.
93) Denson LA, et al.:Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn's disease. Gastroenterology 2018;154:2097-2110.
94) Wehkamp J, et al.:NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal α-defensin expression. Gut 2004;53:1658-1664.
95) Darfeuille-Michaud A, et al.:High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 2004;127:412-421.
96) Henke MT, et al.:Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 2019;116:12672-12677.
97) Limon JJ, et al.:Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019;25:377-388.
98) Mallon P, et al.:Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst Rev 2007;4:CD005573.
99) Kruis W, et al.:Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004;53:1617-1623.
100) Sood A, et al.:The probiotic preparation, VSL#3 induces remission in patients with mild-tomoderately active ulcerative colitis. Clin Gastroenterol Hepatol 2009;7:1202-1209.
101) Paramsothy S, et al.:Faecal microbiota transplantation for inflammatory bowel disease:A systematic review and meta-analysis. J Crohns Colitis 2017;11:1180-1199.
102) Paramsothy S, et al.:Multidonor intensive faecal microbiota transplantation for active ulcerative colitis:a randomised placebo-controlled trial. Lancet 2017;389:1218-1228.
103) Ishikawa D, et al.:Changes in intestinal microbiota following combination therapy with fecal microbial Transplantation and Antibiotics for Ulcerative Colitis. Inflamm Bowel Dis 2017;23:116-125.
104) Kato K, et al.:Adjunct antibiotic combination therapy for steroid-refractory or -dependent ulcerative colitis:an open-label multicentre study. Aliment Pharmacol Ther 2014;39:949-956.
105) Zhu W, et al.:Precision editing of the gut microbiota ameliorates colitis. Nature 2018;553:208-211.
106) Kitamoto S, et al.:Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat Microbiol 2020;5:116-125.
107) Kostic AD, et al.:Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292-298.
108) Castellarin M, et al.:Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.
109) Baxter NT, et al.:Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 2016;8:37.
110) Dejea C, et al.:Bacterial oncogenesis in the colon. Future Microbiol 2013;8:445-460.
111) Feng Q, et al.:Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6:6528.
112) Hale VL, et al.:Shifts in the fecal microbiota associated with adenomatous polyps. Cancer Epidemiol Biomarkers Prev 2017;26:85-94.
113) Lu Y, et al.:Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci Rep 2016;6:26337.
114) Sears CL, et al.:Microbes, microbiota, and colon cancer. Cell Host Microbe 2014;15:317-328.
115) Yu J, et al.:Metagenomic analysis of faecal microbiome as a tool towards targeted noninvasive biomarkers for colorectal cancer. Gut 2017;66:70-78.
116) Zackular JP, et al.:The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila) 2014;7:1112-1121.
117) Zeller G, et al.:Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014;10:766.
118) Flemer B, et al.:Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66:633-643.
119) Yachida S, et al.:Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019;25:968-976.
120) Mottawea W, et al.:Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat Commun 2016;7:13419.
121) Arthur JC, et al.:Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338:120-123.
122) Kostic AD, et al.:Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14:207-215.
123) Tsoi H, et al.:Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017;152:1419-1433.
124) Yu J, et al.:The role of Parvimonas micra in intestinal tumorigenesis in germ-free and conventional APCmin/+ mice. J Clin Oncol 2019;37:531.
125) Wu S, et al.:A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15:1016-1022.
126) Sears, CL:Enterotoxigenic Bacteroides fragilis:a rogue among symbiotes. Clin Microbiol Rev 2009;22:349-369.
127) Wu S, et al.:Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA 1998;95:14979-14984.
128) Wu S, et al.:Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003;124:392-400.
129) Rubinstein MR, et al.:Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14:195-206.
130) Gur C, et al.:Binding of the Fap 2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42:344-355.
131) Abed J, et al.:Fap2 Mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016;20:215-225.
132) Yu T, et al.:Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017;170:548-563.
133) Bullman S, et al.:Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443-1448.
134) Routy B, et al.:Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91-97.
135) Gopalakrishnan V, et al.:Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359:97-103.
136) Tanoue T, et al.:A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019;565:600-605.
137) Strachan DP:Hay fever, hygiene, and household size. BMJ 1989;299:1259-1260.
138) Bashir ME, et al.:Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 2004;172:6978-6987.
139) Aumeunier A, et al.:Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 2010;5:e11484.
140) Cahenzli J, et al.:Intestinal microbial diversity during early-life colonization shapes longterm IgE levels. Cell Host Microbe 2013;14:559-570.
141) Oyama N, et al.:Antibiotic use during infancy promotes a shift in the TH1/TH2 balance toward TH2-dominant immunity in mice. J Allergy Clin Immunol 2001;107:153-159.
142) Olszak T, et al.:Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012;336:489-493.
143) Josefowicz SZ, et al.:Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 2012;482:395-399.
144) Russell SL, et al.:Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-447.
145) Stefka AT, et al.:Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 2014;111:13145-13150.
146) Barnetson RS, et al.:Childhood atopic eczema. BMJ 2002;324:1376-1379.
147) Metsala J, et al.:Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy 2015;45:137-145.
148) Stokholm J, et al.:Maternal propensity for infections and risk of childhood asthma:a registry-based cohort study. Lancet Respir Med 2014;2:631-637.
149) Saarinen UM, et al.:Breastfeeding as prophylaxis against atopic disease:prospective follow-up study until 17 years old. Lancet 1995;346:1065-1069.
150) Bunyavanich S, et al.:Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 2016;138:1122-1130.
151) Kourosh A, et al.:Fecal microbiome signatures are different in food allergic children compared to siblings and healthy children. Pediatr Allergy Immunol 2018;29:545-554.
152) Arrieta MC, et al.:Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol 2018;142:424-434.
153) Fujimura K, et al.:Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016;22:1187-1191.
154) Arrieta MC, et al.:Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015;7:307ra152.
155) Vuillermin PJ, et al.:Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nat Commun 2020;11:1452.
156) Mahdavinia M, et al.:Effects of diet on the childhood gut microbiome and its implications for atopic dermatitis. J Allergy Clin Immunol 2019;143:1636-1637.
157) Simonyte SK, et al.:Temporal and long-term gut microbiota variation in allergic disease:A prospective study from infancy to school age. Allergy 2019;74:176-185.
