医学と薬学 79/7 2022年7月号

出版社: 自然科学社
発行日: 2022-06-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: 多発性嚢胞腎
電子書籍版: 2022-06-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,540 円(税込)

目次

  • 特集 多発性嚢胞腎

    序文
    常染色体顕性多発性嚢胞腎の発症・進行機序
    常染色体顕性多発性嚢胞腎の症状と診断
    常染色体顕性多発性嚢胞腎の嚢胞増大を抑制する治療
    常染色体顕性多発性嚢胞腎の合併症に対する対策
    常染色体顕性多発性嚢胞腎に対する特殊治療
     ―腎動脈塞栓術,肝動脈塞栓術,嚢胞ドレナージ
    常染色体潜性多発性嚢胞腎の基礎と臨床
     ―up date

    常染色体顕性多発性嚢胞腎研究の歴史と展望
     腎嚢胞形成促進/抑制物質のin vitro細胞培養モデルによる探索
     疾患モデル動物を用いたVasopressin V2R antagonists,
      Somatostatin analogues, mTOR inhibitorsの基礎研究
     Tolvaptan,Somatostatin analogues,mTOR inhibitorsの臨床研究結果
     トルバプタンで考えること

    研究
     新しい国産のACT測定装置CA-300について
      ―ナファモスタットメシル酸塩使用時における検討―

    Diagnosis
     肝炎ウイルス検診におけるアキュラシードHCV[II]の有用性評価
     RSウイルス迅速核酸検出試薬システムID NOWTM RSウイルスの臨床性能評価
     改良シクロスポリン試薬の基礎的検討
     鼻咽頭ぬぐい液および唾液を用いたスマートジーン®SARS-CoV-2の臨床性能評価

