自律神経 初めて学ぶ方のためのマニュアル

出版社: 中外医学社
著者:
発行日: 2022-04-20
分野: 臨床医学:内科  >  脳神経科学/神経内科学
ISBN: 9784498328808
電子書籍版: 2022-04-20 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

8,360 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

8,360 円(税込)

商品紹介

多系統萎縮症および生理学の第一人者がタッグを組み編集した自律神経の入門書決定版! 初学者に分かりやすく,自律神経の基礎知識や,起立性低血圧・排尿排便障害・睡眠時無呼吸はもとより,こころに由来する内臓症状とその治療についても解説.様々な疾患に関わる自律神経のすべてをこの1冊で網羅した役立つ1冊.

目次

  • I章 自律神経:初めて学ぶ方へ!

    A.基礎編
       1.自律神経系の働き
       2.自律神経系の基本的構成
       3.自律神経遠心路による内臓機能の調節
       4.自律神経調節の特徴
       5.局所性・ホルモン性・自律神経性の協調的な調節
       6.内臓求心性線維の経路と働き
       7.関連痛とその仕組み
       8.ホメオスタシスの維持に働く自律神経系

    B.臨床編
       1.からだ(脳神経内科)からみた自律神経
       2.脳と臓器障害
       3.神経チームの歴史
       4.こころ(精神科)からみた自律神経

    II章 自律神経:もっと知りたい!

    A 概括編

     1.末梢自律神経―神経伝達物質を中心に
       1.末梢自律神経と神経伝達物質
       2.アセチルコリン
       3.モノアミン
       4.プリン化合物
       5.アミノ酸・ペプチド
       6.NO
       7.腸管神経系の伝達物質

     2.自律機能の中枢調節
       1.中枢自律神経系とは?
       2.中枢自律神経ネットワーク(CAN)
       (コラム1)自律神経機能の左右差
       (コラム2)脳の大規模ネットワーク
       3.自律機能の中枢性調節機構
       (コラム3)mPFCと自律神経調節

     3.内分泌機能の自律神経系調節
       1.膵内分泌と自律神経系
       2.脂肪組織からのレプチン放出
       3.副腎皮質からの糖質コルチコイド放出

     4.免疫機能の自律神経性調節
       1.伝達物質と受容体
       2.神経系と免疫系の相互作用に関与する求心性感覚神経
       3.交感神経を介する免疫機能調節
       4.迷走神経系を介する免疫機能調節

     5.生体リズムと自律神経
       1.概日リズム制御系
       2.睡眠・覚醒の概日リズム
       3.概日時計による自律神経制御
       4.概日リズム攪乱の自律神経系への影響

     6.体温の調節機構
       1.体温調節の基礎
       2.体温を調節する自律神経メカニズム
       3.まとめ

     7.脳循環の調節機構
       1.脳への血液供給の経路
       2.脳血管調節のしくみ
       3.体位変換(起立)に伴う脳血流調節
       4.睡眠時の脳血流調節
       5.日常生活動作に伴うNBM賦活と脳血流増加

     8.体性感覚刺激による自律神経機能の反射性調節
       1.体性—内臓反射の特徴
       2.体性—内臓反射の例

    B 症候と臓器編

     9.起立性低血圧の生体防止機構と循環調節
       1.起立性低血圧の生体防止機構
       2.起立性低血圧の診断および症状
       3.起立性低血圧の疫学研究

     10.起立性低血圧をきたす疾患と治療
       1.起立性低血圧(OH)をきたす疾患
       2.OHの治療

     11.頻尿・尿失禁・尿閉の生体防止機構と下部尿路機能・性機能の調節
       1.下部尿路機能の神経調節機構
       2.男性機能の神経調節機構

     12.頻尿・尿失禁・尿閉をきたす疾患と治療
       1.下部尿路症状とは
       2.神経疾患での下部尿路症状問診における注意点
       3.下部尿路機能検査
       4.ヒト自律神経障害における研究の歴史
       5.疾患
       6.過活動膀胱(OAB):パーキンソン病など
       7.高齢者の白質型多発脳梗塞(かくれ脳梗塞)
       8.DHIC:多系統萎縮症,脊髄疾患など
       9.排尿筋低活動(DU):腰椎症など
       10.排尿筋低活動(DU):糖尿病性ニューロパチー
       11.治療
       12.過活動膀胱(OAB)治療
       (コラム1)抗コリン薬の副作用
       (コラム2)ポリファーマシー
       13.排尿筋低活動(DU)治療
       14.DHIC治療
       (コラム3)排尿失神
       (コラム4)α交感神経遮断薬による起立性低血圧

     13.自律神経と摂食・消化器機能調節
       1.摂食中枢
       2.末梢情報を脳へ伝達する2つの経路:液性経路と神経経路
       3.胃腸伸展刺激
       4.栄養素(グルコース)
       5.グレリン
       6.コレシストキニン
       7.グルカゴン様ペプチド—1(GLP—1)
       8.その他ホルモン

     14.食思不振・嘔吐・便秘・便失禁をきたす疾患と治療
       1.食思不振
       2.嘔吐
       3.便秘
       4.便失禁

     15.睡眠時無呼吸の生体防止機構と呼吸の調節
       1.睡眠とは
       2.呼吸とは
       3.神経による呼吸関連筋収縮の調節
       4.睡眠時無呼吸とは
       5.呼吸の睡眠に伴う変化
       6.睡眠による呼吸調節の変化

     16.睡眠時無呼吸をきたす疾患と治療
       1.睡眠時無呼吸の特徴と診断
       2.睡眠時無呼吸をきたす疾患や病態
       3.睡眠時無呼吸の中枢神経への影響
       4.OSAにおける自律神経の変化
       5.CSAにおける自律神経障害
       6.脳卒中と睡眠時無呼吸
       7.治療

    C 疾患編

     17.自律神経不全をきたす疾患:糖尿病と自己免疫性自律神経ニューロパチー・アミロイドーシス
       1.糖尿病
       2.自己免疫性自律神経ニューロパチー
       3.アミロイドーシス

     18.自律神経不全をきたす疾患:脊髄損傷・脊髄炎(脊髄の病気)
       1.脊髄を介する自律神経調節機構
       2.脊髄の各障害部位での徴候
       3.原因疾患

     19.自律神経不全をきたす疾患:パーキンソン病と類縁疾患(脳・末梢神経の病気)
       1.パーキンソン病の自律神経不全
       2.レビー小体型認知症の自律神経不全
       3.純粋型自律神経不全症の自律神経不全
       4.その他のレビー小体病の自律神経不全

     20.自律神経不全をきたす疾患:多系統萎縮症(脳・脊髄の病気)
       1.多系統萎縮症について
       2.MSAの診断基準や臨床症状
       3.多系統萎縮症における自律神経症状
       4.MSAで主に用いる自律神経系検査
       5.治療
       6.遺伝子レベルの研究や動物モデルなど

     21.自律神経不全をきたす疾患:脳梗塞と高齢者のかくれ脳梗塞(脳の病気)
       1.脳梗塞

     22.自律神経不全をきたす疾患:多発性硬化症その他(脳の病気)
       1.中枢自律神経ネットワーク
       2.各疾患

     23.認知症高齢者で自律神経障害がみられる場合
       1.疫学
       2.発生機序
       3.影響
       4.注意点と対処法

     24.脳局所病変による二次性情動障害と自律神経症状
       1.脳局所病変による二次性情動障害
       2.脳局所病変による自律神経障害
       3.脳局所病変による二次性情動障害と自律神経障害の合併

     25.情動障害と脳病変の合併
       1.情動障害と神経疾患
       2.うつとアパシー
       3.うつに関連する神経回路
       4.パーキンソン病とうつ
       5.認知症とうつ
       6.てんかんとうつ

    III章 脳と臓器障害って?

     1.急性脳疾患によるCushing潰瘍,胃排出障害,下痢便秘イレウス,非閉塞性腸管虚血症(NOMI)
       1.胃腸粘膜の虚血に伴ったストレス潰瘍もしくは消化管出血
       2.消化管運動障害に起因した胃排泄障害,下痢,便秘,イレウス
       3.腸管粘膜の萎縮に伴ったbacterial translocation,endotoxin translocation
       4.非閉塞性腸管虚血症

     2.神経原性肺水腫と急性脳疾患
       1.神経原性肺水腫の臨床的特徴
       2.神経原生肺水腫の発生機序
       3.NPE発症予測
       4.神経原生肺水腫の治療
       5.予後

     3.タコツボ症候群他と急性脳疾患(およびその他の疾患)
       1.タコツボ症候群の概念と病因
       2.臨床症状・検査
       3.診断
       4.予後
       5.急性期治療法
       6.再発
       7.まとめ

    IV章 こころが出す症状って?

     1.こころ・情動のとらえ方:精神医学入門
       1.精神医学・医療とは
       2.わが国における精神医療
       3.精神疾患の分類
       4.外因性精神障害
       5.統合失調症
       6.気分障害
       7.神経症性障害

     2.こころ・情動の病気:身体症状症
       1.疫学
       2.病因・病態
       3.典型的な症状と診断
       (コラム 

     3.こころ・情動と自律神経・内分泌・免疫系―ストレス負荷時の反応を中心に
       1.ストレスとは
       2.ストレス反応
       3.ストレスと自律神経・内分泌系
       4.ストレスと免疫機能
       5.痛みとストレス
       6.ストレスへの積極的対応

     4.神経調節性(反射性)失神と治療
       1.血管迷走性失神
       2.状況性失神
       3.頸動脈洞症候群
       4.治療

     5.こころ・情動と消化管症状:過敏性腸症候群と治療
       1.過敏性腸症候群
       2.自律神経と脳—腸相関
       3.IBSの自律神経機能不全
       4.IBSの治療

     6.こころ・情動と膀胱症状:心因性排尿障害と治療
       1.下部尿路の神経支配
       2.心因性排尿障害の症状
       3.心因性排尿障害の評価
       4.心因性排尿障害における心理的要因
       5.心因性尿閉
       6.過活動膀胱と不安やうつの関係

    7.身体症状症型の神経症の治療
       1.身体症状症の概要・症状
       2.身体症状症の治療
       3.各疾患に対する治療

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I章 自律神経 : 初めて学ぶ方へ !

P.11 掲載の参考文献
1) 佐藤昭夫, 佐藤優子, 五嶋摩理. 自律機能生理学. 京都 : 金芳堂 ; 1995. p.1-435.
2) 鈴木郁子, 編著. やさしい自律神経生理学 命を支える仕組み. 東京 : 中外医学社 ; 2015. p.1-247.
3) Sato A, Sato Y, Schmidt RF. The impact of somatosensory input on autonomic functions. Rev Physiol Biochem Pharmacol. 1997 ; 130 : 1-328.
4) Gibbons CH. Chapter 27. Basics of autonomic nervous system function. In : Levin KH, et al. editors. Handbook of Clinical Neurology. Vol. 160. Clinical Neurophysiology : Basics and Technical Aspects. Elsevier. 2019. p.407-18.
5) Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016 ; 6 : 1239-78.
6) Benarroch EE. 中枢性自律神経統御. In : Robertson D, et al. editors. (高橋昭, 間野忠明, 監訳). ロバートソン自律神経学 原著第3版. 東京 : エルゼビア・ジャパン ; 2015. p.3-7.
7) Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012 ; 9 : 286-94.
8) Schmidt RF. 神経生理学. 京都 : 金芳堂 ; 1988. p.1-325.
9) McLachlan E. Autonomic ganglia. In : Binder MD, et al. editors. Encyclopedia of Neuroscience, vol. 1. Heidelberg : Springer ; 2009. p.261-6.
10) Yamamoto K, Ando J. New molecular mechanisms for cardiovascular disease : blood flow sensing mechanism in vascular endothelial cells. J Pharmacol Sci. 2011 ; 116 : 323-31.
11) Janig W. Integrative action of the autonomic nervous system : Neurobiology of homeostasis. London : Cambridge University Press ; 2006. p.1-610.
12) Grundy L, Erickson A, Brierley SM. Visceral pain. Annu Rev Physiol. 2019 ; 81 : 261-84.
13) Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr Physiol. 2015 ; 5 : 929-60.
P.58 掲載の参考文献
1) Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019 ; 5 : 42.
2) Sharma JK, Rohatgi A, Sharma D. Diabetic autonomic neuropathy : a clinical update. J R Coll Physicians Edinb. 2020 ; 50 : 269-73.
3) Coon EA, Mandrekar JN, Berini SE, et al. Predicting phenoconversion in pure autonomic failure. Neurology. 2020 ; 95 : e889-97.
4) Kabir MA, Chelimsky TC. Pure autonomic failure. Handb Clin Neurol. 2019 ; 161 : 413-22.
5) Vallelonga F, Maule S. Diagnostic and therapeutical management of supine hypertension in autonomic failure : a review of the literature. J Hypertens. 2019 ; 37 : 1102-11.
6) Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury : pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020 ; 21 : 7533.
7) Ong B, Wilson JR, Henzel MK. Management of the patient with chronic spinal cord injury. Med Clin North Am. 2020 ; 104 : 263-78.
8) Bragge P, Guy S, Boulet M, et al. A systematic review of the content and quality of clinical practice guidelines for management of the neurogenic bladder following spinal cord injury. Spinal Cord. 2019 ; 57 : 540-9.
9) Fanciulli A, Stankovic I, Krismer F, et al. Multiple system atrophy. Int Rev Neurobiol. 2019 ; 149 : 137-92.
10) Pellecchia MT, Stankovic I, Fanciulli A, et al ; Members of the Movement Disorder Society Multiple System Atrophy Study Group are listed in the appendix. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? a systematic review and recommendations by the movement disorder society multiple system atrophy study group. Mov Disord Clin Pract. 2020 ; 7 : 750-62.
11) 日本自律神経学会, 編. 自律神経機能検査 第5版. 東京 : 文光堂 ; 2015.
12) Cushing H. Peptic ulcers and the interbrain. Surgical Publishing Company, 1932.
14) 川口実. 全身性疾患と消化管病変, 各論 2. 神経系疾患 1) Cushing潰瘍. 胃と腸. 2003 ; 38 : 501-5.
18) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed (DSM-4). Washington, DC : American Psychiatric Association Press, 1994.
19) Eus J W, Van Someren EJW. Brain mechanisms of insomnia : new perspectives on causes and consequences. Physiol Rev. 2020 Aug 13. doi : 10.1152/physrev.00046.2019. Online ahead of print.
20) Ryznar E, Wilcox D. Functional coma : two case reports and a review of the literature. Psychosomatics. 2019 ; 60 : 343-51.
21) Nora S, Stefan K, Klaus S, et al. functional cognitive disorder in subjective cognitive decline- a ten-year follow-up. Int J Geriatr Psychiatry. 2020 Nov 9. doi : 10.1002/gps.5466. Online ahead of print. PMID : 33166421.
22) Mendez MF. Non-neurogenic language disorders : a preliminary classification. Psychosomatics. 2018 ; 59 : 28-35.
23) Vuilleumier P. Brain circuits implicated in psychogenic paralysis in conversion disorders and hypnosis. Neurophysiol Clin. 2014 ; 44 : 323-37.
24) Winterdahl M, Miani A, Vercoe MJH, et al. Vulnerability to psychogenic non-epileptic seizures is linked to low neuropeptide Y levels. Stress. 2017 ; 20 : 589-97.
25) Popkirov S, Enax-Krumova EK, Mainka T, et al. Functional pain disorders- more than nociplastic pain. NeuroRehabilitation. 2020 Sep 20. doi : 10.3233/NRE-208007. Online ahead of print. PMID : 32986624.
26) Ferrari S, Monzani D, Baraldi S, et al. Vertigo "in the pink" : The impact of female gender on psychiatric-psychosomatic comorbidity in benign paroxysmal positional vertigo patients. Psychosomatics. 2014 ; 55 : 280-8.
27) Rafanelli C, Gostoli S, Roncuzzi R, et al. Psychological correlates of vasovagal versus medically unexplained syncope. Gen Hosp Psychiatry. 2013 ; 35 : 246-52.
28) Ristiniemi H, Perski A, Lyskov E, et al. Hyperventilation and exhaustion syndrome. Scand J Caring Sci. 2014 ; 28 : 657-64.
29) Seidel M, Geisler D, Borchardt V, et al. Evaluation of spontaneous regional brain activity in weight-recovered anorexia nervosa. Transl Psychiatry. 2020 ; 10 : 395.
30) Asiedu K, Dzasimatu SK, Kyei S. Impact of dry eye on psychosomatic symptoms and quality of life in a healthy youthful clinical sample. Eye Contact Lens. 2018 ; 44 Suppl 2 : S404-9.
31) Kano M, Grinsvall C, Ran Q, et al. Resting state functional connectivity of the pain matrix and default mode network in irritable bowel syndrome : a graph theoretical analysis. Sci Rep. 2020 ; 10 : 11015.
32) Sakakibara R, Ito T, Yamamoto T, et al. Depression, anxiety and the bladder. Low Urin Tract Symptoms. 2013 ; 5 : 109-20.
33) Farrell MJ, Trevaks D, Taylor NA, et al. Regional brain responses associated with thermogenic and psychogenic sweating events in humans. J Neurophysiol. 2015 ; 114 : 2578-87.
34) Finch A, Metcalfe KA, Chiang JK, et al. The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation. Gynecol Oncol. 2011 ; 121 : 163-8.
35) Kotsopoulos J, Gronwald J, Lubinski J, et al ; Hereditary Breast Cancer Clinical Study Group. Does preventive oophorectomy increase the risk of depression in BRCA mutation carriers? Menopause. 2020 ; 27 : 156-61.
36) Kalia M. Neurobiological basis of depression : an update. Metabolism. 2005 ; 54 (Suppl 1) : 24-7.
37) Kavia RB, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005 ; 493 : 27-32.
38) Malizia AL, Cunningham VJ, Bell CJ, et al. Decreased brain GABA (A) -benzodiazepine receptor binding in panic disorder : preliminary results from a quantitative PET study. Arch Gen Psychiatry. 1998 ; 55 : 715-20.
39) de Groat WC. Influence of central serotonergic mechanisms on lower urinary tract function. Urology. 2002 ; 59 (Suppl 5A) : 30-6.
40) Supprian T, Reiche W, Schmitz B, et al. MRI of the brainstem in patients with major depression, bipolar affective disorder and normal controls. Psychiatry Res. 2004 ; 131 : 269-76.
41) Yuvari P, Vogel GW, Neill DB. Decreased raphe unit activity in a rat model of endogenous depression. Brain Res. 1993 ; 611 : 31-6.
42) Neumeister A, Bain E, Nugent AC, et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci. 2004 ; 24 : 589-91.
43) Ito T, Sakakibara R, Nakazawa K, et al. Effects of electrical stimulation of the raphe area on the micturition reflex in cats. Neuroscience. 2006 ; 142 : 1273-80.
44) Ito T, Sakakibara R, Uchiyama T, et al. The effect of milnaciplan hydrochloride on urge incontinence due to neurogenic diseases. J Japan Neurogenic Bladder Society. 2005 ; 16 : 208-12.
45) Klausner AP, Streng T, Na YG, et al. The role of corticotrophin releasing factor and its antagonist, astressin, on micturition in the rat. Auton Neurosci Basic Clin. 2005 ; 123 : 26-35.
46) Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut. 2004 ; 53 : 919-21.
47) Goekoop JG, de Winter RF, Wolterbeek R, et al. Increased plasma norepinephrine concentration in psychotic depression. Ther Adv Psychopharmacol. 2012 ; 2 : 51-63.
48) Ullas Kamath S, Chaturvedi A, Bhaskar Yerrapragada D, et al. Increased levels of acetylcholinesterase, paraoxonase 1, and copper in patients with moderate depression-a preliminary study. Rep Biochem Mol Biol. 2019 ; 7 : 174-80.
49) Sakakibara R, Ogata T, Aiba Y, et al. Does depression contribute to the bladder and bowel complaint in Parkinson's disease patients? Movement Disorders Clinical Practice 2020 : in press.
50) Kimura M, Tateno A, Robinson RG. Treatment of poststroke generalized anxiety disorder comorbid with poststroke depression : merged analysis of nortriptyline trials. Am J Geriatr Psychiatry. 2003 ; 11 : 320-7.
51) Gobbi C, Rocca MA, Riccitelli G, et al. Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Mult Scler. 2014 ; 20 : 192-201.
52) Gulyayeva NA, Massie MJ, Duhamel KN. Anti-NMDA receptor encephalitis : psychiatric presentation and diagnostic challenges from psychosomatic medicine perspective. Palliat Support Care. 2014 ; 12 : 159-63.
53) Corsi N, Colloca L. Placebo and nocebo effects : the advantage of measuring expectations and psychological factors. Front Psychol. 2017 ; 8 : 308.
54) Ito E, Shima R, Yoshioka T. A novel role of oxytocin : Oxytocin-induced well-being in humans. Biophys Physicobiol. 2019 ; 16 : 132-9.
55) Colloca L, Akintola T, Haycock NR, et al. Prior therapeutic experiences, not expectation ratings, predict placebo effects : an experimental study in chronic pain and healthy participants. Psychother Psychosom. 2020 ; 89 : 371-8.