158) Candela M, et al.:Unbalance of intestinalmicrobiota in atopic children. BMC Microbiol 2012;12:95.
159) Hong PY, et al.:Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One 2010;5:e9964.
160) Penders J, et al.:Gut microbiota composition and development of atopic manifestations in infancy:the KOALA Birth Cohort Study. Gut 2007;56:661-667.
161) Kim YG, et al.:Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe. 2014;15:95-102.
162) Azad MB, et al.:Infant gut microbiota and food sensitization:associations in the first year of life. Clin Exp Allergy 2015;45:632-643.
163) Chen CC, et al.:Alterations in the gut microbiotas of children with food sensitization in early life. Ped Allergy Immunol 2016;27:254-262.
164) Chua HH, et al.:Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic Diseases in Infants. Gastroenterology 2018;154:154-167.
165) Fazlollahi M, et al.:Early-life gut microbiome and egg allergy. Allergy 2018;73:1515-1524.
166) Kirjavainen PV, et al.:Aberrant composition of gut microbiota of allergic infants:a target of bifidobacterial therapy at weaning?. Gut 2002;51:51-55.
167) Ling Z, et al.:Altered fecal microbiota composition for food allergy in infants. Appl Environ Microbiol 2014;80:2546-2554.
168) Nylund L, et al.:Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol 2013;13:12.
169) McInnes IB, et al.:The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365:2205-2219.
170) du Montcel ST, et al.:New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility. Arthritis Rheum 2005;52:1063-1068.
171) Gregersen PK, et al.:The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987;30:1205-1213.
172) Benson RA, et al.:Model answers:Rational application of murine models in arthritis research. Eur J Immunol 2018;48:32-38.
173) Hashimoto M:Th17 in animal models of rheumatoid arthritis. J Clin Med 2017;6:73.
174) Ivanov II, et al.:Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485-498.
175) Scher JU, et al.:The microbiome and rheumatoid arthritis. Nat Rev Rheumatol 2011;7:569-578.
176) Wu HJ, et al.:Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010;32:815-827.
177) Zanin-Zhorov A, et al.:Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 2010;328:372-376.
178) Picchianti-Diamanti A, et al.:Infectious agents and inflammation:The role of microbiota in autoimmune arthritis. Front Microbiol 2018;8:2696.
179) Scher JU, et al.:Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013;2:e01202.
180) Maeda Y, et al.:Dysbiosis contributes to arthritis development via activation of autoreactive T Cells in the Intestine. Arthritis Rheumatol 2016;68:2646-2661.
181) Kishikawa T, et al.:Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis 2020;79:103-111.
182) Gomez A, et al.:Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice. PLOS ONE 2012;7:e36095.
183) Chen J, et al.:An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 2016;8:43.
184) Mercado FB, et al.:Relationship between rheumatoid arthritis and periodontitis. J Periodontol 2001;72:779-787.
185) Wegner N, et al.:Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase:implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 2010;62:2662-2672.
186) Sato K, et al.:Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci Rep 2017;7:6955.
187) Pianta A, et al.:Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol 2017;69:964-975.
188) Marietta EV, et al.:Suppression of inflammatory arthritis by human gut-derived Prevotella histicola in humanized mice. Arthritis Rheumatol 2016;68:2878-2888.
189) Bodkhe R, et al.:The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis 2019;11:1759720X19844632.
190) Picchianti-Diamanti A, et al.:Analysis of gut microbiota in rheumatoid arthritis patients:disease-related dysbiosis and modifications induced by etanercept. Int J Mol Sci 2018;19:2938.
191) Kanerud L, et al.:Effect of sulphasalazine on gastrointestinal microflora and on mucosal heat shock protein expression in patients with rheumatoid arthritis. Br J Rheumatol 1994;33:1039-1048.
192) Wekerle H:Nature plus nurture:the triggering of multiple sclerosis. Swiss Med Wkly 2015;145:w14189.
193) Sawcer S, et al.:Multiple sclerosis genetics. Lancet Neurol 2014;13:700-709.
194) Mirza A, et al.:The multiple sclerosis gut microbiota:A systematic review. Mult Scler Relat Disord 2020;37:101427.
195) Miyake S, et al.:Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV Clusters. PLoS One 2015;10:e0137429.
196) Kleinewietfeld M, et al.:Regulatory T cells in autoimmune neuroinflammation. Immunol Rev 2014;259:231-244.
197) Berer K, et al.:Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011;479:538-541.
198) Lee YK, et al.:Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011;108:4615-4622.
199) Yokote H, et al.:NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2008;173:1714-1723.
200) Ivanov II, et al.:The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006;126:1121-1133.
201) Shahi SK, et al.:Gut microbiome in multiple sclerosis:The players involved and the roles they play. Gut Microbes 2017;8:607-615.
202) Cekanaviciute E, et al.:Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA 2017;114:10713-10718.
203) Berer K, et al.:Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 2017;114:10719-10724.
204) Ochoa-Reparaz J, et al.:A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 2010;3:487-495.
205) Cantarel BL, et al.:Gut microbiota in multiple sclerosis:possible influence of immunomodulators. J Investig Med 2015;63:729-734.
206) Duscha A, et al.:Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 2020;180:1067-1080.
207) Rothhammer V, et al.:Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016;22:586-597.
208) Rothhammer V, et al.:Microglial control of astrocytes in response to microbial metabolites. Nature 2018;557:724-728.
209) Zelante T, et al.:Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39:372-385.
210) Rosen DR, et al.:Mutations in Cu_Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59-62.
211) Wu S, et al.:Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep 2015;3:e12356.
212) Zhang YG, et al.:Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther 2017;39:322-336.
213) Blacher E, et al.:Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019;572:474-480.
214) Sandler RH, et al.:Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000;15:429-435.
215) Xu M, et al.:Association between gut microbiota and autism spectrum disorder:A systematic review and meta-analysis. Front. Psychiatry 2019;10:473.
216) Parracho HM et al.:Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005;54:987-991.
217) Argou-Cardozo I, et al.:Clostridium bacteria and autism spectrum conditions:a systematic review and hypothetical contribution of environmental glyphosate levels. Med Sci (Basel) 2018;6:E29.
218) Shehata AA, et al.:The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 2013;66:350-358.
219) Kruger M, et al.:Glyphosate suppresses the antagonistic effect of Enterococcus spp. on Clostridium botulinum. Anaerobe 2013;20:74-78.