    Health Care
     IMリセット整体の施術が関節可動域・筋硬度・体表温度へ及ぼす影響に関する検証試験

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 多発性嚢胞腎】

P.872 掲載の参考文献
1) Tonelli M, Wiebe N, Manns BJ, et al : Comparison of the Complexity of Patients Seen by Different Medical Subspecialists in a Universal Health Care System. JAMA Netw Open 1 (7) : e184852, 2018.
2) 公益社団法人ヒューマンサイエンス振興財団 : 令和2年度報告書「60疾患に関する医療ニーズ調査」.
P.877 掲載の参考文献
1) Mochizuki T, Tsuchiya K, Nitta K : Autosomal dominant polycystic kidney disease : recent advances in pathogenesis and potential therapies. Clinical and experimental nephrology 17 (3) : 317-326, 2013.
2) Grantham JJ, Cook LT, Wetzel LH, et al : Evidence of extraordinary growth in the progressive enlargement of renal cysts.Clin J Am Soc Nephrol 5 (5) : 889-896, 2010.
3) Muto S, Okada T, Shibasaki Y, et al : Effect of tolvaptan in Japanese patients with autosomal dominant polycystic kidney disease : a post hoc analysis of TEMPO 3 : 4 and TEMPO Extension Japan. Clin Exp Nephrol 25 (9) : 1003-1010, 2021.
4) Meijer E, Visser FW, van Aerts RMM, et al : Effect of Lanreotide on Kidney Function in Patients With Autosomal Dominant Polycystic Kidney Disease : The DIPAK 1 Randomized Clinical Trial. JAMA 320 (19) : 2010-2019, 2018.
5) Perico N, Ruggenenti P, Perna A, et al : Octreotide-LAR in later-stage autosomal dominant polycystic kidney disease (ALADIN 2) : A randomized, double-blind, placebo-controlled, multicenter trial. PLoS Med 16 (4) : e1002777, 2019.
6) Shillingford JM, Piontek KB, Germino GG, et al : Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol 21 (3) : 489-497, 2010.
7) Takiar V, Nishio S, Seo-Mayer P, et al : Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA 108 (6) : 2462-2467, 2011.
8) Perrone RD, Abebe KZ, Watnick TJ, et al : Primary results of the randomized trial of metformin administration in polycystic kidney disease (TAME PKD). Kidney Int 100 (3) : 684-696, 2021.
9) Brosnahan GM, Wang W, Gitomer B, et al : Metformin Therapy in Autosomal Dominant Polycystic Kidney Disease : A Feasibility Study. Am J Kidney Dis 79 (4) : 518-526, 2022.
10) Warner G, Hein KZ, Nin V, et al : Food Restriction Ameliorates the Development of Polycystic Kidney Disease. J Am Soc Nephrol 27 (5) : 1437-1447, 2016.
11) Nowak KL, You Z, Gitomer B, et al : Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 29 (2) : 571-578, 2018.
12) Kraus A, Peters DJM, Klanke B, et al : HIF-1alpha promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney Int 94 (5) : 887-899, 2018.
13) Hofherr A, Busch T, Kottgen M : HIF-1alpha drives cyst growth in advanced stages of autosomal dominant polycystic kidney disease. Kidney Int 94 (5) : 849-851, 2018.
14) Norman J : Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812 (10) : 1327-1336, 2011.
15) Hassane S, Leonhard WN, van der Wal A, et al : Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222 (1) : 21-31, 2010.
16) Chea SW, Lee KB : TGF-beta mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Med J 50 (1) : 105-111, 2009.
P.882 掲載の参考文献
1) Grantham JJ : Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359 : 1477-1485, 2008.
2) Bergmann C, Guay-Woodford LM, Harris PC, et al : Polycystic kidney disease. Nat Rev Dis Primers 4 : 50, 2019.
3) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班 編 : エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2020, 東京医学社, 東京, 2020.
5) Schrier RW, Abebe KZ, Perrone RD, et al : Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med 371 : 2255-2266, 2014.
6) Hogan MC, Norby SM : Evaluation and management of pain in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17 : e1-16, 2010.
P.887 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班 編 : エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2020, 東京医学社, 東京, 2020.
2) Higashihara E, Nutahara K, Kojima M, et al : Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron 80 : 421-427, 1998.
3) Willey C, Kamat S, Stellhorn R, et al : Analysis of Nationwide Data to Determine the Incidence and Diagnosed Prevalence of Autosomal Dominant Polycystic Kidney Disease in the USA : 2013-2015. Kidney Dis 5 : 107-117, 2019.