II章 自律神経 : もっと知りたい !

P.72 掲載の参考文献
1) Horn JP. The sacral autonomic outflow is parasympathetic : Langley got it right. Basics of autonomic nervous system function. Clinical Autonomic Res. 2018 ; 28 : 181-85.
2) Gibbons CH. Handb Clin Neurol. 2019 ; 160 : 407-18.
3) Comroe JH. 諏訪邦夫 (訳). 心臓をめぐる発見の物語. 東京 : 中外医学社 ; 1987.
4) Otsuka M, et al. Proc Natl Acad Sci. 1966 ; 56 : 1110-5.
5) Konishi S, Otsuka M. Actions of certain polypeptides on frog spinal neurons. Jpn J Pharmacol. 1971 ; 21 ; 685-87.
6) Burnstock G. Brain Res Bull. 1999 ; 50 : 355-7.
7) Costa M, et al. In : Hokfelt T et al. editors. Progress in brain research 68. Amsterdam : Elsevier 1986, p.217-39.
8) Morris JL, Gibbins H. Co-transission and neuromodulation. In : Burnstock G, Hoyle CHV, editors. Autonomic neuroeffector mechanisms. Chur : Harwood Academic Publishers : 1992. p33-119.
9) Gershon MD. 古川奈々子 (訳) セカンドブレイン 腸にも脳がある. 東京. 小学館. 2000.
10) Spencer NJ, Hu H. Nat Rev Gastroenterol Hepatol. 2020 ; 17 : 338-51.
11) Rao M, Gershon MD. Enteric nervous system development : what could possibly go wrong? Nat Rev Neurosci. 2018 ; 19 ; 552-65.
12) 井村徹也. 消化管神経システムの整理と病理. 北部医療センター誌 ; 2020, p2-9.
13) Mayer E. 高橋洋 (訳). 腸と脳 内臓感覚は強し. 東京 : 紀伊国屋書店 ; 2018.
14) 鈴木郁子, 編著. やさしい自律神経生理学 命を支える仕組み. 東京 : 中外医学社 ; 2015.
P.79 掲載の参考文献
1) Critchley HD, Wiens S, Rotshtein P, et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004 ; 7 : 189-95.
2) Craig AD. How do you feel? Interoception : the sense of the physiological condition of the body. Nat Rev Neurosci. 2002 ; 3 : 655-66.
3) Craig AD. Forebrain emotional asymmetry : a neuroanatomical basis? Trends Cogn Sci. 2005 ; 9 : 566-71.
4) Craig AD. How do you feel---now? The anterior insula and human awareness. Nature Rev Neurosci. 2009 ; 10 : 59-70.
P.82 掲載の参考文献
2) Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci USA. 2001 ; 98 : 676-82.
3) Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007 ; 27 : 2349-56.
4) Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008 ; 105 : 12569-574.
5) Craig AD. How do you feel---now? The anterior insula and human awareness. Nature Rev Neurosci. 2009 ; 10 : 59-70.
P.85 掲載の参考文献
1) McKlveen JM, Myers B, Herman JP. The medial prefrontal cortex : Coordinator of autonomic, neuroendocrine and behavioural responses to stress. J Neuroendocrinol. 2015 ; 27 : 446-56.
2) Verberne AJ. Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat. Am J Physiol. 1996 ; 270 : R713-9.
3) Tavares RF, Correa FMA, Resstel LBM. Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res. 2009 ; 87 : 2601-7.
4) Zhang S, Hu S, Chao HH, et al. Ventromedial prefrontal cortex and the regulation of physiological arousal. Soc Cogn Affect Neurosci. 2014 ; 9, 900-8.
P.92 掲載の参考文献
1) Craig AD. How do you feel? Interoception : the sense of the physiological condition of the body. Nat Rev Neurosci. 2002 ; 3 : 655-66.
2) Craig AD. Pain mechanisms : labeled lines versus convergence in central processing. Annu Rev Neurosci. 2003 ; 26 : 1-30.
3) Benarroch EE. The central autonomic network : functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993 ; 68 : 988-1001.
4) Altman J, Bayer SA. The development of the rat spinal cord. Adv Anat Embryol Cell Biol. 1984 ; 85 : 1-164.
5) Cortelli P, Giannini G, Favoni V, et al. Nociception and autonomic nervous system. Neurol Sci. 2013 ; 34 (Suppl 1) : S41-6.
6) Benarroch EE. Pain-autonomic interactions. Neurol Sci. 2006 ; 27 : S130-3.
7) Benarroch EE. Periaqueductal gray : an interface for behavioral control. Neurology. 2012 ; 78 : 210-7.
8) Dampney RA. Central neural control of the cardiovascular system : current perspectives. Adv Physiol Educ. 2016 ; 40 : 283-96.
9) Beissner F, Meissner K, Bar KJ, et al. The autonomic brain : an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013 ; 33 : 10503-11.
10) Critchley HD, Eccles J, Garfinkel SN. Interaction between cognition, emotion, and the autonomic nervous system. Handb Clin Neurol. 2013 ; 117 : 59-77.
11) Benarroch EE. Insular cortex : Functional complexity and clinical correlations. Neurology. 2019 ; 93 : 932-8.
12) Kurth F, Zilles K, Fox PT, et al. A link between the systems : functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct. 2010 ;.214 :.519-34.
13) Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007 ; 27 : 2349-56.
14) Kimmerly DS, Wong S, Menon R, et al. Forebrain neural patterns associated with sex differences in autonomic and cardiovascular function during baroreceptor unloading. Am J Physiol Regul Integr Comp Physiol. 2007 ; 292 : R715-22.
15) Macey PM, Rieken NS, Kumar R, et al. Sex differences in insular cortex gyri responses to the Valsalva maneuver. Front Neurol. 2016 ; 7 : 87.
16) Kuo TB, Lin T, Yang CC, et al. Effect of aging on gender differences in neural control of heart rate. Am J Physiol. 1999 ; 277 : H2233-9.
17) Liu CC, Kuo TB, Yang CC. Effects of estrogen on gender related autonomic differences in humans. Am J Physiol Heart Circ Physiol. 2003 ; 285 : H2188-93.
18) Biswal BB, Mennes M, Zuo XN, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA. 2010 ; 107 : 4734-9.
19) Filippi M, Valsasina P, Misci P, et al. The organization of intrinsic brain activity differs between genders : a restingstate fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp. 2013 ; 34 : 1330-43.
20) Sie J-H, Chen Y-H, Shiau Y-H, et al. Gender- and age-specific differences in resting-state functional connectivity of the central autonomic network in adulthood. Frontiers in Human Neuroscience. 2019 ; 13 : 369.
21) Kimmerly DS, O'leary DD, Menon RS, et al. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol. 2005 ; 569 : 331-45.
22) Critchley HD, Corfield DR, Chandler MP, et al. Cerebral correlates of autonomic cardiovascular arousal : a functional neuroimaging investigation in humans. J Physiol. 2000 ; 523 (Pt 1), 259-70.
23) Oppenheimer SM, Gelb A, Girvin JP, et al. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992 ; 42, 1727-32.
24) Critchley HD. The human cortex responds to an interoceptive challenge. Proc Natl Acad Sci USA. 2004 ; 101 : 6333-4.
25) Verberne AJ, Owens NC. Cortical modulation of the cardiovascular system. Prog Neurobiol. 1998 ; 54 : 149-68.
26) Bandler R, Keay KA, Floyd N, et al. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull. 2000 ; 53 : 95-104.
27) Keay KA, Bandler R. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 2001 ; 25 : 669-78.
28) Dampney RA, Furlong TM, Horiuchi J, et al. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton Neurosci. 2013 ; 175 : 17-25.
29) Horiuchi J, McDowall LM, Dampney RA. Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J Physiol. 2009 ; 587 (Pt 21) : 5149-62.
30) Barna BF, Takakura AC, Moreira TS. Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus. Neuroscience. 2014 ; 258 : 355-63.
31) Kuwaki T, Zhang W. Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Resp Physiol Neurobiol. 2010 ; 174 : 43-54.
32) Bastide L, Herbaut A-G. Cerebellum and micturition : what do we know? A systematic review. Cerebellum & Ataxias. 2020 ; 7 : 9.
33) Roy HA, Green AL. The central autonomic network and regulation of bladder function. Front Neuroscience. 2019 ; 13 : 535.
P.100 掲載の参考文献
1) Alonge KM, D'Alessio DA, Schwartz MW. Brain control of blood glucose levels : implications for the pathogenesis of type 2 diabetes. Diabetologia. 2021 ; 64 : 5-14.
2) Faber CL, Deem JD, Campos CA, et al. CNS control of the endocrine pancreas. Diabetologia. 2020 ; 63 : 2086-94.
3) Rodriguez-Diaz R, Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 2014 ; 28 : 745-56.
4) Tarussio D, Metref S, Seyer P, et al. Nervous glucose sensing regulates postnatal beta cell proliferation and glucose homeostasis. J Clin Invest. 2014 ; 124 : 413-24.
5) Osundiji MA, Lam DD, Shaw J, et al. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes. 2012 ; 61 : 321-8.
6) De Backer I, Hussain SS, Bloom SR, et al. Insights into the role of neuronal glucokinase. Am J Physiol Endocrin Metab. 2016 ; 311 : E42-55.
7) Kruyt ND, Musters A, Biessels GJ, et al. Beta-cell dysfunction and insulin resistance after subarachnoid haemorrhage. Neuroendocrinology. 2011 ; 93 : 126-32.
8) Harvengt J, Gernay C, Mastouri M, et al. ROHHAD (NET) syndrome : Systematic review of the clinical timeline and recommendations for diagnosis and prognosis. J Clini Endocrinol Metab. 2020 ; 105 : dgaa 247.
9) Chow C, Fortier MV, Das L, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome may have a hypothalamus-periaqueductal gray localization. Pediatr Neurol. 2015 ; 52 : 521-5.
10) Geha P, Cecchi G, Todd Constable R, et al. Reorganization of brain connectivity in obesity. Hum Brain Map. 2017 ; 38 : 1403-20.
11) Legget KT, Wylie KP, Cornier MA, et al. Altered between-network connectivity in individuals prone to obesity. Physiology & behavior. 2021 ; 229 : 113242.
12) Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2013 ; 369 : 362-72.
13) Campbell-Thompson M, Butterworth EA, Boatwright JL, et al. Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Sci Rep. 2021 ; 11 : 6562.
14) Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci. 2021 ; 44 : 189-202.
15) Ahren B. Autonomic regulation of islet hormone secretion-Implications for health and disease. Diabetologia. 2000 ; 43 : 393-410.
16) Devedjian JC, Pujol A, Cayla C, et al. Transgenic mice overexpressing α2A-adrenoceptors in pancreatic beta-cells show altered regulation of glucose homeostasis. Diabetologia. 2000 ; 43 : 899-906.
17) Rosengren AH, Jokubka R, Tojjar D, et al. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science. 2010 ; 327 : 217-20.
18) Morton GJ, Muta K, Kaiyala KJ, et al. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes. 2017 ; 66 : 823-34.
19) Brown JM, Scarlett JM, Schwartz MW. Rethinking the role of the brain in glucose homeostasis and diabetes pathogenesis. J Clini Invest. 2019 ; 129 : 3035-7.
20) Mundinger TO, Taborsky GJ, Jr. Early sympathetic islet neuropathy in autoimmune diabetes : lessons learned and opportunities for investigation. Diabetologia. 2016 ; 59 : 2058-67.
21) Gilon P. The role of alpha-cells in islet function and glucose homeostasis in health and type 2 diabetes. J Mol Biol. 2020 ; 432 : 1367-94.
22) Borden P, Houtz J, Leach Steven D, et al. Sympathetic innervation during development Is necessary for pancreatic islet architecture and functional maturation. Cell Rep. 2013 ; 4 : 287-301.
23) D'Alessio DA, Kieffer TJ, Taborsky GJ, Jr, et al. Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J Clini Endocrinol Metab. 2001 ; 86 : 1253-9.
24) Skvortsova A, Veldhuijzen DS, Kloosterman IEM, et al. Food anticipatory hormonal responses : A systematic review of animal and human studies. Neurosci Biobehav Rev. 2021 ; 126 : 447-64.
25) Strubbe JH. Parasympathetic involvement in rapid meal-associated conditioned insulin secretion in the rat. Am J Physiol-Regul, Integ Comp Physiol. 1992 ; 263 : R615-8.
26) Taylor IL, Feldman M. Effect of cephalic-vagal stimulation on insulin, gastric inhibitory polypeptide, and pancreatic polypeptide release in humans. J Clini Endocrinol Metab. 1982 ; 55 : 1114-7.
27) Blackman JD, Polonsky KS, Jaspan JB, et al. Insulin secretory profiles and C-peptide clearance kinetics at 6 months and 2 years after kidney-pancreas transplantation. Diabetes. 1992 ; 41 : 1346-54.
28) Becker HD, Borger HW, Schafmayer A. Effect of vagotomy on gastrointestinal hormones. World J Surg. 1979 ; 3 : 615-22.
29) Veedfald S, Plamboeck A, Deacon CF, et al. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans. Am J Physiol Gastrointest Liver Physiol. 2016 ; 310 : G43-51.
30) Rodriguez-Diaz R, Dando R, Jacques-Silva MC, et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med. 2011 ; 17 : 888-92.
31) Gautam D, Han SJ, Hamdan FF, et al. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 2006 ; 3 : 449-61.
32) Guo Y, Traurig M, Ma L, et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes. 2006 ; 55 : 3625-9.
33) Noguchi GM, Huising MO. Integrating the inputs that shape pancreatic islet hormone release. Nat Metab. 2019 ; 1 : 1189-201.
34) Lamy CM, Sanno H, Labouebe G, et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 2014 ; 19 : 527-38.
35) Makhmutova M, Weitz J, Tamayo A, et al. Pancreatic beta-cells communicate with vagal sensory neurons. Gastroenterology. 2021 ; 160 : 875-888 e811.
36) Bou Karam J, Cai W, Mohamed R, et al. TRPV1 neurons regulate beta-cell function in a sex-dependent manner. Mol Metab. 2018 ; 18 : 60-7.
37) Kiba T, Tanaka K, Numata K, et al. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology. 1996 ; 110 : 885-93.
38) Edvell A, Lindstrom P. Vagotomy in young obese hyperglycemic mice : effects on syndrome development and islet proliferation. A J Physiol Endocrinol Metab. 1998 ; 274 : E1034-9.
39) Townsend KL. The re-emergence of adipose innervation as a research focus. Nat Rev Endocrinol. 2020 ; 16 : 127-8.
40) Zeng W, Pirzgalska RM, Pereira MM, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell. 2015 ; 163 : 84-94.
41) Caron A, Lee S, Elmquist JK, et al. Leptin and brain-adipose crosstalks. Nat Rev Neurosci. 2018 ; 19 : 153-65.
42) Raff H, Lee JJ, Widmaier EP, et al. Basal and adrenocorticotropin-stimulated corticosterone in the neonatal rat exposed to hypoxia from birth : modulation by chemical sympathectomy. Endocrinology. 2004 ; 145 : 79-86.
43) Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009 ; 200 : 3-22.
44) Ottenweller JE, Meier AH. Adrenal innervation may be an extrapituitary mechanism able to regulate adrenocortical rhythmicity in rats. Endocrinology. 1982 ; 111 : 1334-8.
45) Ulrich-Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol. 2006 ; 290 : R1128-35.
46) Edwards AV, Jones CT. Autonomic control of adrenal function. J Anat. 1993 ; 183 (Pt 2) : 291-307.
47) Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr Rev. 2020.
48) Jasper MS, Engeland WC. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology. 1994 ; 59 : 97-109.
49) Jasper MS, Engeland WC. Splanchnicotomy increases adrenal sensitivity to ACTH in nonstressed rats. Am J physiol. 1997 ; 273 (2 Pt 1) : E363-8.
50) Pruss H, Tedeschi A, Thiriot A, et al. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat Neurosci. 2017 ; 20 : 1549-59.
P.114 掲載の参考文献
1) Ishigami T. The influence of psychic acts on the progress of pulmonary tuberculosis. Am Rev Tuberc. 1919 ; 2 : 470-84.
2) Padro CJ, Sanders VM. : Neuroendocrine regulation of inflammation. Semin Immunol. 2014 ; 26 : 357-68.
3) Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab. 1946 ; 6 : 117-230.
4) Solomon GF, Moos RH. The relationship of personality to the presence of rheumatoid factor in asymptomatic relatives of patients with rheumatoid arthritis. Psychosom Med. 1965 ; 27 : 350-60.
5) Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017 ; 46 : 927-42.
6) Pavlov VA, Tracey KJ. Neural regulation of immunity : molecular mechanisms and clinical translation. Nat Neurosci. 2017 ; 20 : 156-66.
7) Fujii YX, Tashiro A, Arimoto K, et al. Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice. J Neuroimmunol. 2007 ; 188 : 80-5.
8) Grando SA, Kawashima K, Kirkpatrick CJ, et al. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. Int Immunopharmacol. 2015 ; 29 : 1-7.
9) Fujii T, Mashimo M, Moriwaki Y, et al. Expression and function of the cholinergic system in immune cells. Front Immunol. 2017 ; 8 : 1085.
10) King JR, Ullah A, Bak E, et al. Ionotropic and metabotropic mechanisms of allosteric modulation of α7 nicotinic receptor intracellular calcium. Mol Pharmacol. 2018 ; 93 : 601-11.
11) Grau V, Richter K, Hone AJ, et al. Conopeptides [V11L ; V16D] ArIB and RgIA4 : Powerful tools for the identification of novel nicotinic acetylcholine receptors in monocytes. Front Pharmacol. 2018 ; 9 : 1499.
12) Flierl MA, Rittirsch D, Huber-Lang M, et al. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Mol Med. 2008 ; 14 : 195-204.
13) Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it? : Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol. 2020 ; 15 : 114-64.
14) 川島紘一郎. アセチルコリンのルーツと非神経性アセチルコリン. 基礎老化研究. 2010 ; 34 : 12-24.
15) Fujii T, Yamada S, Misawa H, et al. Expression of choline acetyltransferase mRNA and protein in T-lymphocytes. Proc Japan Acad. 1995 ; 71B : 231-5.
16) Mashimo M, Fujii T, Ono S, et al. Divergent roles of α7 nicotinic acetylcholine receptors expressed on antigen-presenting cells and CD4+ T cells in the regulation of T cell differentiation. Int Immunopharmacol. 2020 ; 82 : 106306.
17) Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000 ; 85 : 1-17.
18) Besedovsky H, del Rey A, Sorkin E, et al. The immune response evokes changes in brain noradrenergic neurons. Science. 1983 ; 221 : 564-6.
19) Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions : facts and hypotheses. Endocr Rev. 1996 ; 17 : 64-102.
20) Felten SY, Olschowka J. Noradrenergic sympathetic innervation of the spleen : II. Tyrosine hydroxylase (TH) -positive nerve terminals form synaptic-like contacts on lymphocytes in the splenic white pulp. J Neurosci Res. 1987 ; 18 : 37-48.
21) Springer, TA. Adhesion receptors of the immune system. Nature. 1990 ; 346 : 425-34.
22) Felten SY, Housel J, Felten DL. Use of in vivo dialysis for evaluation of splenic norepinephrine and serotonin. Soc Neurosci Abstr. 1986 ; 12 : 1065.
23) Wijesinghe M, Perrin K, Harwood M, et al. The risk of asthma mortality with inhaled long acting beta-agonists. Postgrad Med J. 2008 ; 84 : 467-72.
24) Hubner G, Brauchle M, Smola H, et al. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine. 1996 ; 8 : 548-56.
25) Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000 ; 405 : 458-62.
27) Tracey KJ. The inflammatory reflex. Nature. 2002 ; 420 : 853-9.
28) Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci USA. 2008 ; 105 : 11008-13.
29) Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011 ; 334 : 98-101.
30) Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci USA. 2016 ; 113 : 8284-9.
31) Bonaz B, Sinniger V, Hoffmann D, et al. Chronic vagus nerve stimulation in Crohn's disease : a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016 ; 28 : 948-53.
P.123 掲載の参考文献
1) Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis. Science. 2021 ; 371 : eabd0951.
2) Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017 ; 18 : 164-79.
3) Welz PS, Zinna VM, Symeonidi A, et al. BMAL1-driven tissue clocks respond independently to light to maintain homeostasis. Cell. 2019 ; 177 : 1436-47.e12.
4) Koronowski KB, Kinouchi K, Welz PS, et al. Defining the independence of the liver circadian clock. Cell. 2019 ; 177 : 1448-62.e14.
5) Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982 ; 1 : 195-204.
6) Peng W, Wu Z, Song K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020 ; 369 : eabb0556.
7) Wang Z, Ma J, Miyoshi C, et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature. 2018 ; 558 : 435-39.
8) Saito YC, Maejima T, Nishitani M, et al. Monoamines inhibit GABAergic neurons in ventrolateral preoptic area that make direct synaptic connections to hypothalamic arousal neurons. J Neurosci. 2018 ; 38 : 6366-78.
9) Tsuneki H, Sasaoka T, Sakurai T. Sleep control, GPCRs, and glucose metabolism. Trends Endocrinol Metab. 2016 ; 27 : 633-42.
10) Buijs RM, Wortel J, Van Heerikhuize JJ, et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci. 1999 ; 11 : 1535-44.
11) Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of heart rate fluctuation : a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 ; 213 : 220-2.
12) Akselrod S, Gordon D, Madwed JB, et al. Hemodynamic regulation : investigation by spectral analysis. Am J Physiol. 1985 ; 249 : H867-75.
13) Vandewalle G, Middleton B, Rajaratnam SM, et al. Robust circadian rhythm in heart rate and its variability : influence of exogenous melatonin and photoperiod. J Sleep Res. 2007 ; 16 : 148-55.
14) Leach S, Suzuki K. Adrenergic signaling in circadian control of immunity. Front Immunol. 2020 ; 11 : 1235.
15) Buijs RM, Escobar C, Swaab DF. The circadian system and the balance of the autonomic nervous system. Handb Clin Neurol. 2013 ; 117 : 173-91.
16) American Academy of Sleep Medicine. The International Classification of Sleep Disorders-Third Edition (ICSD-3). 2014.
17) Knutsson A. Health disorders of shift workers. Occup Med (Lond). 2003 ; 53 : 103-8.
18) Inokawa H, Umemura Y, Shimba A, et al. Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci Rep. 2020 ; 10 : 2569.
19) Lee S, Donehower LA, Herron AJ, et al. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010 ; 5 : e10995.
20) Kettner NM, Voicu H, Finegold MJ, et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016 ; 30 : 909-24.
P.131 掲載の参考文献
1) 入來正躬. 体温生理学テキスト. 東京 : 文光堂 ; 2003.
2) 中村和弘. 体温調節の中枢神経機構. 日本臨牀. 2012 ; 70 : 922-6.
3) Smith CJ, Johnson JM. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation : Neural control of skin blood flow and sweating in humans. Auton Neurosci. 2016 ; 196 : 25-36.
4) Cannon B, Nedergaard J. Brown adipose tissue : function and physiological significance. Physiol Rev. 2004 ; 84 : 277-359.
5) Tikuisis P, Bell DG, Jacobs I. Shivering onset, metabolic response, and convective heat transfer during cold air exposure. J Appl Physiol. 1991 ; 70 : 1996-2002.
6) Kanosue K, Crawshaw LI, Nagashima K, et al. Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. Eur J Appl Physiol. 2010 ; 109 : 5-11.
7) Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol. 2011 ; 301 : R1207-28.
8) Nakamura K, Matsumura K, Hubschle T, et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci. 2004 ; 24 : 5370-80.
9) Stornetta RL, Rosin DL, Simmons JR, et al. Coexpression of vesicular glutamate transporter-3 and gamma-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol. 2005 ; 492 : 477-94.
10) Nakamura K, Morrison SF. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2007 ; 292 : R127-36.
11) Nakamura K, Morrison SF. Central efferent pathways for cold-defensive and febrile shivering. J Physiol. 2011 ; 589 : 3641-58.
12) Kataoka N, Hioki H, Kaneko T, et al. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab. 2014 ; 20 : 346-58.
13) Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019 ; 81 : 285-308.
14) Rathner JA, Madden CJ, Morrison SF. Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am J Physiol Regul Integr Comp Physiol. 2008 ; 295 : R343-54.
15) Nakamura Y, Nakamura K, Morrison SF. Different populations of prostaglandin EP3 receptor-expressing preoptic neurons project to two fever-mediating sympathoexcitatory brain regions. Neuroscience. 2009 ; 161 : 614-20.
16) Tanaka M, McKinley MJ, McAllen RM. Preoptic-raphe connections for thermoregulatory vasomotor control. J Neurosci. 2011 ; 31 : 5078-88.
17) da Conceicao EPS, Morrison SF, Cano G, et al. Median preoptic area neurons are required for the cooling and febrile activations of brown adipose tissue thermogenesis in rat. Sci Rep. 2020 ; 10 : 18072.
18) Nakamura K, Morrison SF. A thermosensory pathway that controls body temperature. Nat Neurosci. 2008 ; 11 : 62-71.
19) Nakamura K, Morrison SF. A thermosensory pathway mediating heat-defense responses. Proc Natl Acad Sci U S A. 2010 ; 107 : 8848-53.
20) Nakayama T, Eisenman JS, Hardy JD. Single unit activity of anterior hypothalamus during local heating. Science. 1961 ; 134 : 560-1.
21) Matsumura K, Cao C, Ozaki M, et al. Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever : light and electron microscopic immunocytochemical studies. J Neurosci. 1998 ; 18 : 6279-89.
22) Yamagata K, Matsumura K, Inoue W, et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J Neurosci. 2001 ; 21 : 2669-77.
23) Nakamura K, Matsumura K, Kaneko T, et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J Neurosci. 2002 ; 22 : 4600-10.
24) Lazarus M, Yoshida K, Coppari R, et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci. 2007 ; 10 : 1131-3.
25) Tanaka M, McKinley MJ, McAllen RM. Roles of two preoptic cell groups in tonic and febrile control of rat tail sympathetic fibers. Am J Physiol Regul Integr Comp Physiol. 2009 ; 296 : R1248-57.
26) Kataoka N, Shima Y, Nakajima K, et al. A central master driver of psychosocial stress responses in the rat. Science. 2020 ; 367 : 1105-12.
27) Nakamura Y, Yanagawa Y, Morrison SF, et al. Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab. 2017 ; 25 : 322-34.
28) Nakamura Y, Nakamura K. Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflugers Arch. 2018 ; 470 : 823-37.
29) Nakamura K, Nakamura Y. Hunger and satiety signaling : modeling two hypothalamomedullary pathways for energy homeostasis. BioEssays. 2018 ; 40 : e1700252.
P.141 掲載の参考文献
1) 松本美志也, 坂部武史. 脳循環・代謝の生理. 坂部武史, 編. 脳保護・脳蘇生. 東京 : 克誠堂出版 ; 2008. p.15-30.
2) 棚橋紀夫. 脳血管の支配領域と脳循環の生理. 矢崎義雄, 赤司浩一, 渥美達也, 他編. 内科學. 分冊版 第11版. 東京 : 朝倉書店 ; 2017. p.2100-2.
3) 菅野巌. 脳血流量は語る : かくれた謎をひも解く : 東京 : 中外医学社 ; 2020.
4) Hotta H. Neurogenic control of parenchymal arterioles in the cerebral cortex. Prog Brain Res. 2016 ; 225 : 3-39.
5) 堀田晴美, 鈴木はる江. 脳血管の神経性調節. Clinical Neuroscience. 2014 ; 32 : 1345-8.
6) 鈴木郁子, 内田さえ, 鍵谷方子, 他. 局所循環の調節 : 脳循環. 鈴木郁子, 編. やさしい自律神経生理学 : 命を支える仕組み=Physiology of autonomic nervous system. 東京 : 中外医学社 ; 2015. p.100-4.
7) Goadsby PJ. Autonomic nervous system control of the cerebral circulation. In : Buijs RM, Swaab DF, editors. Handbook of clinical neurology. vol. 117. Amsterdam : Elsevier ; 2013. p.193-201.
8) Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985). 2006 ; 100 : 1059-64.
9) Saeki Y, Sato A, Sato Y, et al. Effects of stimulation of cervical sympathetic trunks with various frequencies on the local cortical cerebral blood flow measured by laser Doppler flowmetry in the rat. Jpn J Physiol. 1990 ; 40 : 15-32.
10) Sato A, Sato Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci Res. 1992 ; 14 : 242-74.
11) Levi H, Schoknecht K, Prager O, et al. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model. PLoS One. 2012 ; 7 : e39636.
12) Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev. 2003 ; 55 : 271-324.
13) Morita-Tsuzuki Y, Hardebo JE, Bouskela E. Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of postganglionic parasympathetic nerves in the rat. J Cereb Blood Flow Metab. 1993 ; 13 : 993-7.
14) 鈴木則宏. 脳血管疾患病態の多様性と神経伝達物質機能の解析を目指して. 臨床神経学. 2012 ; 52 : 819-24.
15) Nieuwenhuys R, Voogd J, van Huijzen C. The human central nervous system. 4th ed : Springer ; 2008.
16) Adachi T, Chan SHH, Sato A, et al. Regulation of norepinephrine release and cerebral blood flow in the parietal cortex by locus coeruleus in the rat. Biogenic Amines. 1991 ; 8 : 19-31.
17) Cao WH, Sato A, Yusof A, et al. Regulation of regional blood flow in cerebral cortex by serotonergic neurons originating in the dorsal raphe nucleus in the rat. Biogenic Amines. 1992 ; 8 : 351-60.
18) Biesold D, Inanami O, Sato A, et al. Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci Lett. 1989 ; 98 : 39-44.
19) Hamner JW, Tan CO. Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 2014 ; 45 : 1771-7.
20) White RP, Vallance P, Markus HS. Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond). 2000 ; 99 : 555-60.
21) Cassaglia PA, Griffiths RI, Walker AM. Cerebral sympathetic nerve activity has a major regulatory role in the cerebral circulation in REM sleep. J Appl Physiol (1985). 2009 ; 106 : 1050-6.
22) Loos N, Grant DA, Wild J, et al. Sympathetic nervous control of the cerebral circulation in sleep. J Sleep Res. 2005 ; 14 : 275-83.
23) Beaudin AE, Waltz X, Hanly PJ, et al. Impact of obstructive sleep apnoea and intermittent hypoxia on cardiovascular and cerebrovascular regulation. Exp Physiol. 2017 ; 102 : 743-63.
24) Watanabe N, Sasaki S, Masamoto K, et al. Vascular gap junctions contribute to forepaw stimulation-induced vasodilation differentially in the pial and penetrating arteries in isoflurane-anesthetized rats. Front Mol Neurosci. 2018 ; 11 : 446.
25) Hosford PS, Gourine AV. What is the key mediator of the neurovascular coupling response? Neurosci Biobehav Rev. 2019 ; 96 : 174-81.
26) Piche M, Uchida S, Hara S, et al. Modulation of somatosensory-evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane-anaesthetized rats. J Physiol. 2010 ; 588 : 2163-71.
27) Hotta H, Suzuki H, Inoue T, et al. Involvement of the basal nucleus of Meynert on regional cerebral cortical vasodilation associated with masticatory muscle activity in rats. J Cereb Blood Flow Metab. 2020 ; 40 : 2416-28.
28) Kimura A, Okada K, Sato A, et al. Regional cerebral blood flow in the frontal, parietal and occipital cortices increases independently of systemic arterial pressure during slow walking in conscious rats. Neurosci Res. 1994 ; 20 : 309-15.
29) Chen YS, Shu K, Kang HC. Deep brain stimulation in Alzheimer's disease : targeting the nucleus basalis of Meynert. J Alzheimers Dis. 2021 ; 80 : 53-70.
P.149 掲載の参考文献
1) 黒澤美枝子, 第19章 自律神経系. 本間研一, 監修. 標準生理学 第9版. 東京 : 医学書院 ; 2019.
2) 黒澤美枝子. 第1章 神経 IV 自律神経系. 黒澤美枝子, 長谷川薫, 編. 生理学 第3版. 東京 : 中外医学社 ; 2012.
3) Sato A, Sato Y, Schmidt RF. The impact of somatosensory input on autonomic functions. Rev Phywiol Biochem Harmacol. 1997 ; 130 : 1-328.
4) Sato A, Schmidt RF. Somatosympathetic reflexes : afferent fibers, central pathways, discharge characteristics. Physiol Rev. 1973 ; 53 : 916-47.
5) Hines EA Jr, Brown GE. The cold pressor test for measuring the reactivity of the blood pressure : data concerning 571 normal and hypertensive subjects. Am Heart J. 1936 ; 11 : 1-9.
6) Moyer CA, Rounds J, Hannum JW. A meta-analysis of massage therapy research. Psychol Bull. 2004 ; 130 : 3-18.