220) Sharon G, et al.:Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019;177:1600-1618.
221) Rubenstein JLR, et al.:Model of autism:increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003;2:255-267.
223) Hsieh CY, et al.:Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep 2015;3:e12327.
224) Plovier H, et al.:A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23:107-113.
225) Gomez-Gallego C, et al:Akkermansia muciniphila:A novel functional microbe with probiotic properties. Benef Microbes 2016;7:571-584.

第6章 栄養学 ( 食事 ) と腸内細菌

P.142 掲載の参考文献
1) Tsuji H, et al.:Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes 2012;3:113-125.
2) Wang C, et al.:Intestinal microbiota profiles of healthy pre-school and school-age children and effects of probiotic supplementation. Ann Nutr Metab 2015;67:257-267.
3) 光岡知足:腸内細菌の話. 岩波新書, 黄版, 58. 1978.
4) Barker DJ, et al.:Weight in infancy and death from ischemic heart disease. Lancet 1989;2:577-580.
P.148 掲載の参考文献
1) Wu GD, et al.:Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-108.
2) Trowell HC, et al.:Dietary fiber redefined. Lancet 1976;1:967
3) 桐山修八, 他:日本におけるDietary fiberの定義・用語・分類をめぐる議論と包括的用語の提案まで. 日本食物繊維学会誌 2003;7:39-49.
4) Graf D, et al.:Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 2015;26:26164.
5) Kochar J, et al.:Breakfast cereals and risk of type 2 diabetes in the physicians' health study I. Obesity 2007;15, 3039-3044.
6) Liu SM, et al.:Is intake of breakfast cereals related to total and cause-specific mortality in men? Am J Clin Nutr 2003;77, 594-599.
7) Fung TT, et al.:Whole-grain intake and the risk of type 2 diabetes:a prospective study in men. Am J Clin Nutr 2002;76, 535-540.
8) Carvalho-Wells AL, et al.:Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal:a human feeding study. Br J Nutr 2010;104:1353-1356.
9) Costabile A, et al.:Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota:a double-blind, placebo-controlled, crossover study. Br J Nutr 2008;99:110-120.
10) Martinez I, et al.:Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2013;7:269-280.
11) Walker AW, et al.:Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-230.
12) Martinez I, et al.:Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 2010;5:e15046.
13) Hooda S, et al.:454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 2012;142:1259-1265.
14) Costabile A, et al:Impact of polydextrose on the faecal microbiota:a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr 2012;108:471-481.
15) Wilson B, et al.:Prebiotic inulin-type fructans and galacto-oligosaccharides:definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol 2017;32:64-68.
16) Roberfroid M, et al.:Gibson GR, Hoyles L, et al. Prebiotic effects:metabolic and health benefits. Br J Nutr 2010;104:S1-S63.
17) Sonnenburg ED, et al.: Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 2010;141:1241-1252.
18) Costabile A, et al.:A double-blind, placebo-controlled, crossover study to establish the bifidogenic effect of a very-longchain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr 2010;104:1007-1017.
19) Vulevic J, et al.:Influence of galactooligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr 2015;114:586-595.
20) Walton GE, et al.:A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr J 2012;11:36.
21) Caesar R, et al.:Crosstalk between gut microbiota and dietary lipids Aggravates WAT inflammation through TLR signaling. Cell Metab 2015;22:658-668.
22) David LA, et al.:Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-563.
23) Islam SKBM, et al.:Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011;141:1773-1781.
24) Russell WR, et al.:High-protein, reduced-carbohydrate weightloss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011;93:1062-1072.
25) Levine ME, et al.:Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014;19, 407-417.
26) Lin R, et al.:A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017;49:2083-2090.
27) Zhu Y, et al.:Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 2015;5:15220.
28) McAllan L, et al.:Whey protein isolate decreases murine stomach weight and intestinal length and alters the expression of Wnt signalling-associated genes. Br J Nutr 2015;113:372-379.
29) Shi J, et al.:Whey protein isolate protects against dietinduced obesity and fatty liver formation. Int Dairy J 2011;21:513-522.
30) Sprong RC, et al.:Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis:role of mucin and microbiota. J Dairy Sci 2010;93:1364-1371.
31) Freudenberg A, et al.:Comparison of highprotein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J Nutr Biochem 2012;23:1524-1530.
32) Yang Z, et al.:Metabolic shifts and structural changes in the gut microbiota upon branchedchain amino acid supplementation in middle-aged mice. Amino Acids 2016;48:2731-2745.
P.158 掲載の参考文献
1) Matsuki T, Watanabe K, Tanaka R, et al.:Distribution of Bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 1999;65:4506-4512.
2) De Filippo C, Di Paola M, Ramazzotti M, et al.:Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 2010;107:14691-14696. doi.org/10.1073/pnas.1005963107.3.
3) De Fillippo C, Di Paola M, Ramazzotti M, et al.:Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front Microbiol 2017 Oct 13;8:1979. doi:10.3389/fmicb.2017.01979.
5) Smith MI, Yatsunenko T, Manary MJ, et al.:Gut microbiomes of Malawian twin pairs iscordant for kwashiorkor. Science 2013;339:548-554. doi:10.1126/science.1229000.5.
6) 岩瀬忠行:パプアニューギニア人の高地に住む人々の低タンパク食適応における腸内細菌叢の役割. 科学研究費助成事業(科学研究費補助金)研究成果報告書. https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-22770241/22770241seika.pdf, 2012.
7) Igai K, Itakura M, Nishijima S, et al.:Nitrogen fixation and nifH diversity in human gut microbiota. Sci Rep 2016;6:31942. doi:10.1038/srep31942.
8) Nakayama J, Watanabe K, Jiang J, et al.:Diversity in gut bacterial community of school-age children in Asia. Sci Rep 2015;5:8397. doi:10.1038/srep08397.
9) Sonnenburg ED and Sonnenburg JL:Starving our microbial self:The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 2014;20:779-786. doi:10.1016/j.cmet.2014.07.003.
10) Ohigashi S, Sudo K, Nomoto K, et al.:Changes of the Intestinal Microbiota, Short Chain Fatty Acids, and Fecal pH in Patients with Colorectal Cancer. Dig Dis Sci 2013;58:1717-1726.