4) Tokiwa S, Muto S, China T, et al : The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 15 : 539-545, 2011.
5) Chapman AB, Bost JE, Torres VE, et al : Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7 : 479-486, 2012.
6) Torres VE, Chapman AB, Devuyst O, et al : Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367 : 2407-2428, 2012.
7) Muto S, Kawano H, Higashihara E, et al : The effect of tolvaptan on autosomal dominant polycystic kidney disease patients : a subgroup analysis of the Japanese patient subset from TEMPO 3 : 4 trial. Clin Exp Nephrol 19 : 867-877, 2015.
8) Torres VE, Chapman AB, Devuyst O, et al : Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N Engl J Med 377 : 1930-1942, 2017.
9) Chebib FT, Perrone RD, Chapman AB, et al. A Practical Guide for Treatment of Rapidly Progressive ADPKD with Tolvaptan. J Am Soc Nephrol 29 : 2458-2470, 2018.
10) Soroka S, Alam A, Bevilacqua M, et al : Updated Canadian Expert Consensus on Assessing Risk of Disease Progression and Pharmacological Management of Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 5 : 2054358118801589, 2018.
11) Natoli TA, Smith LA, Rogers KA, et al : Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16 : 788-792, 2010.
P.894 掲載の参考文献
1) Griffin MD, Torres VE, Grande JP, et al : Vascular expression of polycystin. J Am Soc Nephrol 8 (4) : 616-626, 1997.
2) Alam A, Perrone RD : Managing cyst infections in ADPKD : an old problem looking for new answers. Clin J Am Soc Nephrol 4 (7) : 1154-1155, 2009.
3) Gabow PA, Bennett WM : Renal manifestations : complication management and long-term outcome of autosomal dominant polycystic kidney disease. Semin Nephrol 11 (6) : 643-652, 1991.
4) Chapman AB, Thickman D, Gabow PA : Percutaneous cyst puncture in the treatment of cyst infection in autosomal dominant polycystic kidney disease. Am J Kidney Dis 16 (3) : 252-255, 1990.
5) Suwabe T, Araoka H, Ubara Y, et al : Cyst infection in autosomal dominant polycystic kidney disease : causative microorganisms and susceptibility to lipid-soluble antibiotics. Eur J Clin Microbiol Infect Dis 34 (7) 1369-1379, 2015.
6) Grantham JJ, Geiser JL, Evan AP : Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31 (5) 1145-1152, 1987.
7) Johnson AM, Gabow PA : Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J Am Soc Nephrol 8 (10) : 1560-1567, 1997.
8) Grampsas SA, Chandhoke PS, Fan J, et al : Anatomic and metabolic risk factors for nephrolithiasis in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis 36 (1) : 53-57, 2000.
9) Nishiura JL, Neves RF, Eloi SR, et al : Evaluation of nephrolithiasis in autosomal dominant polycystic kidney disease patients. Clin J Am Soc Nephrol 4 (4) : 838-844, 2009.
10) Santoro D, Satta E, Messina S, et al : Pain in end-stage renal disease : a frequent and neglected clinical problem. Clin Nephrol 79 (Suppl 1) : S2-11, 2013.
11) Vlak MH, Algra A, Brandenburg R, et al : Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period : a systematic review and meta-analysis. Lancet Neurol 10 (7) : 626-636, 2011.
12) Schievink WI, Torres VE, Piepgras DG, et al : Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3 (1) : 88-95, 1992.
13) Fick GM, Gabow PA : Hereditary and acquired cystic disease of the kidney. Kidney Int 46 (4) : 951-964, 1994.
14) Leier CV, Baker PB, Kilman JW, et al : Cardiovascular abnormalities associated with adult polycystic kidney disease. Ann Intern Med 100 (5) : 683-688, 1984.
15) Timio M, Monarca C, Pede S, et al : The spectrum of cardiovascular abnormalities in autosomal dominant polycystic kidney disease : a 10-year follow-up in a five-generation kindred. Clin Nephrol 37 (5) : 245-251, 1992.
16) Lumiaho A, Ikaheimo R, Miettinen R, et al : Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. Am J Kidney Dis 38 (6) : 1208-1216, 2001.
17) Chen H, Watnick T, Hong SN, et al : Left ventricular hypertrophy in a contemporary cohort of autosomal dominant polycystic kidney disease patients. BMC Nephrol 20 (1) : 386, 2019.
18) Chapman AB, Johnson AM, Rainguet S, et al : Left ventricular hypertrophy in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 8 (8) : 1292-1297, 1997.