7) 今井樹, 下重里江, 徳永亮太, 他. ラットの腹部皮膚触刺激時の動脈圧・心拍数低下反応における自律神経性機序. 自律神経. 2016 ; 53 : 253-9.
8) Uchida S, Kagitani F, Suzuki A, et al. Effect of acupuncture-like stimulation on cortical cerebral blood flow in anesthetized rats. Jpn J Physiol. 2000 ; 50 : 495-507.
9) Kurosawa M, Watanabe O, Maruyama H, et al. Responses of dorsal spinal cord blood flow to innocuous cutaneous stimulation in anesthetized rats. Auton Neurosci. 2006 ; 126-7 : 185-92.
10) Kurosawa M, Enomoto K, Aikawa Y, et al. Hepatic blood flow responses to mechanical stimulation of the skin in anaesthetised rats. Auton Neurosci. 2002 ; 99 : 40-6.
11) Iimura K, Watanabe N, Masunaga K, et al. Effects of a gentle, self-administered stimulation of perineal skin for nocturia in elderly women : A randomized, placebo-controlled, double-blind crossover trial. PLoS One. 2016 ; 11 : e0151726.
12) Yamanishi T, Yasuda K, Sakakibara R, et al. Urinary retention due to herpes virus infects. Neurourol Urodyn. 1998 ; 17 : 613-9.
13) Hosoe N, Sakakibara R, Yoshida M, et al. Acute, severe constipation in a 58-year-old Japanese patient. Gut. 2011 ; 60 : 1059, 1093.
14) Higashimura Y, Shimoju R, Maruyama H, et a. Electro-acupuncture improves responsiveness to insulin via excitation of somatic afferent fibers in diabetic rats. Auton Neurosci. 2009 ; 150 : 100-3.
15) Kurosawa M, Niijima A. Noxious and innocuous mechanical cutaneous stimulation increase the sympathetic efferent nerve activity innervating the interscapular brown adipose tissue in anesthetized rats. J Auton Nerv Syst. 1991 ; 32 : 47-52.
16) Shimoju-Kobayashi R, Maruyama H, Yoneda M, et al. Responses of hepatic glucose output to electro-acupuncture stimulation of the hindlimb in anaesthetized rats. Auton Neurosci. 2004 ; 115 : 7-14.
P.155 掲載の参考文献
1) Kaufmann H, Norcliffe-Kaufmann L, et al. Baroreflex dysfunction. N Engl J Med. 2020 ; 382 : 163-78.
2) Heesch CM. Reflexes that control cardiovascular function. Am J Physiol. 1999 ; 277 (6 Pt 2) : S234-43.
3) Zeng WZ, Marshall KL, Min S, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science. 2018 ; 362 : 464-7.
4) Ciriello J. Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci Lett. 1983 ; 36 : 37-42.
5) Lenard Z, Studinger P, Kovats Z, et al. Comparison of aortic arch and carotid sinus distensibility in humans--relation to baroreflex sensitivity. Auton Neurosci. 2001 ; 92 (1-2) : 92-9.
6) Hainsworth R. Cardiovascular control from cardiac and pulmonary vascular receptors. Exp Physiol. 2014 ; 99 : 312-9.
7) Jeske I, Reis DJ, Milner TA. Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neuroscience. 1995 ; 65 : 343-53.
8) Sved AF, Ito S, Madden CJ, et al. Excitatory inputs to the RVLM in the context of the baroreceptor reflex. Ann N Y Acad Sci. 2001 ; 940 : 247-58.
9) Wang J, Irnaten M, Neff RA, et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Ann N Y Acad Sci. 2001 ; 940 : 237-46.
10) Thrasher TN. Baroreceptor regulation of vasopressin and renin secretion : low-pressure versus high-pressure receptors. Front Neuroendocrinol. 1994 ; 15 : 157-96.
11) Freeman R, Abuzinadah AR, Gibbons C, et al. Orthostatic hypotension : JACC State-of-the-Art Review. J Am Coll Cardiol. 2018 ; 72 : 1294-309.
12) Jacob G, Ertl AC, Shannon JR, et al. Effect of standing on neurohumoral responses and plasma volume in healthy subjects. J Appl Physiol (1985). 1998 ; 84 : 914-21.
13) 井上博, 他. 失神の診断・治療ガイドライン (2012年改訂版) 循環器病の診断と治療に関するガイドライン. http://www.j-circ.or.jp/guideline/index.htm
14) Gibbons CH, Freeman R. Clinical implications of delayed orthostatichypotension : A 10-year follow-up study. Neurology. 2015 ; 85 : 1362-7.
15) Gilani A, Juraschek SP, Belanger MJ, et al. Postural hypotension. BMJ. 2021 ; 373 : n922.
16) Mann S, Altman DG, Raftery EB, et al. Circadian variation of blood pressure in autonomic failure. Circulation. 1983 ; 68 : 477-83.
17) Kapoor WN, Peterson J, Karpf M. Defecation syncope. A symptom with multiple etiologies. Arch Intern Med. 1986 ; 146 : 2377-9.
18) Luciano GL, Brennan MJ, Rothberg MB. Postprandial hypotension. Am J Med. 2010 ; 123 : 281. e1-6.
19) Narkiewicz K, Cooley RL, Somers VK. Alcohol potentiates orthostatic hypotension : implications for alcohol-related syncope. Circulation. 2000 ; 101 : 398-402.
20) Sugawara J, Tomoto T. Effects of short-term warm water immersion on cardiac baroreflex sensitivity in healthy men. J Physiol Sci. 2020 ; 70 : 34.
21) Juraschek SP, Daya N, Appel LJ, et al. Orthostatic hypotension in middle-age and risk of falls. Am J Hypertens. 2017 ; 30 : 188-95.
22) Shin C, Abbott RD, Lee H, et al. Prevalence and correlates of orthostatic hypotension in middle-aged men and women in Korea : the Korean Health and Genome Study. J Hum Hypertens. 2004 ; 18 : 717-23.
23) Gaspar L, Kruzliak P, Komornikova A, et al. Orthostatic hypotension in diabetic patients-10-year follow-up study. J Diabetes Complications. 2016 ; 30 : 67-71.
24) Rose KM, Eigenbrodt ML, Biga RL, et al. Orthostatic hypotension predicts mortality in middle-aged adults : the Atherosclerosis Risk In Communities (ARIC) Study. Circulation. 2006 ; 114 : 630-6.
25) Fedorowski A, Stavenow L, Hedblad B, et al. Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmo Preventive Project). Eur Heart J. 2010 ; 31 : 85-91.
26) Weiss A, Beloosesky Y, Kornowski R, et al. Influence of orthostatic hypotension on mortality among patients discharged from an acute geriatric ward. J Gen Intern Med. 2006 ; 21 : 602-6.
27) Raiha I, Luutonen S, Piha J, et al. Prevalence, predisposing factors, and prognostic importance of postural hypotension. Arch Intern Med. 1995 ; 155 : 930-5.
28) Ricci F, Fedorowski A, Radico F, et al. Cardiovascular morbidity and mortality related to orthostatic hypotension : a meta-analysis of prospective observational studies. Eur Heart J. 2015 ; 36 : 1609-17.
P.166 掲載の参考文献
2) Baker J, Kimpinski K. Reduced brainstem functional connectivity in patients with peripheral autonomic failure. Neuroimage Clin. 2019 ; 23 : 101924.
3) Freeman R, Wieling W, Axelrod FB, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res. 2011 ; 21 : 69-72.
4) Norcliffe-Kaufmann L, Kaufmann H, Palma JA, et al. Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann Neurol. 2018 ; 83 : 522-31.
5) Shaw BH, Garland EM, Black BK, et al. Optimal diagnostic thresholds for diagnosis of orthostatic hypotension with a'sit-to-stand test'. J Hypertens. 2017 ; 35 : 1019-25.
6) Fedorowski A, Melander O. Syndromes of orthostatic intolerance : a hidden danger. J Intern Med. 2013 ; 273 : 322-35.
7) Pavy-Le Traon A, Piedvache A, Perez-Lloret S, et al. New insights into orthostatic hypotension in multiple system atrophy : a European multicentre cohort study. J Neurol Neurosurg Psychiatry. 2016 ; 87 : 554-61.
8) Gibbons CH, Freeman R. Clinical implications of delayed orthostatic hypotension : A 10-year follow-up study. Neurology. 2015 ; 85 : 1362-7.
9) 出口一志. head-up tilt試験および起立試験-起立性低血圧の評価. 日本自律神経学会, 編. 自律神経機能検査. 5版. 東京 : 文光堂 ; 2015. p.141-5.
10) Deguchi K, Sasaki I, Touge T, et al. Abnormal baroreceptor-mediated vasopressin release as possible marker in early diagnosis of multiple system atrophy. J Neurol Neurosurg Psychiatry. 2004 ; 75 : 110-5.
11) Palma JA, Gomez-Esteban JC, Norcliffe-Kaufmann L, et al. Orthostatic hypotension in Parkinson disease : how much you fall or how low you go? Mov Disord. 2015 ; 30 : 639-45.
12) Hiorth YH, Pedersen KF, Dalen I, et al. Orthostatic hypotension in Parkinson disease : A 7-year prospective population-based study. Neurology. 2019 ; 93 : e1526-34.
15) Goldstein DS, Sharabi Y, Karp BI, et al. Cardiac sympathetic denervation preceding motor signs in Parkinson disease. Clin Auton Res. 2007 ; 17 : 118-21.
16) Merola A, Romagnolo A, Rosso M, et al. Autonomic dysfunction in Parkinson's disease : A prospective cohort study. Mov Disord. 2018 ; 33 : 391-7.
17) Udow SJ, Robertson AD, MacIntosh BJ, et a'l. Under pressure' : is there a link between orthostatic hypotension and cognitive impairment in α-synucleinopathies? J Neurol Neurosurg Psychiatry. 2016 ; 87 : 1311-21.
18) Goldstein DS, Holmes C, Sharabi Y, et al. Survival in synucleinopathies : A prospective cohort study. Neurology. 2015 ; 85 : 1554-61.
19) Fereshtehnejad SM, Romenets SR, Anang JB, et al. New clinical subtypes of Parkinson disease and their longitudinal progression : A prospective cohort comparison with other phenotypes. JAMA Neurol. 2015 ; 72 : 863-73.
20) Palma JA, Norcliffe-Kaufmann L, Kaufmann H. An orthostatic hypotension mimic : The inebriation-like syndrome in Parkinson disease. Mov Disord. 2016 ; 31 : 598-600.
22) Horimoto Y, Matsumoto M, Akatsu H, et al. Autonomic dysfunctions in dementia with Lewy bodies. J Neurol. 2003 ; 250 : 530-3.
24) Thaisetthawatkul P, Boeve BF, Benarroch EE, et al. Autonomic dysfunction in dementia with Lewy bodies. Neurology. 2004 ; 62 : 1804-9.
26) Yamamoto T, Asahina M, Yamanaka Y, et al. Postvoid residual predicts the diagnosis of multiple system atrophy in Parkinsonian syndrome. J Neurol Sci. 2017 ; 381 : 230-4.
27) Wenning GK, Granata R, Krismer F, et al. Orthostatic hypotension is differentially associated with the cerebellar versus the parkinsonian variant of multiple system atrophy : a comparative study. Cerebellum. 2012 ; 11 : 223-6.
28) Wecht JM, Bauman WA. Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci. 2018 ; 209 : 51-8.
29) Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000 ; 38 : 741-7.
30) Cariga P, Ahmed S, Mathias CJ, et al. The prevalence and association of neck (coat-hanger) pain and orthostatic (postural) hypotension in human spinal cord injury. Spinal Cord. 2002 ; 40 : 77-82.
31) Wecht JM, Weir JP, Galea M, et al. Prevalence of abnormal systemic hemodynamics in veterans with and without spinal cord injury. Arch Phys Med Rehabil. 2015 ; 96 : 1071-9.
32) Pop-Busui R. Cardiac autonomic neuropathy in diabetes : a clinical perspective. Diabetes Care. 2010 ; 33 : 434-41.
33) Fleg JL, Evans GW, Margolis KL, et al. Orthostatic Hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) blood pressure trial : Prevalence, incidence, and prognostic significance. Hypertension. 2016 ; 68 : 888-95.
34) Palma JA, Gonzalez-Duarte A, Kaufmann H. Orthostatic hypotension in hereditary transthyretin amyloidosis : epidemiology, diagnosis and management. Clin Auton Res. 2019 ; 29 (Suppl 1) : 33-44.
35) Gonzalez-Duarte A, Barroso F, Mundayat R, et al. Blood pressure and orthostatic hypotension as measures of autonomic dysfunction in patients from the transthyretin amyloidosis outcomes survey (THAOS). Auton Neurosci. 2019 ; 222 : 102590.
36) Golden EP, Vernino S. Autoimmune autonomic neuropathies and ganglionopathies : epidemiology, pathophysiology, and therapeutic advances. Clin Auton Res. 2019 ; 29 : 277-88.
37) Mtinangi BL, Hainsworth R. Early effects of oral salt on plasma volume, orthostatic tolerance, and baroreceptor sensitivity in patients with syncope. Clin Auton Res. 1998 ; 8 : 231-5.
38) Deguchi K, Ikeda K, Sasaki I, et al. Effects of daily water drinking on orthostatic and postprandial hypotension in patients with multiple system atrophy. J Neurol. 2007 ; 254 : 735-40.
39) Newton JL, Frith J. The efficacy of nonpharmacologic intervention for orthostatic hypotension associated with aging. Neurology. 2018 ; 91 : e652-e6.
40) Freeman R, Abuzinadah AR, Gibbons C, et al. Orthostatic Hypotension : JACC State-of-the-Art Review. J Am Coll Cardiol. 2018 ; 72 : 1294-309.
41) Low DA, da Nobrega AC, Mathias CJ. Exercise-induced hypotension in autonomic disorders. Auton Neurosci. 2012 ; 171 : 66-78.
42) Fanciulli A, Goebel G, Metzler B, et al. Elastic abdominal binders attenuate orthostatic hypotension in Parkinson's disease. Mov Disord Clin Pract. 2016 ; 3 : 156-60.
43) Okamoto LE, Diedrich A, Baudenbacher FJ, et al. Efficacy of servo-controlled splanchnic venous compression in the treatment of orthostatic hypotension : A randomized comparison with midodrine. Hypertension. 2016 ; 68 : 418-26.
44) Ten Harkel AD, Van Lieshout JJ, Wieling W. Treatment of orthostatic hypotension with sleeping in the head-up tilt position, alone and in combination with fludrocortisone. J Intern Med. 1992 ; 232 : 139-45.
45) Ando Y, Asahara K, Obayashi K, et al. Autonomic dysfunction and anemia in neurologic disorders. J Auton Nerv Syst. 1996 ; 61 : 145-8.
46) Beitzke M, Pfister P, Fortin J, et al. Autonomic dysfunction and hemodynamics in vitamin B12 deficiency. Auton Neurosci. 2002 ; 97 : 45-54.
47) Skrabal F. Syncope, falls and cobalamin deficiency in the old population. Clin Auton Res. 2004 ; 14 : 60-6.
48) Parsaik AK, Singh B, Altayar O, et al. Midodrine for orthostatic hypotension : a systematic review and meta-analysis of clinical trials. J Gen Intern Med. 2013 ; 28 : 1496-503.
49) Chen JJ, Hewitt LA. Comparison of the pharmacokinetics of droxidopa after dosing in the fed versus fasted state and with 3-times-daily dosing in healthy elderly subjects. Drugs R D. 2018 ; 18 : 77-86.
50) Park JW, Okamoto LE, Shibao CA, et al. Pharmacologic treatment of orthostatic hypotension. Auton Neurosci. 2020 ; 229 : 102721.
51) Biaggioni I, Arthur Hewitt L, Rowse GJ, et al. Integrated analysis of droxidopa trials for neurogenic orthostatic hypotension. BMC Neurol. 2017 ; 17 : 90.
52) Kurihara J, Takata Y, Suzuki S, et al. Effect of midodrine on chlorpromazine-induced orthostatic hypotension in rabbits : comparison with amezinium, etilefrine and droxidopa. Biol Pharm Bull. 2000 ; 23 : 1445-9.
53) Sakakibara R, Uchiyama T, Asahina M, et al. Amezinium metilsulfate, a sympathomimetic agent, may increase the risk of urinary retention in multiple system atrophy. Clin Auton Res. 2003 ; 13 : 51-3.
54) Singer W, Sandroni P, Opfer-Gehrking TL, et al. Pyridostigmine treatment trial in neurogenic orthostatic hypotension. Arch Neurol. 2006 ; 63 : 513-8.
55) Schreglmann SR, Buchele F, Sommerauer M, et al. Pyridostigmine bromide versus fludrocortisone in the treatment of orthostatic hypotension in Parkinson's disease-a randomized controlled trial. Eur J Neurol. 2017 ; 24 : 545-51.
56) Fanciulli A, Jordan J, Biaggioni I, et al. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS) : Endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin Auton Res. 2018 ; 28 : 355-62.
57) Palma JA, Kaufmann H. Orthostatic hypotension in Parkinson disease. Clin Geriatr Med. 2020 ; 36 : 53-67.
P.186 掲載の参考文献
1) de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015 ; 5 : 327-96.
2) Miyazato M, Kadekawa K, Kitta T, et al. New frontiers of basic science research in neurogenic lower urinary tract dysfunction. Urol Clin North Am. 2017 ; 44 : 491-505.
3) Andersson KE, Garcia Pascual A, Persson K, et al. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J Urol. 1992 ; 147 : 253-59.