11) 「日本人の食事摂取基準(2020年版)」策定検討会報告書1-4 炭水化物. https://www.mhlw.go.jp/content/10904750/000586559.pdf.
12) 平成24年度 食品の機能性評価事業 結果報告, 2014. 財団法人日本栄養健康食品協会HP. http://www.jhnfa.org/topic146-1.pdf.
13) U. S. Department of Health & Human Services:2015-2020 Dietary Guidelines for Americans. https://www.hhs.gov/fitness/eat-healthy/dietary-guidelines-for-americans/index.html.
14) Kaoutari AEI, Armougom F, Gordon JI, et al.:The abundance and variety of carbohydrateactive enzymes in the human gut microbiota. Nat Rev Microbiol 2013;11:497-504.
15) Hehemann JH, Correc G, Barbeyron T, et al.:Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908-912.
16) Cani PD:Human gut microbiome:hopes, threats and promises. Gut 2018;67:1716-1725. doi:10.1136/gutjnl-2018-316723.
17) Sato J, Kanazawa A, Ikeda F, et al.:The gut dysbiosis and translocation of "live gut bacteria" to blood in Japanese patients with type 2 diabetes. Diabet Care 2014;37:2343-2350.
18) Hojo M, Asahara T, Nagahara A, et al.:Gut microbiota composition before and after use of proton pump inhibitors. Dig Dis Sci 2018 May 24. doi:10.1007/s10620-018-5122-4.
19) Reid G, Gaudier E, Guarner F, et al.:Responders and non-responders to probiotic interventions. How can we improve the odds? Gut Microbes 2010;1:200-204.
20) Shida K, Kiyoshima-Shibata J, Nagaoka M, et al.:Induction of Interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci 2006;89:3306-3317.
21) 西山啓太, 向井孝夫:Lactobacillus属やBifidobacterium属の宿主腸粘膜への付着性に関わるアドヘシンとその分子機構. Japan J Lactic Acid Bacteria 2016;27:176-186.
22) The National Center for Complementary and Integrative Health(NCCIH) HP:Can probiotics be harmful? https://www.nccih.nih.gov/health/probiotics-what-you-need-toknow

第7章 プロバイオティクスとプレバイオティクスの登場と研究

P.173 掲載の参考文献
1) Sender R, Fuchs S, Milo R:Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS biology 2016;14:e1002533.
2) Gibson GR, Hutkins R, Sanders ME, et al.:Expert consensus document:The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Publishing Group;Nat Rev Gastroenterol Hepatol 2017;14(8):491-502.
3) Ley RE, Peterson DA, Gordon JI:Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837-848.
4) Gordon S:Phagocytosis:The Legacy of Metchnikoff. Cell 2016.
5) Tapiovaara L, Pitkaranta A, Korpela R:Probiotics and the upper respiratory tract-A review.:Pediatric Infect Dis 2016;1
6) Wang H, Lee I-S, Braun C, et al.:Effect of probiotics on central nervous system functions in animals and humans:A Systematic Review. J Neurogastroenterol Motil 2016;22:589-605.
7) Wang Y, Li X, Ge T, et al.:Probiotics for prevention and treatment of respiratory tract infections in children:A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016;95:e4509.
8) Markowiak P, Slizewska K:Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021.
9) Wilkins T, Sequoia J:Probiotics for gastrointestinal conditions:A summary of the evidence. Am Fam Physician 2017;96:170-178.
10) Nazir Y, Hussain SA, Abdul Hamid A, et al.:Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int 2018;3428437.
11) Kim S-K, Guevarra RB, Kim Y-T, et al.:Role of probiotics in human gut microbiomeassociated diseases. J Microbiol Biotechnol 2019;29:1335-1340.
12) Molska M, Regula J:Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients 2019;11:2453.
13) Lebeer S, Vanderleyden J, De Keersmaecker SCJ:Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews 2008;72:728-764.
14) Lebeer S, Vanderleyden J, De Keersmaecker SCJ:Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens. Nat Rev Microbiol 2010;8:171-184.
15) Thomas CM, Versalovic J. Probiotics-host communication:Modulation of signaling pathways in the intestine. Gut Microbes 2010;1:148-163.
16) Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, et al.:Probiotic mechanisms of action. Ann Nutr Metab 2012;61:160-174.
17) Llewellyn A, Foey A:Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events. Nutrients 2017;9:1156.
18) Suez J, Zmora N, Segal E, et al.:The pros, cons, and many unknowns of probiotics. Nat Med 2019;25:716-729.
19) Fukuda S, Toh H, Hase K, et al.:Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547.
20) Cotter PD, Hill C, Ross RP:Bacteriocins:developing innate immunity for food. Nat Rev Microbiol 2005;3:777-788.
21) Corr SC, Li Y, Riedel CU, et al.:Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences 2007;104:7617-7621.
22) Mack DR, Ahrne S, Hyde L, et al.:Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 2003;52:827-833.
23) Mattar AF, Teitelbaum DH, Drongowski RA, et al.:Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int 2002;18:586-590.
24) Medellin-Pena MJ, Wang H, Johnson R, et al.:Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Applied and Environmental Microbiology 2007;73:4259-4267.
25) Yun B, Oh S, Griffiths MW:Lactobacillus acidophilus modulates the virulence of Clostridium difficile. Journal of Dairy Sscience 2014;97:4745-4758.
26) Li J, Wang W, Xu SX, et al.:Lactobacillus reuteri-produced cyclic dipeptides quench agrmediated expression of toxic shock syndrome toxin-1 in staphylococci. Proceedings of the National Academy of Sciences of the United States of America 2011;108:3360-3365.
27) Ohland CL, Macnaughton WK:Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010;298:G807-819.
28) Miyamoto J, Mizukure T, Park S-B, et al.:A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 2015;290:2902-2918.
29) Kaikiri H, Miyamoto J, Kawakami T, et al.:Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice. Int J Food Sci Nutr 2017;68:941-951.
30) Kim Y, Kim S-H, Whang K-Y, et al.: Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. J Microbiol Biotechnol 2008;18:1278-1285.
31) Yan F, Cao H, Cover TL, et al.:Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007;132:562-575.
32) Matsuguchi T, Takagi A, Matsuzaki T, et al.:Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clinical and Diagnostic Laboratory Immunology 2003;10:259-266.