19) Torres VE, Chapman AB, Perrone RD, et al : Analysis of baseline parameters in the HALT polycystic kidney disease trials. Kidney Int 81 (6) : 577-585, 2012.
20) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班 編 : エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2020, 東京医学社, 東京, 2020.
21) 倉重眞大, 花岡一成, 細谷龍男 : 嚢胞感染-最新の診断と治療. 日本腎臓学会誌 54 : 517-521, 2012.
P.901 掲載の参考文献
1) Ubara Y, Katori H, Tagami T, et al : Transcatheter renal arterial embolization therapy on a patient with polycystic kidney disease on hemodialysis. Am J Kidney Dis 34 (5) : 926-931, 1999.
2) Ubara Y, Tagami T, Sawa N, et al : Renal contraction therapy for enlarged polycystic kidneys by transcatheter arterial embolization in hemodialysis patients. Am J Kidney Dis 39 (3) : 571-579, 2002.
3) Takei R, Ubara Y, Hoshino J, et al : Percutaneous transcatheter hepatic artery embolization for liver disease. Am J Kidney Dis 49 (6) : 744-752, 2007.
4) Ubara Y : New therapeutic option for ADPKD patients with enlarged kidney and liver. Therapeutic Apheresis Dialysis 10 (4) : 333-341, 2006.
5) Shemin D, Bostom AG, Laliberty P, et al. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis 38 (1) : 85-90, 2001.
6) van der Wal WM, Noordzij M, Dekker FW, et al : Full loss of residual renal function causes higher mortality in dialysis patients ; findings from a marginal structural model. Nephrol Dial Transplant 26 (9) : 2978-2983, 2011.
7) Suwabe T, Ubara Y, Sekine A, et al : Effect of renal transcatheter arterial embolization on quality of life in patients with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 32 (7) : 1176-1183, 2017.
8) Suwabe T, Ubara Y, Mise K, et al : Suitability of Patients with Autosomal Dominant Polycystic Kidney Disease for Renal Transcatheter Arterial Embolization. J Am Soc Nephrol 27 (7) : 2177-2187, 2016
9) Hoshino J, Suwabe T, Hayami N, et al : Survival after arterial embolization therapy in patients with polycystic kidney and liver disease. J Nephrol 28 (3) : 369-377, 2015.
10) Hoshino J, Ubara Y, Suwabe T, et al : Intravascular Embolization Therapy in Patients With Enlarged Polycystic Liver. Am J Kidney Dis 63 (6) : 937-944, 2014.
11) Harris PC, Torres VE : Autosomal Dominant Polycystic Kidney Disease. GeneReviews, National Institutes of Health, Initial Posting : January 10, 2002, Last Update July 19, 2018.
12) Sallee M, Rafat C, Zahar JR, et al : Cyst infections in patients with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 4 (7) : 1183-1189, 2009.
13) Iijima T, Suwabe T, Sumida K, et al : Prediction of hepatic cyst recurrence after minocycline hydrochloride aspiration sclerotherapy using cyst computed tomography values. Hepatol Res 47 (5) : 419-424, 2017.
P.906 掲載の参考文献
1) Mangoo-Karim R, Uchic M, Lechene C, et al : Renal epithelial cyst formation and enlargement in vitro : dependence on cAMP. Proc Natl Acad Sci USA 86 (15) : 6007-6011, 1989.
2) Yamaguchi T, Pelling JC, Ramaswamy NT, et al : cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57 (4) : 1460-1471, 2000.
3) Reif GA, Yamaguchi T, Nivens E, et al : Tolvaptan inhibits ERK-dependent cell proliferation, Cl- secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol 301 (5) : F1005-F1013, 2011.
4) Yamaguchi T, Nagao S, Wallace DP, et al : Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63 (6) : 1983-1994, 2003.
5) Yamaguchi T, Wallace DP, Magenheimer BS, et al : Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279 (39) : 40419-40430, 2004.
6) Yamaguchi T, Hempson SJ, Reif GA, et al : Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 17 (1) : 178-187, 2006.
7) Torres VE, Harris PC, Pirson Y : Autosomal dominant polycystic kidney disease. Lancet 369 (9569) : 1287-1301, 2007.
8) Belibi FA, Wallace DP, Yamaguchi T, et al : The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 13 (11) : 2723-2729, 2002.
9) Ye M, Grantham JJ : The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 329 (5) : 310-313, 1993.