4) de Groat WC, Nadelhaft I, Milne RJ, et al. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst. 1981 ; 3 : 135-60.
5) Callsen-Cencic P, Mense S. Expression of neuropeptides and nitric oxide synthase in neurones innervating the inflamed rat urinary bladder. J Auton Nerv Syst. 1997 ; 65 : 33-44.
6) Vizzard MA. Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat. 2001 ; 21 : 125-38.
7) Birder L, Andersson KE. Urothelial signaling. Physiol Rev. 2013 ; 93 : 653-80.
8) Hashitani H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J Physiol. 2006 ; 576 : 707-14.
9) 日本泌尿器科学会. 男性下部尿路症状・前立腺肥大症診療ガイドライン. 男性下部尿路症状・前立腺肥大症診療ガイドライン作成委員会, 編. RichHill Medical ; 2017.
10) Hirayama A, Fujimoto K, Matsumoto Y, et al. Positive response to ice water test associated with high-grade bladder outlet obstruction in patients with benign prostatic hyperplasia. Urology. 2003 ; 62 : 909-13.
11) Yokoyama O, Miwa Y, Oyama N, et al. Urethral sensations are related to the development of detrusor overactivity. Low Urin Tract Symptoms. 2011 ; 3 : 59-63.
12) 吉村直樹, 橘田岳也, 嘉手川豪心, 他. 中枢神経系における排尿薬理機構の概説. 日本薬理学雑誌. 2020 ; 155 : 4-9.
13) Holstege G, Griffiths D, de Wall H, et al. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol. 1986 ; 250 : 449-61.
14) Nishizawa O, Sugaya K, Noto H, et al. Pontine urine storage center in the dog. Tohoku J Exp Med. 1987 ; 153 : 77-8.
15) Holstege G. The emotional motor system and micturition control. Neurourol Urodyn. 2010 ; 29 : 42-8.
16) Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 2012 ; 13 : 251-66.
17) Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci. 2014 ; 37 : 387-407.
18) Hou XH, Hyun M, Taranda J, et al. Central Control Circuit for Context-Dependent Micturition. Cell. 2016 ; 167 : 73-86. e12.
19) Keller JA, Chen J, Simpson S, et al. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci. 2018 ; 21 : 1229-38.
20) Yao J, Zhang Q, Liao X, et al. A corticopontine circuit for initiation of urination. Nat Neurosci. 2018 ; 21 : 1541-50.
21) Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain. 1997 ; 120 : 111-21.
22) Griffiths D, Derbyshire S, Stenger A, et al. Brain control of normal and overactive bladder. J Urol. 2005 ; 174 : 1862-7.
23) Nour S, Svarer C, Kristensen JK, et al. Cerebral activation during micturition in normal men. Brain. 2000 ; 123 : 781-9.
24) Griffiths D. Neural control of micturition in humans : a working model. Nat Rev Urol. 2015 ; 12 : 695-705.
25) Tanaka H, Kakizaki H, Shibata T, et al. Effects of a selective metabotropic glutamate receptor agonist on the micturition reflex pathway in urethane-anesthetized rats. Neurourol Urodyn. 2003 ; 22 : 611-6.
26) Yoshiyama M, de Groat WC. Role of spinal metabotropic glutamate receptors in regulation of lower urinary tract function in the decerebrate unanesthetized rat. Neurosci Lett. 2007 ; 420 : 18-22.
27) Miyazato M, Kaiho Y, Kamo I, et al. Role of spinal serotonergic pathways in sneeze-induced urethral continence reflex in rats. Am J Physiol Renal Physiol. 2009 ; 297 : F1024-31.
28) Suzuki T, Shimizu T, Kwon J, et al. Role of the serotonergic system in urethral continence reflexes during sneezing in rats. Am J Physiol Renal Physiol. 2018 ; 315 : F79-85.
29) Chiba H, Kitta T, Ohmura Y, et al. Serotonin in the rat prefrontal cortex controls the micturition reflex through 5-hydroxytryptamine 2A and 5-hydroxytryptamine 7 receptors. Int J Urol. 2020 ; 27 : 684-9.
30) Kaiho Y, Kamo I, Chancellor MB, et al. Role of noradrenergic pathways in sneeze-induced urethral continence reflex in rats. Am J Physiol Renal Physiol. 2007 ; 292 : F639-46.
31) Kitta T, Miyazato M, Chancellor MB, et al. Alpha2-adrenoceptor blockade potentiates the effect of duloxetine on sneeze induced urethral continence reflex in rats. J Urol. 2010 ; 184 : 762-8.
33) Yokoyama O, Ootsuka N, Komatsu K, et al. Forebrain muscarinic control of micturition reflex in rats. Neuropharmacology. 2001 ; 41 : 629-38.
34) Masuda H, Hayashi Y, Chancellor MB, et al. Roles of peripheral and central nicotinic receptors in the micturition reflex in rats. J Urol. 2006 ; 176 : 374-9.
35) Lee SJ, Nakamura Y, de Groat WC. Effect of (+/-) -epibatidine, a nicotinic agonist, on the central pathways controlling voiding function in the rat. Am J Physiol Regul Integr Comp Physiol. 2003 ; 285 : R84-90.
36) Shimizu Y, Shimizu T, Zou S, et al. Stimulation of brain α7-nicotinic acetylcholine receptors suppresses the rat micturition through brain GABAergic receptors. Biochem Biophys Res Commun. 2021 ; 548 : 84-90.
37) Giuliano F, Rampin O. Neural control of erection. Physiol Behav. 2004 ; 83 : 189-201.
38) Andersson KE. Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol Rev. 2011 ; 63 : 811-59.
39) Coolen LM, Allard J, Truitt WA, et al. Central regulation of ejaculation. Physiol Behav. 2004 ; 83 : 203-15.
40) Vaughan E, Fisher AE. Male sexual behavior induced by intracranial electrical stimulation. Science. 1962 ; 137 : 758-60.
41) Heimer L, Larsson K. Impairment of mating behavior in male rats following lesions in the preoptic-anterior hypothalamic continuum. Brain Research. 1967 ; 3 : 248-63.
42) Sato Y, Christ GJ. Differential ICP responses elicited by electrical stimulation of medial preoptic area. Am J Physiol Heart Circ Physiol. 2000 ; 278 : H964-70.
43) Marson L. Lesions of the periaqueductal gray block the medial preoptic area-induced activation of the urethrogenital reflex in male rats. Neurosci Lett. 2004 ; 367 : 278-82.
P.214 掲載の参考文献
1) 失神の診断・治療ガイドライン (2012年改訂版).
2) Sakakibara R, et al. Urodynamic and cardiovascular measurements in patients with micturition syncope. Clin Auton Res. 1997 ; 7 : 219-21.
3) Uchiyama T, Sakakibara R. Post-micturitional hypotension in patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 2005 ; 76 : 186-90.
P.216 掲載の参考文献
1) Kawabe K, Yoshida M, Homma Y. Silodosin, a new alpha 1A-adrenoceptorselective antagonist for treating benign prostatic hyperplasia : results of a phase III randomized, placebo-controlled, double-blind study in Japanese men. BJU Int. 2006 ; 98 : 1019-24.
1) 日本排尿機能学会 過活動膀胱ガイドライン作成委員会, 編. 過活動膀胱診療ガイドライン [第2版]. 東京 : リッチヒルメディカル ; 2015.
2) Uchiyama T, Sakakibara R, Yamamoto T, et al. Urinary dysfunction in early and untreated Parkinson's disease. J Neurol Neurosurg Psychiatry. 2011 ; 82 : 1382-8.
2) Masumori N. Naftopidil for the treatment of urinary symptoms in patients with benign prostatic hyperplasia. Therapeutics and Clinical Risk Management. 2011 : 7 ; 227-238.
3) Winge K, Fowler CJ. Bladder dysfunction in Parkinsonism : mechanisms, prevalence, symptoms, and management. Mov Disord. 2006 ; 21 : 737-45. Review.
3) Gomes CM, Sammour ZM, Junior JDB, et al. Neurological status predicts response to alpha-blockers in men with voiding dysfunction and Parkinson's disease. Clinics. 2014 : 69 : 817-22.
4) 内山智之, 榊原隆次, 山本達也, 他. パーキンソン病の排泄障害update. 自律神経 2013 ; 50 : 205-7.
4) Kaufmann H, Goldstein DS. Autonomic dysfunction in Parkinson disease. Handb Clin Neurol. 2013 ; 117 : 259-78.
5) Sakakibara R, Hattori T, Uchiyama T, et al. Are alpha-blockers involved in lower urinary tract dysfunction in multiple system atrophy? A comparison of prazosin and moxisylyte J Auton Nerv Syst. 2000 : 15 ; 191-5.
5) Takahashi O, Sakakibara R, Tateno F, et al. Overactive bladder may precede motor disorder in Parkinson's disease : A urodynamic study. Parkinsonism Relat Disord. 2014 : S1353-8020 (14) 00229-6. doi : 10.1016/j.parkreldis.2014.06.009. [Epub ahead of print]
6) Sakakibara R, Hattori T, Uchiyama T, et al. Urinary dysfunction and orthostatic hypotension in multiple system atrophy : which is the more common and earlier manifestation? J Neurol Neurosurg Psychiatry. 2000 ; 68 : 65-9.
7) パーキンソン病における下部尿路機能障害診療ガイドライン. 東京 : 中外医学社 ; 2017.
8) Lim CS, Abrams P. The Abrams-Griffiths nomogram. World J Urol. 1995 ; 13 : 34-9.
9) Schafer W. Analysis of bladder-outlet function with the linearized passive urethral resistance relation, linPURR, and a disease-specific approach for grading obstruction : from complex to simple.
10) 日本排尿機能学会 女性下部尿路症状診療ガイドライン作成委員会, 編. 女性下部尿路症状診療ガイドライン. 東京 : リッチヒルメディカル ; 2013.
11) Abrams P, Cardozo L, Fall M, et al ; Standardisation Sub-committee of the International Continence Society. The Standardisation of terminology of lower urinary tract function : report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002 ; 21 : 167-78.
12) Abrams P, Cardozo L, Fall M, et al ; Standardisation Sub-committee of the International Continence Society. The Standardisation of terminology of lower urinary tract function : report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002 ; 21 : 167-78.
13) Sakakibara R, Uchiyama T, Yamanishi T, et al. Sphincter EMG as a diagnostic tool in autonomic disorders. Clin Auton Res. 2009 ; 19 : 20-31.
14) Yamamoto T, Sakakibara R, Uchiyama T, et al. Receiver operating characteristic analysis of sphincter electromyography for parkinsonian syndrome. Neurourol Urodyn. 2012 ; 31 : 1128-1134.
15) Gilad R, Giladi N, Korczyn AD, et al. Quantitative anal sphincter EMG in multisystem atrophy and 100 controls. J Neurol Neurosurg Psychiatry. 2001 ; 71 : 596-9.
16) パーキンソン病における下部尿路機能障害診療ガイドライン. 東京 : 中外医学社 ; 2017.
17) Andrew J, Nathan PW. Lesions of the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964 ; 87 : 233-62.
18) 植木幸明. 脳腫瘍患者よりみた排尿障害. 綜合臨床. 1960 ; 9 : 1361-70.
21) Kavia RB, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005 ; 493 : 27-32.
23) Tadic SD, Griffiths D, Schaefer W, et al. Abnormal connections in the supraspinal bladder control network in women with urge urinary incontinence. Neuroimage. 2008 ; 39 : 1647-53.
25) Griffiths D, Derbyshire S, Stenger A, et al. Brain control of normal and overactive bladder. J Urol. 2005 ; 174 : 1862-7.
26) Sakakibara R, Tsunoyama K, Takahashi O, et al. Real-time measurement of oxyhemoglobin concentration changes in the frontal micturition area : an fNIRS study. Neurourol Urodyn. 2010 ; 29 : 757-64.
27) Tadic SD, Griffiths D, Schaefer W, Murrin A, Clarkson B, Resnick NM : Brain activity underlying impaired continence control in older women with overactive bladder. Neurourol Urodyn. 2012 ; 31 : 652-8.
28) 日本排尿機能学会 過活動膀胱ガイドライン作成委員会編. 過活動膀胱診療ガイドライン [第2版]. 東京 : リッチヒルメディカル ; 2015.
29) 榊原隆次, 舘野冬樹, 岸雅彦, 他. 高齢者における脳疾患と排尿機能障害, 日本老年医学会雑誌. 2013 ; 50 : 446-52.
30) Sakakibara R, Panicker J, Fowler CJ, et a"l. Vascular incontinence" : incontinence in the elderly due to ischemic white matter changes. Neurology International. 2012 ; 4 : e13.
31) Sakakibara R, Hattori T, Uchiyama T, et al. Urinary function in the elderly with and without leukoaraiosis ; in relation to cognitive and gait function. J Neurol Neurosurg Psychiatry. 1999 ; 67 : 658-60.
32) Yamaguchi C, Sakakibara R, Uchiyama T, et al. Overactive bladder in diabetes : a peripheral or central mechanism? Neurourol Urodyn. 2007 ; 26 : 807-13.
33) 過活動膀胱診療ガイドライン. 第2版. 東京 : リッチヒルメディカル ; 2015.
34) 女性下部尿路症状診療ガイドライン. 第2版, 東京 : リッチヒルメディカル ; 2019.
35) 男性下部尿路症状・前立腺肥大症診療ガイドライン. 東京 : リッチヒルメディカル ; 2017.
36) Sakakibara R, Yamaguchi C, Yamamoto T, et al. Imidapril, an angiotensin-converting enzyme inhibitor, can reverse loss of bladder sensation. J Neurol Neurosurg Psychiatry. 2006 ; 77 : 1100-1.
37) Fowler CJ, Panicker JN, Drake M, et al. A UK consensus on the management of the bladder in multiple sclerosis. Postgrad Med J. 2009 ; 85 : 552-9.
38) Takeda M, Homma Y, Araki I, et al. Predictive factors for the effect of the a1-D/A adrenoceptor antagonist naftopidil on subjective and objective criteria in patients with neurogeniclower urinary tract dysfunction. BJU Int. 2011 ; 108 : 100-7.
39) Sakakibara R, Uchiyama T, Asahina M, et al. Amezinium metilsulfate, a sympathomimetic agent, may increase the risk of urinary retention in multiple system atrophy. Clin Auton Res. 2003 ; 13 : 51-3.
40) Yamanishi T, Yasuda K, Kamai T, et al. Combination of a cholinergic drug and an alpha-blocker is more effective than monotherapy for the treatment of voiding difficulty in patients with underactive detrusor. Int J Urol. 2004 ; 11 : 88-96.
41) Yamamoto T, Sakakibara R, Yamanaka Y, et al. Pyridostigmine in autonomic failure : can we treat postural hypotension and bladder dysfunction with one drug? Clin Auton Res 2006 ; 16 : 296-8.
42) Yamamoto T, Sakakibara R, Uchiyama T, et al. Neurological diseases that cause detrusor hyperactivity with impaired contractile function. Neurourol Urodyn. 2006 ; 25 : 356-60.
43) Ito T, Sakakibara R, Yasuda K, et al. Incomplete emptying and urinary retention in multiple system atrophy : when does it occur and how do we manage it? Mov Disord. 2006 ; 21 : 816-23.
44) Sakakibara R, Uchiyama T, Yamanishi T, et al. Sphincter EMG as a diagnostic tool in autonomic disorders. Clin Auton Res. 2009 ; 19 : 20-31.
P.229 掲載の参考文献
1) Cannon WB, Washburn AL. An explanation of hunger. Am J Physiol. 1912 ; 29 : 441-54.
2) Lashley KS : Experimental analysis of instinctive behavior. Psychological Review. 1938 ; 45 : 445-71.
3) Hetherington AW, Ranson SW. The spontaneous activity and food intake of rats with hypothalamic lesions. Am J Physiol. 1942 ; 136 : 609-17.
4) Anand BK, Brobeck JR. Hypothalamic control of food intake in rats and cats. Yale J Biol Med. 1951 ; 24 : 123-40.
5) Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007 ; 117 : 13-23.
6) Lemmens SG, Martens EA, Kester AD, et al. Changes in gut hormone and glucose concentrations in relation to hunger and fullness. Am J Clin Nutr. 2011 ; 94 : 717-25.
8) Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000 ; 85 (1-3) : 1-17.
9) Berthoud HR and Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci. 2019 ; 1454 : 42-55.
10) Williams EK, Chang RB, Strochlic DE, et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell. 2016 ; 166 : 209-21.
11) Bai L, Mesgarzadeh S, Ramesh KS, et al. Genetic identification of vagal sensory neurons that control feeding. Cell. 2019 ; 179 : 1129-43 e1123.
12) Han W, Tellez LA, Perkins MH, et al. A neural circuit for gut-induced reward. Cell. 2018 ; 175 : 665-78 e623.
13) Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990 ; 181 : 101-15.
14) Paintal AS. Vagal afferent fibres. Ergeb Physiol. 1963 ; 52 : 74-156.
15) Powley TL, Berthoud HR, Prechtl JC, et al. Fibers of the vagus regulating gastrointestinal function. In : Tache Y, Wingate D, editors. Brain-gut interactions. Boca Ratan, FL : CRC Press ; 1991. p.73-82.
16) Brookes SJ, Spencer NJ, Costa M, et al. Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol. 2013 ; 10 : 286-96.
17) Berthoud HR. The vagus nerve, food intake and obesity. Regul Pept. 2008 ; 149 (1-3) : 15-25.
18) Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018 ; 361 (6408) : eaat5236.
19) Bohorquez DV, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015 ; 125 : 782-6.
20) Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake. Am J Physiol. 1996 ; 271 (3 Pt 2) : R766-9.
21) Deutsch JA. Dietary control and the stomach. Prog Neurobiol. 1983 ; 20 (3-4) : 313-32.
22) Berthoud HR, Blackshaw LA, Brookes SJ, et al. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. 2004 ; 16 Suppl 1 : 28-33.
23) Wang YB, de Lartigue G, Page AJ. Dissecting the role of subtypes of gastrointestinal vagal afferents. Front Physiol. 2020 ; 11 : 643.
24) Kim DY, Heo G, Kim M, et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature. 2020 ; 580 : 376-80.
25) Deutsch JA, Gonzalez MF. Gastric nutrient content signals satiety. Behav Neural Biol. 1980 ; 30 : 113-6.
26) Feinle C, Grundy D, Read NW. Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. Am J Physiol. 1997 ; 273 (3 Pt 1) : G721-6.
27) Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav. 2004 ; 81 : 249-73.
28) Kaplan JM, Spector AC, Grill HJ. Dynamics of gastric emptying during and after stomach fill. Am J Physiol. 1992 ; 263 (4 Pt 2) : R813-9.
29) Ohbayashi K, Oyama Y, Yamaguchi C, et al. Gastrointestinal distension by pectin-containing carbonated solution suppresses food intake and enhances glucose tolerance via GLP-1 secretion and vagal afferent activation. Front Endocrinol. 2021 ; 12 : 676869.
30) Grabauskas G, Song I, Zhou S, et al. Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia. J Physiol. 2010 ; 588 (Pt 4) : 617-32.
31) Raybould HE. Gut chemosensing : interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010 ; 153 (1-2) : 41-6.
32) Niijima A, Torii K, Uneyama H. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal : an electrophysiological study. Chem Senses. 2005 ; 30 (Suppl 1) : i178-9.
33) Tan HE, Sisti AC, Jin H, et al. The gut-brain axis mediates sugar preference. Nature. 2020 ; 580 : 511-6.
35) Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001 ; 86 : 4753-8.
36) Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001 ; 409 : 194-8.
37) Masuda Y, Tanaka T, Inomata N et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun. 2000 ; 276 : 905-8.
38) Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000 ; 407 : 908-13.
39) Yada T, Damdindorj B, Rita RS, et al. Ghrelin signalling in beta-cells regulates insulin secretion and blood glucose. Diabetes Obes Metab. 2014 ; 16 (Suppl 1) : 111-7.
40) Kojima M, Kangawa K. Drug insight : The functions of ghrelin and its potential as a multitherapeutic hormone. Nat Clin Pract Endocrinol Metab. 2006 ; 2 : 80-8.
41) Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001 ; 50 : 1714-9.
42) Wren AM, Small CJ, Abbott CR, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001 ; 50 : 2540-7.
43) Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001 ; 86 : 5992.
44) Akamizu T, Takaya K, Irako T, et al. Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. Eur J Endocrinol. 2004 ; 150 : 447-55.
45) Banks WA, Tschop M, Robinson SM, et al. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther. 2002 ; 302 : 822-7.
46) Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002 ; 123 : 1120-8.
47) Grabauskas G, Wu X, Lu Y, et al. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol. 2015 ; 593 : 3973-89.
48) Date Y, Toshinai K, Koda S, et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology. 2005 ; 146 : 3518-25.
49) Iwasaki Y, Dezaki K, Kumari P, et al. Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor. Neuropeptides. 2015 ; 52 : 55-60.
50) Date Y, Shimbara T, Koda S, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 2006 ; 4 : 323-31.
51) Wang L, Saint-Pierre DH, Tache Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y- synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett. 2002 ; 325 : 47-51.
52) Sun Y, Wang P, Zheng H, et al. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004 ; 101 : 4679-84.
53) Davis EA, Wald HS, Suarez AN, et al. Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve. Curr Biol. 2020 ; 30 : 4510-8 e4516.
54) Miller LJ, Gao F. Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther. 2008 ; 119 : 83-95.
55) Karhunen LJ, Juvonen KR, Huotari A, et al. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008 ; 149 (1-3) : 70-8.
56) Passaro E Jr, Debas H, Oldendorf W, et al. Rapid appearance of intraventricularly administered neuropeptides in the peripheral circulation. Brain Res. 1982 ; 241 : 335-40.
57) Zhu XG, Greeley GH Jr, Lewis BG, et al. Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. J Neurosci Res. 1986 ; 15 : 393-403.
58) Simasko SM, Wiens J, Karpiel A, et al. Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons. Am J Physiol Regul Integr Comp Physiol. 2002 ; 283 : R1303-13.
59) Peters JH, Ritter RC, Simasko SM. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am J Physiol Regul Integr Comp Physiol. 2006 ; 290 : R1544-9.
60) Iwasaki Y, Yada T. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones : mechanism and physiological role. Neuropeptides. 2012 ; 46 : 291-7.
61) Raybould HE, Tache Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Physiol. 1988 ; 255 (2 Pt 1) : G242-6.
62) Cheung GW, Kokorovic A, Lam CK, et al. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009 ; 10 : 99-109.
63) Smith GP, Jerome C, Cushin BJ, et al. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science. 1981 ; 213 : 1036-7.
64) Heldsinger A, Lu Y, Zhou SY, et al. Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats. Am J Physiol Gastrointest Liver Physiol. 2012 ; 303 : G1042-51.
65) Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol. 2010 ; 159 : 1009-21.
66) Bodnaruc AM, Prud'homme D, Blanchet R, et al. Nutritional modulation of endogenous glucagon-like peptide-1 secretion : a review. Nutr Metab (Lond). 2016 ; 13 : 92.
67) Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol. 1996 ; 31 : 665-70.
68) Muller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019 ; 30 : 72-130.
69) Kakei M, Yada T, Nakagawa A, et al. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton Neurosci. 2002 ; 102 (1-2) : 39-44.
70) Iwasaki Y, Goswami C, Yada T. Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons. Neuropeptides. 2017 ; 65 : 77-82.
71) Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005 ; 1044 : 127-31.
72) Talsania T, Anini Y, Siu S, et al. Peripheral exendin-4 and peptide YY3-36 synergistically reduce food intake through different mechanisms in mice. Endocrinology. 2005 ; 146 : 3748-56.
73) Krieger JP, Arnold M, Pettersen KG, et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes. 2016 ; 65 : 34-43.
74) Iwasaki Y, Sendo M, Dezaki K, et al. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Commun. 2018 ; 9 : 113.
75) Smith EP, An Z, Wagner C, et al. The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 2014 ; 19 : 1050-7.
76) Nakabayashi H, Nishizawa M, Nakagawa A, et al. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am J Physiol. 1996 ; 271 (5 Pt 1) : E808-13.
77) Nishizawa M, Nakabayashi H, Uehara K, et al. Intraportal GLP-1 stimulates insulin secretion predominantly through the hepatoportal-pancreatic vagal reflex pathways. Am J Physiol Endocrinol Metab. 2013 ; 305 : E376-87.
78) Zhou SY, Lu Y, Song I, et al. Inhibition of gastric motility by hyperglycemia is mediated by nodose ganglia KATP channels. Am J Physiol Gastrointest Liver Physiol. 2011 ; 300 : G394-400.
79) Darling RA, Zhao H, Kinch D, et al. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol. 2014 ; 307 : R35-43.
80) Iwasaki Y, Nakabayashi H, Kakei M, et al. Nesfatin-1 evokes Ca2+ signaling in isolated vagal afferent neurons via Ca2+ influx through N-type channels. Biochem Biophys Res Commun. 2009 ; 390 : 958-62.
81) Peters JH, Karpiel AB, Ritter RC, et al. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Endocrinology. 2004 ; 145 : 3652-7.
82) Peters JH, McKay BM, Simasko SM et al. Leptin-induced satiation mediated by abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol. 2005 ; 288 : R879-84.
83) Malone HM, Peters JA, Lambert JJ. Physiological and pharmacological properties of 5-HT3 receptors--a patch clamp-study. Neuropeptides. 1991 ; 19 (Suppl) : 25-30.
84) Lankisch TO, Tsunoda Y, Lu Y, et al. Characterization of CCKA receptor affinity states and Ca2+ signal transduction in vagal nodose ganglia. Am J Physiol Gastrointest Liver Physiol. 2002 ; 282 : G1002-8.
85) Iwasaki Y, Kakei M, Nakabayashi H, et al. Pancreatic polypeptide and peptide YY3-36 induce Ca2+ signaling in nodose ganglion neurons. Neuropeptides. 2013 ; 47 : 19-23.
86) Koda S, Date Y, Murakami N, et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology. 2005 ; 146 : 2369-75.
87) Goswami C, Iwasaki Y, Yada T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J Nutr Biochem. 2018 ; 57 : 130-5.
88) Wu X, Li JY, Lee A, et al. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight. 2020 ; 5 : e132400.
89) Iwasaki Y, Shimomura K, Kohno D, et al. Insulin activates vagal afferent neurons including those innervating pancreas via insulin cascade and Ca2+ influx : Its dysfunction in IRS2-KO mice with hyperphagic obesity. PLoS One. 2013 ; 8 : e67198.
90) VanderWeele DA. Insulin is a prandial satiety hormone. Physiol Behav. 1994 ; 56 : 619-22.
91) Ayush EA, Iwasaki Y, Iwamoto S, et al. Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca2+ signaling via glucagon receptors. Biochem Biophys Res Commun. 2015 ; 456 : 727-32.
92) Geary N, Smith GP. Selective hepatic vagotomy blocks pancreatic glucagon's satiety effect. Physiol Behav. 1983 ; 31 : 391-4.
93) Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003 ; 124 : 1325-36.
94) Iwasaki Y, Kumari P, Wang L, et al. Relay of peripheral oxytocin to central oxytocin neurons via vagal afferents for regulating feeding. Biochem Biophys Res Commun. 2019 ; 519 : 553-8.
95) Iwasaki Y, Maejima Y, Suyama S, et al. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice : a route for ameliorating hyperphagia and obesity. Am J Physiol Regul Integr Comp Physiol. 2015 ; 308 : R360-9.
P.242 掲載の参考文献
1) Morley JE. Anorexia of aging : physiologic and pathologic. Am J Clin Nutr. 1997 ; 66 : 760-73.
2) Langston JW. The Parkinson's complex : parkinsonism is just the tip of the iceberg. Annals of neurology. 2006 ; 59 : 591-6.
3) Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depression in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society. 2008 ; 23 : 183-9 ; quiz 313.
5) Ehrt U, Broich K, Larsen JP, et al. Use of drugs with anticholinergic effect and impact on cognition in Parkinson's disease : a cohort study. Journal of neurology, neurosurgery, and Psychiatry. 2010 ; 81 : 160-5.
6) Sakakibara Y, Asahina M, Suzuki A, et al. Gastric myoelectrical differences between Parkinson's disease and multiple system atrophy. Movement disorders : official journal of the Movement Disorder Society. 2009 ; 24 : 1579-86.
7) Araki N, Yamanaka Y, Poudel A, et al. Electrogastrography for diagnosis of early-stage Parkinson's disease. Parkinsonism Relat Disord. 2021 ; 86 : 61-6.
8) Arai E, Arai M, Uchiyama T, et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson's disease. Brain : a journal of neurology. 2012 ; 135 (Pt 5) : 1478-85.
9) 新井英二, 新井誠人, 横須賀収. 胃排出機能検査. 日本自律神経学会, 編. 自律神経機能検査 第5版. 東京 : 文光堂 ; 2015. p.357-60.
10) 山中義崇, 朝比奈正人. 胃電図検査. 日本自律神経学会, 編. 自律神経機能検査 第5版. 東京 : 文光堂 ; 2015. p.361-4.
11) 鮫島奈々美, 乾明夫. 【高齢者の栄養】臨床に役立つQ&A 高齢者の食欲調節メカニズムと食思不振に対するアプローチについて教えてください. Geriatric Medicine. 2017 ; 55 : 781-5.
12) 加藤士郎. これからの高齢者地域医療と介護における課題 漢方の効果的な運用 消化器疾患 食欲不振と胃炎, 便秘と下痢. Geriatric Medicine. 2018 ; 56 : 787-93.
13) 三木一正. 悪心, 嘔吐. 島田馨, 編. 内科学書 全訂第5版. 東京 : 中山書店 ; 1999. p.225-7.
14) Saito R, Takano Y, Kamiya H. Roles of Substance P and NK1 Receptor in the Brainstem in the Development of Emesis. Journal of Pharmacological Sciences. 2003 ; 91 : 87-94.
15) 佐伯俊昭. 【制吐療法Up to Date】制吐薬適正使用ガイドライン (2018 ver. 2.0) と標準的治療. 癌と化学療法. 2019 ; 46 : 1683-5.
16) 便秘の定義. 日本消化器学会関連研究会慢性便秘の診断・治療研究会, 編. 慢性便秘症診療ガイドライン 2017. 東京 : 南江堂 ; 2017. p.2.
17) 朝倉均. 便通異常. 島田馨, 編. 内科学書. 東京 : 中山書店 ; 1999. p.1615-8.
18) 慢性便秘 (症) の分類. 日本消化器病学会関連研究会慢性便秘の診断・治療研究会, 編. 慢性便秘症ガイドライン 2017. 東京 : 南江堂 ; 2017.
19) 慢性便秘症を起こす基礎疾患. 日本消化器病学会関連研究会慢性便秘の診断・治療研究会, 編. 慢性便秘症ガイドライン 2017. 東京 : 南江堂 ; 2017.
20) 問診票. 日本消化器病学会関連研究会慢性便秘の診断・治療研究会, 編. 慢性便秘症ガイドライン 2017. 東京 : 南江堂 ; 2017. p.42-6.
21) Mearin F, Lacy BE, Chang L, et al. Bowel Disorders. Gastroenterology. 2016.
22) 鳥居明. 【慢性便秘症の診療の進歩】浸透圧性下剤. 日本内科学会雑誌. 2019 ; 108 : 36-9.
23) 尾高健夫. 【これでスッキリ! 便秘治療薬の悩みを解決】作用機序別 使用のポイント・注意点 刺激性下剤. 薬事. 2017 ; 59 : 2233-6.
24) 二神生爾, 山脇博. 【これでスッキリ! 便秘治療薬の悩みを解決】作用機序別 使用のポイント・注意点 上皮機能変容薬. 薬事. 2017 ; 59 : 2228-32.
25) 榊原隆次, 岸雅彦, 舘野冬樹, 他. 排便機能検査. 日本自律神経学会, 編. 自律神経機能検査 第5版. 東京 : 文光堂 ; 2015. p.368-40.
26) 便失禁の定義. 日本大腸肛門病学会, 編. 便失禁診療ガイドライン 2017年度版. 東京 : 南江堂 ; 2017. p.1-3.
27) 便失禁の病態と原因. 日本大腸肛門病学会, 編. 便失禁診療ガイドライン 2017年度版. 東京 : 南江堂 ; 2017. p.9-11.
28) Jorge JM, Wexner SD. Etiology and management of fecal incontinence. Dis Colon Rectum. 1993 ; 36 : 77-97.
29) Vaizey CJ, Carapeti E, Cahill JA, et al. Prospective comparison of faecal incontinence grading systems. Gut. 1999 ; 44 : 77-80.
30) Fox M, Stutz B, Menne D, et al. The effects of loperamide on continence problems and anorectal function in obese subjects taking orlistat. Digestive diseases and sciences. 2005 ; 50 : 1576-83.
31) Omar MI, Alexander CE. Drug treatment for faecal incontinence in adults. The Cochrane database of systematic reviews. 2013 ; 2013 : Cd002116.
32) 薬物療法. 日本大腸肛門病学会, 編. 便失禁診療ガイドライン 2017年度版. 東京 : 南江堂 ; 2017. p.52-3.
33) 藤村昭夫. 頻用薬 処方の作法 Common Diseaseと臨床薬理学 (File No. 22) 過敏性腸症候群 高分子重合体など. 日本医事新報. 2018 : 12-3.
P.255 掲載の参考文献
1) 安垣進之助, 林悠. 睡眠の動態. 日本睡眠学会, 編. 睡眠学第2版. 東京 : 朝倉書店 ; 2020. p.11-9.
3) 桑木共之. 攻撃行動と呼吸. 有田秀穂, 編. 呼吸の事典. 東京 : 朝倉書店 ; 2006. p.347-54.
4) 西野卓. 上気道の調節. 有田秀穂, 編. 呼吸の事典. 東京 : 朝倉書店 ; 2006. p.186-98.
5) 桑木共之. 睡眠と生理機能, 呼吸器. 日本睡眠学会, 編. 睡眠学 第2版. 東京 : 朝倉書店 ; 2020. p.135-9.
6) Nakamura A, et al. Sleep apnea and effect of chemostimulation on breathing instability in mice. J Appl Physiol. 2003 ; 94 : 525-32.
7) 磯野史朗. 閉塞性睡眠時無呼吸, 病態生理. 日本睡眠学会, 編. 睡眠学 第2版. 東京 : 朝倉書店 ; 2020. p.540-3.
8) Inui K, et al. Nasal TRPA1 mediates irritant-induced bradypnea in mice. Physiol Rep. 2016 ; 4 : e13098.
9) Yonemitsu T, et al. TRPA1 detects environmental chemicals and induces avoidance behavior and arousal from sleep. Sci Rep. 2013 ; 3 : 3100.
10) Chen S, et al. Transient receptor potential ankyrin 1 mediates hypoxic responses in mice. Front Physiol. 2020 ; 11 ; 576209.
11) Nakamura A, et al. Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J Appl Physiol. 2007 ; 102 : 241-8.
12) Kuwaki T. Thermoregulation under pressure : a role for orexin neurons. Temperature 2015 ; 2 : 379-91.
13) Iwakawa S, et al. Orexin receptor blockade-induced sleep preserves the ability to wake in the presence of threat in mice. Front Behav Neurosci. 2019 ; 12 : 327.
14) 陳和夫. 睡眠時無呼吸症候群. 有田秀穂, 編. 呼吸の事典. 東京 : 朝倉書店 ; 2006. p.292-312.