33) Turroni F, Serafini F, Foroni E, et al.:Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proceedings of the National Academy of Sciences of the United States of America 2013;110:11151-11156.
34) Ossowski von I, Pietila TE, Rintahaka J, et al.:Using recombinant Lactococcias an approach to dissect the immunomodulating capacity of surface piliation in probiotic Lactobacillus rhamnosus GG. PloS one 2013;8:e64416.
35) Yanagihara S, Kanaya T, Fukuda S, et al.:Uromodulin-SlpA binding dictates Lactobacillus acidophilus uptake by intestinal epithelial M cells. Int Immunol 2017;29:357-363.
36) Macho Fernandez E, Fernandez EM, Valenti V, et al.:Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 2011;60:1050-1059.
37) Schiavi E, Gleinser M, Molloy E, et al.:The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local TH17 Responses. Applied and Environmental Microbiology 2016;82:7185-7196.
38) Nagaoka M, Muto M, Nomoto K, et al.:Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. Journal of Biochemistry 1990;108:568-571.
39) Nagahama K, Kumano T, Nakagawa Y, et al.:Enhanced immunostimulating activity of lactobacilli-mimicking materials by controlling size. Bioconjug Chem 2015;26:1775-1781.
40) Nagahama K, Kumano T, Nakata T, et al.:Synthesis and immunestimulating activity of lactobacilli-originated polysaccharide-polymeric microparticle conjugates. Langmuir 2015;31:1489-1495.
41) Fukushima Y, Kawata Y, Hara H, et al.:Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. International journal of food microbiology 1998;42:39-44.
42) Galdeano CM, Perdigon G:The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 2006;13:219-226.
43) Kim Y-G, Ohta T, Takahashi T, et al.:Probiotic Lactobacillus casei activates innate immunity via NF-kappaB and p38 MAP kinase signaling pathways. Microbes and infection /Institut Pasteur 2006;8:994-1005.
44) Ito M, Kim Y-G, Nomoto K, et al.:Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity. PloS one 2014;9:e83876.
45) Aso Y, Akaza H, Kotake T, et al.:Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. Eur Urol 1995;27:104-109.
46) de Vrese M, Stegelmann A, Richter B, et al.:Probiotics--compensation for lactase insufficiency. The American Journal of Cclinical Nutrition 2001;73:421S-429S.
47) Costabile A, Buttarazzi I, Kolida S, et al.:An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PloS one 2017;12:e0187964.
48) Sun L, Xie C, Wang G, et al.:Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24:1919-1929.
49) Begley M, Hill C, Gahan CGM:Bile salt hydrolase activity in probiotics. Applied and environmental microbiology 2006;72:1729-1738.
50) Sarkar A, Lehto SM, Harty S, et al.:Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 2016;39:763-781.
51) Sudo N, Chida Y, Aiba Y, et al.:Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology 2004;558:263-275.
52) Savignac HM, Cryan JF, Bienenstock J, et al.:Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America [Internet] 2011;108:16050-16055. Available from:http://www.ncbi.nlm.nih.gov/pubmed/21876150
53) Tsankova N, Renthal W, Kumar A, et al.:Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8:355-367.
54) Schroeder FA, Lin CL, Crusio WE, et al.:Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62:55-64.
55) Benton D, Williams C, Brown A:Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 2007;61:355-361.
56) Messaoudi M, Lalonde R, Violle N, et al.:Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. The British Journal of Nutrition 2011;105:755-764.
57) Kato-Kataoka A, Nishida K, Takada M, et al.:Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Applied and Environmental Microbiology 2016;82:3649-3658.
58) Tillisch K, Labus J, Kilpatrick L, et al.:Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013;144:1394-1401-1401. e1-4.
59) Pelto L, Isolauri E, Lilius EM, et al.:Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 1998;28:1474-1479.
60) Roessler A, Friedrich U, Vogelsang H, et al.:The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy 2008;38:93-102.
61) Hod K, Dekel R, Aviv Cohen N, et al.:The effect of a multispecies probiotic on microbiota composition in a clinical trial of patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2018;30:e13456.
62) Zmora N, Zilberman-Schapira G, Suez J, et al.:Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018;174:1388-1405. e21.
63) Suez J, Zmora N, Zilberman-Schapira G, et al.:Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018;174:1406-1416.
64) He F, Ouwehand AC, Isolauri E, et al.:Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Current Microbiology 2001;43:351-354.
65) Andriantsoanirina V, Teolis A-C, Xin LX, et al.:Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates:comparison of cell surface properties. Anaerobe 2014;28:212-215.
66) Suwal S, Wu Q, Liu W, et al.:The probiotic effectiveness in preventing experimental colitis is correlated with host gut microbiota. Front Microbio 2018;9:2675.
67) Abildgaard A, Kern T, Pedersen O, et al.:The antidepressant-like effect of probiotics and their faecal abundance may be modulated by the cohabiting gut microbiota in rats. Eur Neuropsychopharmacol 2019;29:98-110.
68) Aceti A, Maggio L, Beghetti I, et al.:Probiotics prevent late-onset sepsis in human milk-fed, very low birth weight preterm infants:---Systematic review and meta-analysis. Nutrients 2017;9:904.
69) 西山啓太, 向井孝夫:Lactobacillus属やBifidobacterium属の宿主腸粘膜への付着性に関わるアドヘシンとその分子機構. Jpn J Lactic Acid Bact. 2016;27:176-186.
70) Shida K, Kiyoshima-Shibata J, Nagaoka M, et al.:Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. Journal of Dairy Science 2006;89:3306-3317.
P.188 掲載の参考文献
1) Cummings JH, Stephen AM:Carbohydrate terminology and classification. Eur J Clin Nutr 2007;61(Suppl 1):S5-18.
2) Deehan EC, et al.:Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol Spectr 2017;5.
3) Hamaker BR, Tuncil YE:A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 2014;426:3838-3850.
4) Verspreet J, et al.:A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol 2016;7:167-190.
5) Staudacher HM, Whelan K:Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet:probiotics, prebiotics and the low FODMAP diet. Proc Nutr Soc 2016;75:306-318.
6) De Giorgio R, Volta U, Gibson PR:Sensitivity to wheat, gluten and FODMAPs in IBS:facts or fiction?. Gut 2016;65:169-178.
7) Laatikainen R, et al.:Randomised clinical trial:low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment Pharmacol Ther 2016;44:460-470.
8) Bindels LB, Delzenne NM, Cani PD, et al.:Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015;12:303-310.
9) Hutkins RW, et al.:Prebiotics:why definitions matter. Curr Opin Biotechnol 2016;37:1-7.
10) Shanahan F:Fiber man meets microbial man. Am J Clin Nutr 2015;101:1-2.
11) Santacruz A, et al.:Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010;104:83-92.
12) Reid G, et al.:New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol 2003;37:105-118.
13) Whelan K:Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proc Nutr Soc 2013;72:288-298.
14) Walker AW, et al.:Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-230.
15) Ze X, Duncan SH, Louis P, et al.:Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012;6:1535-1543.
16) Costabile A, et al.:Impact of polydextrose on the faecal microbiota:a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr 2012;108:471-481.
17) Yoo HD, Kim D, Paek SH:Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol Ther (Seoul) 2012;20:371-379.
18) Tzounis X, et al.:Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 2011;93:62-72.
19) Borruel N, et al.:Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut 2002;51:659-664.
20) Salyers AA:Energy sources of major intestinal fermentative anaerobes. Am J Clin Nutr 1979;32:158-163.
21) Collado MC, Isolauri E, Laitinen K, et al.:Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008;88:894-899.
22) Kalliomaki M, Collado MC, Salminen S, et al.:Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87:534-538.
23) Schwiertz A, et al.:Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010;18:190-195.
24) Yin YN, Yu QF, Fu N, et al.:Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 2010;16:3394-3401.
25) Rios-Covian D, et al.:Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016;7:185.
26) Louis P, Scott KP, Duncan SH, et al.:Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2007;102:1197-1208.
27) Wong JM, de Souza R, Kendall CW, et al.:Colonic health:fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235-243.
28) Machiels K, et al.:A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014;63:1275-1283.
29) Carlson J, et al.:In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food Funct 2016;7:1833-1838.
30) Dewulf EM, et al.:Insight into the prebiotic concept:lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013;62:1112-1121.
31) Calvani R, et al.:Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int J Obes (Lond) 2010;34:1095-1098.
32) Salek RM, et al.:A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007;29:99-108.
33) Waldram A, et al.:Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J Proteome Res 2009;8:2361-2375.
34) Windey K, De Preter V, Verbeke K:Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56:184-196.
35) Ballongue J, Schumann C, Quignon P:Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol Suppl 1997;222:41-44.
36) De Preter V, Coopmans T, Rutgeerts P, et al.:Influence of long-term administration of lactulose and Saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J Am Coll Nutr 2006;25:541-549.
37) De Preter V, et al.:Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. Aliment Pharmacol Ther 2006;23:963-974.
38) Geboes KP, et al.:The influence of inulin on the absorption of nitrogen and the production of metabolites of protein fermentation in the colon. Br J Nutr 2006;96:1078-1086.
39) Birkett A, Muir J, Phillips J, et al.:Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am J Clin Nutr 1996;63:766-772.
40) Heijnen ML, Beynen AC:Consumption of retrograded (RS3) but not uncooked (RS2) resistant starch shifts nitrogen excretion from urine to feces in cannulated piglets. J Nutr 1997;127:1828-1832.
41) Cloetens L, et al.:Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects:a randomised, placebo-controlled cross-over study. Br J Nutr 2010;103:703-713.
42) Cashman KD:Calcium intake, calcium bioavailability and bone health. Br J Nutr 2002;87(Suppl 2):S169-177.
43) Whisner CM, et al.:Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls:a double-blind cross-over trial. Br J Nutr 2013;110:1292-1303.
44) Ellegard L, Andersson H, Bosaeus I:Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nutr 1997;51:1-5.
45) Lopez-Huertas E, et al.:Absorption of calcium from milks enriched with fructooligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids. Am J Clin Nutr 2006;83:310-316.
46) Tahiri M, et al.:Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women:a stable-isotope study. Am J Clin Nutr 2003;77:449-457.
47) van den Heuvel EG, Schaafsma G, Muys T, et al.:Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am J Clin Nutr 1998;67:445-451.
48) Abrams SA, et al.:A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 2005;82:471-476.
49) Coudray C, et al.:Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur J Clin Nutr 1997;51:375-380.
50) Griffin IJ, Davila PM, Abrams SA:Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 2002;87(Suppl 2):S187-191.
51) Tahiri M, et al.:Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 2001;16:2152-2160.
52) van den Heuvel EG, Muijs T, Van Dokkum W, et al.:Lactulose stimulates calcium absorption in postmenopausal women. J Bone Miner Res 1999;14:1211-1216.
53) van den Heuvel EG, Schoterman MH, Muijs T:Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 2000;130:2938-2942.
54) Frei R, Akdis M, O'Mahony L:Prebiotics, probiotics, synbiotics, and the immune system:experimental data and clinical evidence. Curr Opin Gastroenterol 2015;31:153-158.
55) Schley PD, Field CJ:The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 2002;87(Suppl 2):S221-230.
56) Prescott SL:Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 2013;131:23-30.
57) Kalliomaki M, et al.:Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107:129-134.
58) Sjogren YM, Jenmalm MC, Bottcher MF, et al.:Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 2009;39:518-526.
59) Jeurink PV, van Esch BC, Rijnierse A, et al.:Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 2013;98:572S-577S.
60) Osborn DA, Sinn JK:Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 2013;CD006474.
61) Arslanoglu S, et al.:Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 2008;138:1091-1095.
62) Gruber C, et al.:Immunoactive prebiotics transiently prevent occurrence of early atopic dermatitis among low-atopy-risk infants. J Allergy Clin Immunol 2015;136:1696-1698 e1691.
63) Schijf MA, et al.:Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice. PLoS One 2013;8:e75148.
64) Vulevic J, Juric A, Tzortzis G, et al.:A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013;143:324-331.
65) Sorbara MT, Pamer EG:Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol 2019;12:1-9.
66) Murray K, et al.:Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol 2014;109:110-119.
67) Shepherd SJ, Lomer MC, Gibson PR:Short-chain carbohydrates and functional gastrointestinal disorders. Am J Gastroenterol 2013;108:707-717.