P.266 掲載の参考文献
1) Cheng S, Stark CD, Stark RJ. Sleep apnoea and the neurologist. Pract Neurol. 2017 ; 17 : 21-7.
2) Sakakibara R, Hattori T, Hirayama K. Sleep apnea associated with diabetic automic neurpathy. The Autonomic Nervous System. 1990 ; 27 : 646-51.
3) Guilleminault C, Lin CM, Goncalves MA, et al. A prospective study of nocturia and the quality of life of elderly patients with obstructive sleep apnea or sleep onset insomnia. J Psychosom Res. 2004 ; 56 : 511-5.
4) Gulur DM, Mevcha AM, Drake MJ. Nocturia as a manifestation of systemic disease. BJU Int. 2011 ; 107 : 702-13.
5) Huang X, Tang S, Lyu X, et al. Structural and functional brain alterations in obstructive sleep apnea : a multimodal meta-analysis. Sleep Med. 2019 ; 54 : 195-204.
6) Jensen MLF, Vestergaard MB, Tonnesen P, et al. Cerebral blood flow, oxygen metabolism, and lactate during hypoxia in patients with obstructive sleep apnea. Sleep. 2018 ; 41.
7) Baril AA, Gagnon K, Brayet P, et al. Obstructive sleep apnea during REM sleep and daytime cerebral functioning : A regional cerebral blood flow study using high-resolution SPECT. J Cereb Blood Flow Metab. 2020 ; 40 : 1230-41.
8) Miglis MG. Autonomic dysfunction in primary sleep disorders. Sleep Med. 2016 ; 19 : 40-9.
9) Balfors EM, Franklin KA. Impairment of cerebral perfusion during obstructive sleep apneas. Am J Respir Crit Care Med. 1994 ; 150 : 1587-91.
10) Hilton MF, Chappell MJ, Bartlett WA, et al. The sleep apnoea/hypopnoea syndrome depresses waking vagal tone independent of sympathetic activation. Eur Respir J. 2001 ; 17 : 1258-66.
11) Palma JA, Iriarte J, Fernandez S, et al. Long-term continuous positive airway pressure therapy improves cardiac autonomic tone during sleep in patients with obstructive sleep apnea. Clin Auton Res. 2015 ; 25 : 225-32.
12) Bradicich M, Sievi NA, Grewe FA, et al. Nocturnal heart rate variability in obstructive sleep apnoea : a cross-sectional analysis of the Sleep Heart Health Study. J Thorac Dis. 2020 ; 12 : S129-38.
13) Gapelyuk A, Riedl M, Suhrbier A, et al. Cardiovascular regulation in different sleep stages in the obstructive sleep apnea syndrome. Biomed Tech (Berl). 2011 ; 56 : 207-13.
14) Lombardi C, Pengo MF, Parati G. Obstructive sleep apnea syndrome and autonomic dysfunction. Auton Neurosci. 2019 ; 221 : 102563.
15) Dimsdale JE, Coy T, Ziegler MG, et al. The effect of sleep apnea on plasma and urinary catecholamines. Sleep. 1995 ; 18 : 377-81.
16) Gilardini L, Lombardi C, Redaelli G, et al. Effect of continuous positive airway pressure in hypertensive patients with obstructive sleep apnea and high urinary metanephrines. J Hypertens. 2018 ; 36 : 199-204.
17) Matsuzawa Y, Kwon TG, Lennon RJ, et al. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events : A systematic review and meta-analysis. J Am Heart Assoc. 2015 ; 4 : 1-15.
18) Azuma M, Chihara Y, Yoshimura C, et al. Association between endothelial function (assessed on reactive hyperemia peripheral arterial tonometry) and obstructive sleep apnea, visceral fat accumulation, and serum adiponectin. Circ J. 2015 ; 79 : 1381-9.
19) Izzi F, Placidi F, Liguori C, et al. Does continuous positive airway pressure treatment affect autonomic nervous system in patients with severe obstructive sleep apnea? Sleep Med. 2018 ; 42 : 68-72.
20) Kheirandish-Gozal L, Gozal D. Obstructive sleep apnea and inflammation : proof of concept based on two illustrative cytokines. Int J Mol Sci. 2019 ; 20.
21) Herlenius E. An inflammatory pathway to apnea and autonomic dysregulation. Respir Physiol Neurobiol. 2011 ; 178 : 449-57.
22) Hetland A, Vistnes M, Haugaa KH, et al. Obstructive sleep apnea versus central sleep apnea : prognosis in systolic heart failure. Cardiovasc Diagn Ther. 2020 ; 10 : 396-404.
23) Mansfield D, Kaye DM, Brunner La Rocca H, et al. Raised sympathetic nerve activity in heart failure and central sleep apnea is due to heart failure severity. Circulation. 2003 ; 107 : 1396-400.
24) Tung P, Levitzky YS, Wang R, et al. Obstructive and central sleep apnea and the risk of incident atrial fibrillation in a community cohort of men and women. J Am Heart Assoc. 2017 ; 6 : 1-10.
25) Spicuzza L, Bernardi L, Calciati A, et al. Autonomic modulation of heart rate during obstructive versus central apneas in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2003 ; 167 : 902-10.
26) Nasr N, Pavy-Le Traon A, Larrue V. Baroreflex sensitivity is impaired in bilateral carotid atherosclerosis. Stroke. 2005 ; 36 : 1891-5.
27) Rupprecht S, Hoyer D, Hagemann G, et al. Central sleep apnea indicates autonomic dysfunction in asymptomatic carotid stenosis : a potential marker of cerebrovascular and cardiovascular risk. Sleep. 2010 ; 33 : 327-33.
28) Seiler A, Camilo M, Korostovtseva L, et al. Prevalence of sleep-disordered breathing after stroke and TIA : A meta-analysis. Neurology. 2019 ; 92 : e648-54.
29) Siarnik P, Jurik M, Klobucnikova K, et al. Sleep apnea prediction in acute ischemic stroke (SLAPS score) : a derivation study. Sleep Med. 2020 ; 77 : 23-8.
30) Hermann DM, Bassetti CL. Sleep-related breathing and sleep-wake disturbances in ischemic stroke. Neurology. 2009 ; 73 : 1313-22.
31) Lipford MC, Flemming KD, Calvin AD, et al. Associations between cardioembolic stroke and obstructive sleep apnea. Sleep. 2015 ; 38 : 1699-705.
32) Duss SB, Brill AK, Bargiotas P, et al. Sleep-wake disorders in stroke-increased stroke risk and deteriorated recovery? An evaluation on the necessity for prevention and treatment. Curr Neurol Neurosci Rep. 2018 ; 18 : 72.
33) Boulos MI, Dharmakulaseelan L, Brown DL, et al. Trials in sleep apnea and stroke : Learning from the past to direct future approaches. Stroke. 2021 ; 52 : 366-72.
34) Peppard PE, Young T. Exercise and sleep-disordered breathing : an association independent of body habitus. Sleep. 2004 ; 27 : 480-4.
35) Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea : A review. JAMA. 2020 ; 323 : 1389-400.
36) Weaver TE, Maislin G, Dinges DF, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007 ; 30 : 711-9.
37) Cistulli PA, Armitstead J, Pepin JL, et al. Short-term CPAP adherence in obstructive sleep apnea : a big data analysis using real world data. Sleep Med. 2019 ; 59 : 114-6.
38) Askland K, Wright L, Wozniak DR, et al. Educational, supportive and behavioural interventions to improve usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst Rev. 2020 ; 4 : Cd007736.
39) Yu J, Zhou Z, McEvoy RD, et al. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea : a systematic review and meta-analysis. JAMA. 2017 ; 318 : 156-66.
40) Ramar K, Dort LC, Katz SG, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy : an update for 2015. J Clin Sleep Med. 2015 ; 11 : 773-827.
41) Browaldh N, Nerfeldt P, Lysdahl M, et al. SKUP3 randomised controlled trial : polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax. 2013 ; 68 : 846-53.
42) Zaghi S, Holty JE, Certal V, et al. Maxillomandibular advancement for treatment of obstructive sleep apnea : a meta-analysis. JAMA Otolaryngol Head Neck Surg. 2016 ; 142 : 58-66.
43) Strollo PJ, Jr, Soose RJ, Maurer JT, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014 ; 370 : 139-49.
44) Woodson BT, Strohl KP, Soose RJ, et al. Upper airway stimulation for obstructive sleep apnea : 5-year outcomes. Otolaryngol Head Neck Surg. 2018 ; 159 : 194-202.
P.276 掲載の参考文献
1) Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes : What is defined, What is new, and what is unmet. Diabetes Metab J. 2019 ; 43 : 3-30.
2) Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes : clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011 ; 27 : 639-53.
3) Aune D, Sen A, o'Hartaigh B, et al. Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality-A systematic review and dose-response meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2017 ; 27 : 504-17.
4) Fleg JL, Evans GW, Margolis KL, et al. Orthostatic hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) blood pressure trial : Prevalence, incidence, and prognostic significance. Hypertension. 2016 ; 68 : 888-95.
5) Spallone V. Blood pressure variability and autonomic dysfunction. Curr Diab Rep. 2018 ; 18 : 137.
6) Deli G, Bosnyak E, Pusch G, et al. Diabetic neuropathies : diagnosis and management. Neuroendocrinology. 2013 ; 98 : 267-80.
7) Kebapci N, Yenilmez A, Efe B, et al. Bladder dysfunction in type 2 diabetic patients. Neurourol Urodyn. 2007 ; 26 : 814-9.
8) Yamaguchi C, Sakakibara R, Uchiyama T, et al. Overactive bladder in diabetes : a peripheral or central mechanism? Neurourol Urodyn. 2007 ; 26 : 807-13.
9) Wang R, Lefevre R, Hacker MR, et al. Diabetes, glycemic control, and urinary incontinence in women. Female Pelvic Med Reconstr Surg. 2015 ; 21 : 293-7.
10) Bacon CG, Hu FB, Giovannucci E, et al. Association of type and duration of diabetes with erectile dysfunction in a large cohort of men. Diabetes Care. 2002 ; 25 : 1458-63.
14) Phillips LK, Deane AM, Jones KL, et al. Gastric emptying and glycaemia in health and diabetes mellitus. Nat Rev Endocrinol. 2015 ; 11 : 112-28.
16) Azpiroz F, Malagelada C. Diabetic neuropathy in the gut : pathogenesis and diagnosis. Diabetologia. 2016 ; 59 : 404-8.
17) Phillips LK, Rayner CK, Jones KL, et al. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep. 2006 ; 6 : 417-23.
18) Ogbonnaya KI, Arem R. Diabetic diarrhea. Pathophysiology, diagnosis, and management. Arch Intern Med. 1990 ; 150 : 262-7.
19) Rosa-e-Silva L, Troncon LE, Oliveira RB, et al. Rapid distal small bowel transit associated with sympathetic denervation in type I diabetes mellitus. Gut. 1996 ; 39 : 748-56.
20) Horvath VJ, Putz Z, Izbeki F, et al. et al. Diabetes-related dysfunction of the small intestine and the colon : focus on motility. Curr Diab Rep. 2015 ; 15 : 94.
21) Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy : current status and new achievements for everyday clinical practice. Eur J Intern Med. 2012 ; 23 : 499-505.
22) Rayner CK, Samsom M, Jones KL, et al. Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 2001 ; 24 : 371-81.
23) Chandrasekharan B, Anitha M, Blatt R, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011 ; 23 : 131-8, e26.
24) Taba Taba Vakili S, Nezami BG, Shetty A, et al. Association of high dietary saturated fat intake and uncontrolled diabetes with constipation : evidence from the National Health and Nutrition Examination Survey. Neurogastroenterol Motil. 2015 ; 27 : 1389-97.
25) Reutrakul S, Mokhlesi B. Obstructive sleep apnea and diabetes : A state of the art review. Chest. 2017 ; 152 : 1070-86.
26) Strand LB, Carnethon M, Biggs ML, et al. Sleep disturbances and glucose metabolism in older adults : The cardiovascular health study. Diabetes Care. 2015 ; 38 : 2050-8.
27) Ota H, Fujita Y, Yamauchi M, et al. Relationship between intermittent hypoxia and type 2 diabetes in sleep apnea syndrome. Int J Mol Sci. 2019 ; 20 : 4756.
28) Reutrakul S, Thakkinstian A, Anothaisintawee T, et al. Sleep characteristics in type 1 diabetes and associations with glycemic control : systematic review and meta-analysis. Sleep Med. 2016 ; 23 : 26-45.
29) Banghoej AM, Nerild HH, Kristensen PL, et al. Obstructive sleep apnoea is frequent in patients with type 1 diabetes. J Diabetes Complications. 2017 ; 31 : 156-61.
30) Arrellano-Valdez F, Urrutia-Osorio M, Arroyo C, et al. A comprehensive review of urologic complications in patients with diabetes. Springerplus. 2014 ; 3 : 549.
31) Wittig L, Carlson KV, Andrews JM, et al. Diabetic bladder dysfunction : A review. Urology. 2019 ; 123 : 1-6.
32) Dandona P, Chaudhuri A. Sodium-glucose co-transporter 2 inhibitors for type 2 diabetes mellitus : An overview for the primary care physician. Int J Clin Pract. 2017 ; 71 : e12937.
33) Gibbons CH, Freeman R. Treatment-induced neuropathy of diabetes : an acute, iatrogenic complication of diabetes. Brain. 2015 ; 138 (Pt 1) : 43-52.
35) Koike H, Koyano S, Morozumi S, et al. Slowly progressive autonomic neuropathy with antiganglionic acetylcholine receptor antibody. J Neurol Neurosurg Psychiatry. 2010 ; 81 : 586-7.
36) Koike H, Hashimoto R, Tomita M, et al. The spectrum of clinicopathological features in pure autonomic neuropathy. J Neurol. 2012 ; 259 : 2067-75.
38) Nakane S, Mukaino A, Maeda Y, et al. Extra-autonomic manifestations in autoimmune autonomic ganglionopathy : a Japanese survey. J Neurol Neurosurg Psychiatry. 2017 ; 88 : 367-8.
39) Muppidi S, Scribner M, Gibbons CH, et al. A unique manifestation of pupillary fatigue in autoimmune autonomic ganglionopathy. Arch Neurol. 2012 ; 69 : 644-8.
40) Vernino S, Sandroni P, Singer W, et al. Invited article : Autonomic ganglia : target and novel therapeutic tool. Neurology. 2008 ; 70 : 1926-32.
42) Golden EP, Vernino S. Autoimmune autonomic neuropathies and ganglionopathies : epidemiology, pathophysiology, and therapeutic advances. Clin Auton Res. 2019 ; 29 : 277-88.
44) Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998 ; 50 : 652-7.
45) Yu Z, Kryzer TJ, Griesmann GE, et al. CRMP-5 neuronal autoantibody : marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001 ; 49 : 146-54.
46) Li Y, Jammoul A, Mente K, et al. Clinical experience of seropositive ganglionic acetylcholine receptor antibody in a tertiary neurology referral center. Muscle Nerve. 2015 ; 52 : 386-91.
47) Kesner VG, Oh SJ, Dimachkie MM, et al. Lambert-Eaton myasthenic syndrome. Neurol Clin. 2018 ; 36 : 379-94.
48) Zaeem Z, Siddiqi ZA, Zochodne DW. Autonomic involvement in Guillain-Barre syndrome : an update. Clin Auton Res. 2019 ; 29 : 289-99.
50) Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL) : a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol. 2005 ; 79 : 319-28.
51) Bodez D, Guellich A, Kharoubi M, et al. Prevalence, severity, and prognostic value of sleep apnea syndromes in cardiac amyloidosis. Sleep. 2016 ; 39 : 1333-41.
52) Mahmood S, Sovani M, Smith P, et al. High prevalence of recurrent nocturnal desaturations in systemic AL amyloidosis : a cross-sectional pilot study. Sleep Med. 2017 ; 32 : 191-7.
53) Matsuda M, Gono T, Morita H, et al. Peripheral nerve involvement in primary systemic AL amyloidosis : a clinical and electrophysiological study. Eur J Neurol. 2011 ; 18 : 604-10.
54) Koike H, Misu K, Ikeda S, et al. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan : early- vs late-onset form. Arch Neurol. 2002 ; 59 : 1771-6.
55) Palma JA, Gonzalez-Duarte A, Kaufmann H. Orthostatic hypotension in hereditary transthyretin amyloidosis : epidemiology, diagnosis and management. Clin Auton Res. 2019 ; 29 (Suppl 1) : 33-44.
56) Gonzalez-Duarte A, Barroso F, Mundayat R, et al. Blood pressure and orthostatic hypotension as measures of autonomic dysfunction in patients from the transthyretin amyloidosis outcomes survey (THAOS). Auton Neurosci. 2019 ; 222 : 102590.