68) Davis LM, Martinez I, Walter J, et al.:A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol 2010;144:285-292.
69) Suzuki T, Yoshida S, Hara H:Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 2008;100:297-305.
70) Cani PD, et al.:Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-1103.
71) Knaapen M, et al.:Obesity, non-alcoholic fatty liver disease, and atherothrombosis:a role for the intestinal microbiota? Clin Microbiol Infect 2013;19:331-337.
72) Nakamura YK, Omaye ST:Metabolic diseases and pro- and prebiotics:Mechanistic insights. Nutr Metab (Lond) 2012;9:60.
73) Dehghan P, Pourghassem Gargari B, Asghari Jafar-abadi M:Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus:a randomized controlled clinical trial. Nutrition 2014;30:418-423.
74) Ducarmon QR, et al.:Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019;83.
75) Kim YG, et al.:Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 2017;356:315-319.
76) Payne AN, Chassard C, Lacroix C:Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols:implications for host-microbe interactions contributing to obesity. Obes Rev 2012;13:799-809.
77) Aune D, et al.:Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality:systematic review and dose-response meta-analysis of prospective studies. BMJ 2016;353:i2716.
78) Chanson-Rolle A, et al.:Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS One 2015;10:e0131377.
79) Aune D, et al.:Dietary fibre, whole grains, and risk of colorectal cancer:systematic review and dose-response meta-analysis of prospective studies. BMJ 2011;343:d6617.
80) Fouhse JM, Ganzle MG, Beattie AD, et al.:Whole-grain starch and fiber composition modifies ileal flow of nutrients and nutrient availability in the hindgut, shifting fecal microbial profiles in pigs. J Nutr 2017;147:2031-2040.
81) De Angelis M, et al.:Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 2015;81:7945-7956.
82) Martinez I, et al.:Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 2013;7:269-280.
83) Vanegas SM, et al.:Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr 2017;105:635-650.
84) Castagnini C, et al.:Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Menard apples, rich in polyphenols. Br J Nutr 2009;102:1620-1628.
85) Everard A, et al.:Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 2014;8:2116-2130.
86) Koleva P, Ketabi A, Valcheva R, et al.:Chemically defined diet alters the protective properties of fructo-oligosaccharides and isomalto-oligosaccharides in HLA-B27 transgenic rats. PLoS One 2014;9:e111717.

第8章 プロバイオティクスの臨床応用

P.226 掲載の参考文献
1) Patro-Golab B, Szajewska H. Systematic Review with Meta-Analysis:Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update Nutrients 2019;11:2762. Doi:10.3390/nu11112762
2) Li Y-T, et al.:Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea:A systematic review with meta-analysis. World J Gastroenterol 2019;25(33):4999. 5016
3) Nagata S, et al.:Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br J Nutr 2011;106:549-556.
4) Allen SJ, et al.:Probiotics for treating acute infectious diarrhoea. Cochrane Database of Systematic Review 2010;Issue 11. Art. NO:CD003048.
5) Basu S, Chatterjee M, Ganguly S, et al.:Efficacy of Lactobacillus rhamnosus GG in acute watery diarrhoea of Indian children:a randomised controlled trial. Journal of Paediatrics and Child Health 2007;43:837-42.
6) Basu S, Paul DK, Ganguly S, et al.:Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children:a randomized controlled trial. Journal of Clinical Gastroenterology 2009;43:208-213.
7) Shornikova AV, Casas IA, Mykkanen H, et al.:Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. The Pediatric Infectious Disease Journal 1997;16:1103-1107.
8) Guo Q, et al.:Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database of Systematic Review 2019;Issue 4. Art. NO:CD004827.
9) Bermaola AG, et al.:Probiotics for persistent diarrhoea in children. Cochrane Database of Systematic Review 2013;Issue 8. Art. NO:CD007401
10) Houng TF, et al.:Three-combination probiotics therapy in children with salmonella and rotavirus gastroenteritis. J Clin Gastroenterology 2013;48(1):37-42.
11) Zhang C et al.:Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clinical Nutrition, https://doi.org/10.1016/j.clnu.2020.01.005
12) Huang R, Hu J, et al.:Positive effect of probiotics on constipation in children:A systematic review and meta-analysis of six randomized controlled trials. Front Cell Infect Microbiol 2017;7:153. Doi:10.3389/fcimb.2017.00153
13) Nagata S, Asahara T, Wang C, et al.:The Effectiveness of Lactobacillus beverages in controlling infections among the residents of an aged care facility:A Randomized Placebo-Controlled Double-Blind Trial. Ann Nutr Metab 2016;68(1):51-59. doi:10.1159/000442305. Epub 2015 Nov 25
14) Ikram S, et al.:Systematic review and meta-analysis of double-blind, placebo-controlled, randomized clinical trials using probiotics in chronic periodontitis. Invest Clin Dent 2018;9:e12338.;doi:10.1111/jicd.12338
15) Scott AM, Clark J, Julien B, et al.:Probiotics for preventing acute otitis media in children. Cochrane Database of Systematic Reviews 2019;Issue 6. Art. No.:CD012941. DOI:10.1002/14651858.CD012941.pub2.
16) Hao Q, Dong BR, Wu T:Probiotics for preventing acute upper respiratory tract infections. Cochrane Database of Systematic Reviews 2015;Issue 2. Art. No.:CD006895. DOI:10.1002/14651858.CD006895.pub3.
17) Manzanares W, et al.:Probiotic and synbiotic therapy in critical illness:a systematic review and meta-analysis. Critical Care 2016;20:262 Doi:10.1186/s13054-016-1434-y
18) Jiang T, et al.:Mixed probiotics decrease the incidence of stage II-III necrotizing enterocolitis and death:A systematic review and meta-analysis. Microbial Pathogenesis 2020;138, 103794
19) AlFaleh K, Anabrees J:Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database of Systematic Reviews 2014;Issue 4. Art. No.:CD005496. DOI:10.1002/14651858.CD005496.pub4.
20) Imdad A, et al.:Effect of synthetic vitamin A and probiotics supplementation for prevention of morbidity and mortality during the neonatal period. A systematic review and metaanalysis of studies from low- and middle-income countries. Nutrients 2020 Mar 17;12(3):791. doi:10.3390/nu12030791.