57) Loavenbruck AJ, Singer W, Mauermann ML, et al. Transthyretin amyloid neuropathy has earlier neural involvement but better prognosis than primary amyloid counterpart : an answer to the paradox? Ann Neurol. 2016 ; 80 : 401-11.
58) Hita Villaplana G, Hita Rosino E, Lopez Cubillana P, et al. Corino-Andrade disease (familial amyloidotic polineuropathy type I) in Spain : urological and andrological disorders. Neurourol Urodyn. 1997 ; 16 : 55-61.
59) Andrade MJ. Lower urinary tract dysfunction in familial amyloidotic polyneuropathy, Portuguese type. Neurourol Urodyn. 2009 ; 28 : 26-32.
60) Wada Y, Ando Y, Kai N, et al. Lower urinary tract dysfunction in type 1 familial amyloidotic polyneuropathy in Kumamoto, Japan. Int J Urol. 2006 ; 13 : 1475-8.
61) Carr AS, Pelayo-Negro AL, Evans MR, et al. A study of the neuropathy associated with transthyretin amyloidosis (ATTR) in the UK. J Neurol Neurosurg Psychiatry. 2016 ; 87 : 620-7.
62) Oliveira-e-Silva T, Campos Pinheiro L, Rocha Mendes J, et al. Peripheral polyneuropathy and female sexual dysfunction-familial amyloidotic polyneuropathy as an example besides diabetes mellitus. J Sex Med. 2013 ; 10 : 430-8.
63) Wixner J, Mundayat R, Karayal ON, et al. THAOS : gastrointestinal manifestations of transthyretin amyloidosis-common complications of a rare disease. Orphanet J Rare Dis. 2014 ; 9 : 61.
64) Obici L, Suhr OB. Diagnosis and treatment of gastrointestinal dysfunction in hereditary TTR amyloidosis. Clin Auton Res. 2019 ; 29 (Suppl 1) : 55-63.
67) Wixner J, Suhr OB, Anan I. Management of gastrointestinal complications in hereditary transthyretin amyloidosis : a single-center experience over 40 years. Expert Rev Gastroenterol Hepatol. 2018 ; 12 : 73-81.
68) Andersson R. Familial amyloidosis with polyneuropathy. A clinical study based on patients living in northern Sweden. Acta Med Scand Suppl. 1976 ; 590 : 1-64.
69) Podboy A, Anderson BW, Sweetser S. 61-year-old man with chronic diarrhea. Mayo Clin Proc. 2016 ; 91 : e23-8.
70) Ikegawa S, Araki S, Nagata J, et a [l. Review of clinical records and therapeutic trials to familial amyloidotic polyneuropathy-study of 50 cases in Kumamoto (1967-1984)]. Rinsho Shinkeigaku. 1986 ; 26 : 175-9.
71) Bergethon PR, Sabin TD, Lewis D, et al. Improvement in the polyneuropathy associated with familial amyloid polyneuropathy after liver transplantation. Neurology. 1996 ; 47 : 944-51.
72) Takei Y, Ikeda S, Hashikura Y, et al. Partial-liver transplantation to treat familial amyloid polyneuropathy : follow-up of 11 patients. Ann Intern Med. 1999 ; 131 : 592-5.
73) Sharma P, Perri RE, Sirven JE, et al. Outcome of liver transplantation for familial amyloidotic polyneuropathy. Liver Transpl. 2003 ; 9 : 1273-80.
75) Lozeron P, Theaudin M, Mincheva Z, et al. Effect on disability and safety of Tafamidis in late onset of Met30 transthyretin familial amyloid polyneuropathy. Eur J Neurol. 2013 ; 20 : 1539-45.
76) Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018 ; 379 : 11-21.
P.293 掲載の参考文献
1) Biering-Sorensen F, Biering-Sorensen T, Liu N, et al. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci 2018 ; 209 : 4-18
2) Furlan JC, Verocai F, Palmares X, et al. Electrocardiographic abnormalities in the early stage following traumatic spinal cord injury. Spinal Cord 2016 ; 54 (10) : 872-77.
3) Lehmann KG, Lane JG, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans : incidence, time course and severity. J Am Coll Cardiol 1987 ; 10 : 46-52.
4) Ditunno JF, Little JW, Tessler A, et al. Spinal shock revisited : a four-phase model. Spinal Cord. 2004 ; 42, 383-95.
5) Bilello JF, Davis JW, Cunningham MA, et al. Cervical spinal cord injury and the need for cardiovascular intervention. Arch. Surg. 2003 ; 138, 127-9.
6) Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury : an under-recognized clinical entity. J Neurotrauma. 2003 ; 20 : 707-16.
7) Liu N, Zhou MW, Biering-Sorensen, F, et al. Cardiovascular response during urodynamics in individuals with spinal cord injury. Spinal Cord. 2016 ; http://dx.doi.org/10.1038/sc.2016.110.
8) Weaver LC, Fleming JC, Mathias CJ, et al. Disordered cardiovascular control after spinal cord injury. Handb Clin Neurol 2012 ; 109 : 213-33.
9) Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia : a clinical review. J Spinal Cord Med. 2014 ; 37 : 2-10.
10) Courtois F, Rodrigue X, Cote I, et al. Sexual function and autonomic dysreflexia inmen with spinal cord injuries : how should we treat? Spinal Cord. 2012 ; 50 : 869-77.
11) Liu N, Zhou M, Biering-Sorensen F, et al. Iatrogenic urological triggers of autonomic dysreflexia : a systematic review. Spinal Cord. 2015 ; 53 : 500-9.
12) McGillivray CF, Hitzig SL, Craven BC, et al. Evaluating knowledge of autonomic dysreflexia among individuals with spinal cord injury and their families. J Spinal Cord Med. 2009 ; 32 : 54-62.
13) Consortium for Spinal Cord Medicine, 2001. Acute management of autonomic dysreflexia : Individuals with spinal cord injury presenting to health care facilities, 2001. second ed. Paralyzed Veterans of America, Washington (DC).
14) Aiba Y, Sakakibara R, Tateno F. Chest pain and hypertension from the spinal cord. Intern Med. 2020 ; doi : 10.2169/internalmedicine.5692-20
15) Oka H, Toyoda C, Yogo M, et al. Reduced cardiac 123I-MIBG uptake reflects cardiac sympathetic dysfunction in de novo Parkinson's disease. J Neural Transm. 2011 ; 118 : 1323-7.
16) Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006 ; 23 : 1713-25.
17) Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury : understanding clinical pathophysiology. Spinal Cord. 2006 ; 44 : 341-51.
18) Ishikawa J, Watanabe S, Harada K. Awakening blood pressure rise in a patient with spinal cord injury. Am J Case Rep. 2016 ; 17 : 177-81.
19) Schwab JM, Zhang Y, Kopp MA, et al. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Exp Neurol. 2014 ; 258 : 121-9.
20) Nash MS, Tractenberg RE, Mendez AJ, et al. Cardiometabolic syndrome in people with spinal cord injury/disease : guideline derived and nonguideline risk components in a pooled sample. Arch Phys Med Rehabil. 2016 ; 97 : 1696-705.
21) Wu JC, Chen YC, Liu L, et al. Increased risk of stroke after spinal cord injury : a nationwide 4-year follow-up cohort study. Neurology. 2012 ; 78 : 1051-7.
22) Wecht JM, BaumanWA. Decentralized cardiovascular autonomic control and cognitive deficits in personswith spinal cord injury. J Spinal Cord Med. 2013 ; 36 : 74-81.
23) Chaparro RE, Quiroga C, Bosco G, et al. Hippocampal cellular loss after brief hypotension. Springerplus. 2013 ; 2 : 23.
24) Nightingale TE, Zheng MMZ, Sachdeva R, et al. Diverse cognitive impairment after spinal cord injury is associated with orthostatic hypotension symptom burden. Physiol Behav. 2020 ; 213 : 112742.
25) West CR, Campbell IG, Shave RE, et al. Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir Physiol Neurobiol. 2012 ; 180 : 275-82.
26) Groot M, Swartz J, Hastings J. Comparison of abdominal compression devices in persons with abdominal paralysis due to spinal cord injury. Spinal Cord Ser Cases. 2019 ; 5 : 35.
27) Groomes TE, Huang CT. Orthostatic hypotension after spinal cord injury: treatment with fludrocortisone and ergotamine. Arch Phys Med Rehabil. 1991 ; 72 : 56-8.
28) Mukand J, Karlin L, Barrs K, et al. Midodrine for the management of orthostatic hypotension in patients with spinal cord injury : a case report. Arch Phys Med Rehabil. 2001 ; 82 : 694-6.
29) Wecht JM, Rosado-Rivera D, Weir JP, et al. Hemodynamic effects of L-threo-3,4-dihydroxyphenylserine (Droxidopa) in hypotensive individuals with spinal cord injury. Arch Phys Med Rehabil. 2013 ; 94 : 2006-12.
30) Luciano GL, Brennan MJ, Rothberg MB. Postprandial hypotension. Am J Med. 2010 ; 123 : 281. e1-6.
31) Aslan SC, Legg Ditterline BE, Park MC, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol. 2018 ; 9 : 565.
32) Squair JW, Gautier M, Mahe L, et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature. 2021 Jan 27. doi : 10.1038/s41586-020-03180-w. Online ahead of print.
35) 日本大腸肛門病学会, 編. 便失禁診療ガイドライン 2017年度版. 東京 : 南江堂 ; 2017.
36) Nino-Murcia M, Stone JM, Chang PJ, et al. Colonic transit in spinal cord-injured patients. Invest Radiol. 1990 ; 25 : 109-12.
37) 舘野冬樹, 榊原隆次. ビデオマノメトリーのとり方と読み方. 榊原隆次, 福士審, 編. 神経・精神疾患による消化管障害ベッドサイドマニュル. 1版. 東京 : 中外医学社 ; 2019. p.157-9.
38) 乃美昌司, 柳井章宏, 仙石淳. 脊髄損傷. 榊原隆次, 福士審 編. 神経・精神疾患による消化管障害ベッドサイドマニュル. 1版. 東京 : 中外医学社 ; 2019. p.287-95.
39) Emmanuel AV, Krogh K, Bazzocchi G, et al. Consensus review of best practice of transanal irrigation in adults. Spinal Cord. 2013 ; 51 : 732-8.
40) 脊髄損傷における下部尿路機能障害の診療ガイドライン. 3版 [2019年版] 日本排尿機能学会/日本脊髄障害医学会/日本泌尿器科学会脊髄損傷における下部尿路機能障害の診療ガイドライン作成委員会, 編. 2019.
41) Homma Y, Yoshida M, Seki N, et al. Symptom assessment tool for overactive bladder syndrome--overactive bladder symptom score. Urology. 2006 ; 68 : 318-23.
42) Price MJ, Trbovich M. Thermoregulation following spinal cord injury. Handb Clin Neurol. 2018 ; 157 : 799-820.
43) M Frohman EM, Wingerchuk DM. Clinical practice. Transverse myelitis. N Engl J Med. 2010 ; 363 : 564-72.
44) de Seze J, T Stojkovic T, Gauvrit JY, et al. Autonomic dysfunction in multiple sclerosis : cervical spinal cord atrophy correlates. J Neurol. 2001 ; 248 : 297-303.
45) Hennessy A, Robertson NP, Swingler R, et al. Urinary, faecal and sexual dysfunction in patients with multiple sclerosis. J Neurol. 1999 ; 246 : 1027-32.
46) Sakakibara R. Neurogenic lower urinary tract dysfunction in multiple sclerosis, neuromyelitis optica, and related disorders. Clin Auton Res. 2019 ; 29 : 313-20.
47) 榊原隆次. 多発性硬化症に伴う排尿障害. 今月の治療. 2003 ; 10 : 30-2.
48) Chia YW, Fowler CJ, Kamm MA, et al. Prevalence of bowel dysfunction in patients with multiple sclerosis and bladder dysfunction. J Neurol. 1995 ; 242 : 105-8.
49) Hinds JP, Eidelman BH, Wald A. Prevalence of bowel dysfunction in multiple sclerosis. A population survey. Gastroenterology. 1990 ; 98 : 1538-42.
50) Preziosi G, Raptis DA, Raeburn A, et al. Autonomic rectal dysfunction in patients with multiple sclerosis and bowel symptoms is secondary to spinal cord disease. Dis. Colon rectum. 2014 ; 57 : 514-21.
51) Bateman AM, Goldish GD. Autonomic dysreflexia in multiple sclerosis. J Spinal Cord Med. 2002 ; 25 : 40-2.
52) Bradl M, Reindl M, Lassmann H. Mechanisms for lesion localization in neuromyelitis optica spectrum disorders. Curr Opin Neurol. 2018 ; 31 : 325-33.
53) Yamamoto T, Mori M, Uzawa A, et al. Urinary symptoms and neurological disabilities are differentially correlated between multiple sclerosis and neuromyelitis optica. Clin Exp Neuroimmunol. 2015 ; 7 : 52-8.
54) Pohl D, Alper G, Van Haren K, et al. Acute disseminated encephalomyelitis : updates on an inflammatory CNS syndrome. Neurology. 2016 ; 87 : S38-45.
55) Sakakibara R, Hattori T, Yasuda K, et al. Micturitional disturbance in acute disseminated encephalomyelitis (ADEM). J Auton Nerv Syst. 1996 ; 60 : 200-5.
57) Hattori T, Sakakibara R, Yamanishi T, et al. Micturitional disturbance in human T-lymphotropic virus type-1-associated myelopathy. J Spinal Disord. 1994 ; 7 : 255-8.
P.306 掲載の参考文献
1) Chen Z, Li G, Li J. Autonomic dysfunction in Parkinson's disease : Implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020 ; 134 : 104700.
2) Mendoza-Velasquez JJ, Flores-Vazquez JF, Barron-Velazquez E, et al. Autonomic dysfunction in α-synucleinopathies. Front Neurol. 2019 ; 10 : 363.
3) Barone DA, Henchcliffe C. Rapid eye movement sleep behavior disorder and the link to alpha-synucleinopathies. Clin Neurophysiol. 2018 ; 128 : 1551-64.
4) Sakakibara R, Doi H, Fukudo S. Lewy body constipation. J Anus Rectum Colon. 2019 ; 3 : 10-7.
6) Cersosimo MG, Raina GB, Pellene LA, et al. Weight loss in Parkinson's disease : the relationship with motor symptoms and disease progression. Biomed Res. 2018 ; 9642524.
7) Kalf JG, de Swart BJ, Borm GF, et al. Prevalence and definition of drooling in Parkinson's disease : a systematic review. J Neurol. 2009 ; 256 : 1391-6.
8) Bagheri H, Damase-Michel C, Lapeyre-Mestre M, et al. A study of salivary secretion in Parkinson's disease. Clin Neuropharmacol. 1999 ; 22 : 213-5.
9) Skjaerbaek C, Knudsen K, Jacob Horsager J, et al. Gastrointestinal dysfunction in Parkinson's disease. J Clin Med. 2021 ; 10 : 493.
10) Takizawa C, Gemmell E, Kenworthy J, et al. A systematic review of the prevalence of oropharyngeal dysphagia in stroke, Parkinson's disease, Alzheimer's disease, head injury, and pneumonia. Dysphagia. 2016 ; 31 : 434-41.
12) Dutkiewicz J, Szlufik S, Nieciecki M, et al. Small intestine dysfunction in Parkinson's disease. J Neural Transm (Vienna). 2015 ; 122 : 1659-61.
13) Niu XL, Liu L, Song ZX, et al. Prevalence of small intestinal bacterial overgrowth in Chinese patients with Parkinson's disease. J Neural Transm. 2016 ; 123 : 1381-6.
18) Sakakibara R, Kishi M, Ogawa E, et al. Bladder, bowel, and sexual dysfunction in Parkinson's disease. Parkinson's Dis. 2011 ; 2011 : 924605.
19) Mishima T, Fukase J, Fujioka S, et al. The prevalence of constipation and irritable bowel syndrome in Parkinson's disease patients according to Rome III diagnostic criteria. J Parkinsons Dis. 2017 ; 7 : 353-7.
21) Liu B, Sjolander A, Pedersen NL, et al. Irritable bowel syndrome and Parkinson's disease risk : register-based studies. NPJ Parkinsons Dis. 2021 ; 7 : 5.
22) Brudek T. Inflammatory bowel diseases and Parkinson's disease. J Parkinson. 2019 ; 9 : S331-44.
23) Shen T, Yue Y, He T, et al. The association between the gut microbiota and Parkinson's disease, a meta-analysis. Front Age Neurosci. 2021 ; 13 : 636545.
24) McDonald C, Winge K, Burn DJ. Lower urinary tract symptoms in Parkinson's disease : Prevalence, aetiology and management. Parkinsonism Relat Disord. 2017 ; 35 : 8-16.
25) Uchiyama T, Panicker JN. Genitourinary manifestations of Parkinson's disease. In ; Randhawa K, Little B, editors : BJUI Knowledge. Wiley, London, DOI 10.18591/BJUIK.0039, Feb 2019.
27) Uchiyama T, Yamagichi C, Yamamoto T, et al. Influence of nocturnal polyuria to nocturia in Parkinson's disease. 42st Annual Meeting of International Continence Society (ICS 2012), Beijing. 2012 ; 10 : 15-9.
29) Malek N, Lawton MA, Grosset KA, et al. Autonomic dysfunction in early Parkinson's disease : results from the United Kingdom tracking Parkinson's study. Mov Disord Clin Pract. 2017 ; 4 : 509-16.
30) 内山智之, 榊原隆次, 桑原聡, 他. Parkinson病のlibidoの障害. 神経内科. 2016 ; 84 : 20-5.
31) Khemani P, Mehdirad AA. Cardiovascular disorders mediated by autonomic nervous system dysfunction. Cardiol Rev. 2020 ; 28 : 65-72.
32) Palma JA, Kaufmann H. Orthostatic hypotension in Parkinson disease. Clin Geriatr Med. 2020 ; 36 : 53-67.