21) Rao SC et al.:Probiotic supplementation and late-onset sepsis in preterm infants:A metaanalysis. Pediatrics 2016;137:e20153684
22) Medley N, Vogel JP, Care A, Alfrevic Z:Interventions during pregnancy to prevent preterm birth:an overview of Cochrane systematic reviews. Cochrane Database of Systematic Review 2018;Issue 11. Art. No. CD012505
23) Yu M, et al.:Efficacy of Lactobacillus-supplemented triple therapy for H. pylori eradication:A metaanalysis of randomized controlled trials. PLoS One 2019 Oct 2;14(10):e0223309. doi:10.1371/journal.pone.0223309.
24) Schwenger EM, et al.:Probiotics for preventing urinary tract infections in adults and children. Cochrane Database of Systematic Review 2015, Issue 12. Art. NO:CD008772.
25) Makrgeorgou A, et al.:Probiotics for preventing urinary tract infections in adults and children. Cochrane Database of Systematic Review 2018;Issue 11. Art. NO:CD006135.
26) Zhang GQ, et al.:Probiotics for prevention of atopy and food hypersensitivity in early childhood:A PRISMA-Compliant systematic review and meta-analysis of randomized controlled trials. Medicine 2016 Fed;95(8):e2562. doi:10.1097/MD.0000000000002562.
27) Azad MB, et al.:Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze:systematic review and meta-analysis. BMJ 2013;347:f6471. Published online 2013 Dec 4. doi:10.1136/bmj.f6471
28) Mizusawa N, et al.:Citrus juice fermented with Lactobacillus plantarum YIT 0132 alleviates symptoms of perennial allergic rhinitis in a double-blind, placebo-controlled trial. Benef Microbes 2016;7:649-658.
29) Mitsuyoshi K, et al.:Consecutive intake of fermented milk containing Bifidobacterium breve Strain Yakult and galacto-oligosaccharides benefits skin condition in healthy adult women. Biosci Microbiota Food Health 2013;32:33-39.
30) Cuello-Garcia CA, Brozek JL, Fiocchi AL, et al.:Probiotics for the prevention of allergy:A systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015;136:952-961.
31) Fiocchi A, Pawankar R, Cuello-Garcia C, et al.:World Allergy Organization-McMaster University guidelines for allergic disease prevention (GLAD-P):Probiotics. The World Allergy Organization Journal 2015;8:4.
32) Tao Y-N, et al.:Effects of probiotics on type II diabetes mellitus:a meta-analysis. J Trans Med 2020;18:30. doi:10.1186/s12967-020-02213-2.
33) Masulli M, et al.:Effects of probiotic supplementation during pregnancy on metabolic outcomes:A systematic review and meta-analysis of randomized controlled trials. Diabetes Research and Clinical Practice 2020;162:108111.
34) Chi C, et al.:Effects of probiotics on patients with hypertension:a Systematic review and meta-analysis. Curr Hypertens Rep (2020) 22:33.
35) Mohammadi H, et al.:Effects of pro-/synbiotic supplementation on anthropometric and metabolic indices in overweight or obese children and adolescents:A systematic review and meta-analysis. Complentary Therapies in Medicine 2019;44:269-276.
36) Xiao M-W, et al.:Gastroenterology Research and Practice. Volume 2019/Article ID 1484598. https://doi.org/10.1155/2019/1484598
37) Iheozor-Ejiofor Z, et al.:Interventions for maintenance of surgically induced remission in Crohn's disease:a network meta-analysis Cochrane Database of Systematic Review 2019;Issue 9. Art. NO:CD013210.
38) Nguyen N, et al.:Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database of Systematic Review 2019;Issue 11. Art. NO:CD001176.
39) Iheozor-Ejiofor Z, et al.:Probiotics for maintenance of remission in ulcerative colitis. Cochrane Database of Systematic Review 2020;Issue 3. Art. NO:CD007443.
40) Sanada K, et al.:Gut microbiota and major depressive disorder:A systematic review and meta-analysis. Journal of Affective Disorder 2020;266:1-13. https://doi.org/10.1016/j-jad.2020.01.102
41) Den H, et al.:Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment- a metaanalysis of randomized controlled trials. Aging 2020;12(4):4010-4039.
42) Niu HL, Xiao JY:The efficacy and safety of probiotics in patients with irritable bowel syndrome:Evidence based on 35 randomized controlled trials. International Journal of Surgery 2020;75:116-127.
43) Zhang J, et al.:Efficacy of prebiotics and probiotics for functional dyspepsia:A systematic review and meta-analysis. Medicine 2020;99:e19107 DOI:10.1097/MD.0000000000019107
44) Ellwood J, et al.:Comparison of common interventions for the treatment of infantile colic:a systematic review of reviews and guidelines. BMJ Open 2020;10:e035405. doi:10.1136/bmjopen-2019-035405
45) Vonderheid S, et al.:A Systematic review and meta-analysis on the effects of probiotic species on iron absorption and iron Status. Nutrients 2019;11. 2938;doi. 10.3390/nu11122938.
46) Aso Y, Akaza H, Kotake T, et al.:Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. Eur. Urol. 1995;27:104-109.
47) Ishikawa H, Akedo I, Otani T, et al.:Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer. 2005;20;116:762-767.
48) Toi M, Hirota S, Tomotaki A, Sato N, et al.:Probiotic beverage with soy isoflavone consumption for breast cancer prevention:A case-control study. Curr Nutr Food Sci 2013;9:194-200.
49) Nood EV, et al.:Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-415.
50) Abraham C, Cho JH:Inflammatory bowel disease. N Engl J Med 2009;361:2066-2078 DOI:10.1056/NEJMra0804647
51) Shi Y, Dong Y, Huang W, et al.:Fecal microbiota transplantation for ulcerative colitis:A systematic review and meta-analysis. PLOS ONE 2016;11:e0157259.
52) 石川大, 他:糞便移植法の現状と将来展望. 日本静脈経腸栄養学会雑誌 2018;33(5):1121-1126.
53) Colman RJ, Rubin DT:Fecal microbiota transplantation as therapy for inflammatory bowel disease:a systematic review and meta-analysis. Journal of Crohn's and Colitis 2014;8:1569-1581.

最近チェックした商品履歴

Loading...