10) Yamaguchi T, Nagao S, Takahashi H, et al : Cyst fluid from a murine model of polycystic kidney disease stimulates fluid secretion, cyclic adenosine monophosphate accumulation, and cell proliferation by Madin-Darby canine kidney cells in vitro. Am J Kidney Dis 25 (3) : 471-477, 1995.
11) Putnam WC, Swenson SM, Reif GA, et al : Identification of a forskolin-like molecule in human renal cysts. J Am Soc Nephrol 18 (3) : 934-943, 2007.
12) Monirujjaman M, Aukema HM : Cyclooxygenase 2 inhibition slows disease progression and improves the altered renal lipid mediator profile in the Pkd2 WS25/- mouse model of autosomal dominant polycystic kidney disease. J Nephrol 32 (3) : 401-409, 2019.
13) Masyuk TV, Radtke BN, Stroope AJ, et al : Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58 (1) : 409-421, 2013.
14) Magenheimer BS, St John PL, Isom KS, et al : Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na (+), K (+), 2Cl (-) Co-transporter-dependent cystic dilation. J Am Soc Nephrol 17 (12) : 3424-3437, 2006.
P.912 掲載の参考文献
1) 長尾静子, 西井一宏, 高橋久英 : 動物のPKD遺伝子変異. 多発性嚢胞腎の全て (東原英二 監), pp.40-47, インターメディカ, 東京, 2006.
2) 長尾静子, 釘田雅則, 吉原大輔, 他 : 多発性嚢胞腎ADPKDの新しい展開 嚢胞性腎疾患モデル動物. 腎臓内科・泌尿器科 1 (2) : 180-193, 2015.
3) Nagao S, Kugita M, Yoshihara D, et al : Animal Models for Human Polycystic Kidney Disease. Exp Anim 61 (5) : 477-488, 2012.
4) Shan D, Rezonzew G, Mullen S, et al : Heterozygous Pkhd1 C642* mice develop cystic liver disease and proximal tubule ectasia that mimics radiographic signs of medullary sponge kidney. Am J Physiol Renal Physiol 316 (3) : F463-472, 2019.
5) Yamaguchi T, Pelling JC, Ramaswamy NT, et al : cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57 (4) : 1460-1471, 2000.
6) Torres V : Role of vasopressin antagonists. Clin J Am Soc Nephrol 3 (4) : 1212-1218, 2008.
7) 中村茂樹, 伊藤修司, 藤木浩之, 他 : 塩酸モザバプタン (OPC-31260) のバソプレシン受容体への結合親和性の検討. 薬理と治療 34 (7) : 827-834, 2006.
8) 中村茂樹, 藤木浩之, 栃沢史朗, 他 : 塩酸モザバプタン (OPC-31260) の覚醒ラットおよびイヌにおける水利尿作用の検討. 薬理と治療 34 (7) : 835-845, 2006.
9) 宮崎俊樹, 中村茂樹, 藤木浩之, 他 : 塩酸モザバプタン (OPC-31260) の実験的抗利尿ホルモン不適合分泌症候群モデルラットにおける低ナトリウム血症改善効果の検討. 薬理と治療 34 (7) : 847-854, 2006.
10) Ohnishi A, Orita Y, Okahara R, et al : Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men. J Clin Invest 92 (6) : 2653-2659, 1993.
11) Yamamura Y, Ogawa H, Yamashita H, et al : Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol 105 (4) : 787-791, 1992.
12) Gattone 2nd V, Maser R, Tian C, et al : Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 24 (3-4) : 309-318, 1999.
13) Gattone 2nd V, Wang X, Harris P, et al : Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9 (10) : 1323-1326, 2003.
14) Wang X, Gattone 2nd V, Harris P, et al : Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. Am Soc Nephrol 16 (4) : 846-851, 2005.
15) Yamaguchi T, Nagao S, Wallace D, et al : Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys Kidney Int 63 (6) : 1983-1994, 2003.
16) Nagao S, Yamaguchi T, Kusaka M, et al : Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int 63 (2) : 427-437, 2003.
17) Aihara M, Fujiki H, Mizuguchi H, et al : Tolvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing increases in kidney volume and renal injury. J Pharmacol Exp Ther 349 (2) : 258-267, 2014.
18) Nagao S, Nishii K, Katsuyama M, et al : Increased water intake decreases progression of polycystic kidney disease in the PCK rat, J Am Soc Nephrol 17 (8) : 2220-2227, 2006.
19) Nagao S, Kugita M, Kumamoto, et al : Increased salt intake does not worsen the progression of renal cystic disease in high water-loaded PCK rats, PLoS One 14 (3) : e0207461, 2019.
20) Gong A, Tietz P, Muff M, et al : Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am J Physiol Cell Physiol 284 (5) : C1205-1214, 2003.
21) Bates C, Kegg H, Grady S, et al : Expression of somatostatin receptors 1 and 2 in the adult mouse kidney. Regul Pept 119 (1-2) : 11-20, 2004.
22) Bates C, Kegg H, Petrevski C, et al : Expression of somatostatin receptors 3, 4, and 5 in mouse kidney proximal tubules. Kidney Int 63 (1) : 53-63, 2003.
23) Masyuk T, A Masyuk A, Torres V, et al : Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3', 5'-cyclic monophosphate. Gastroenterology 132 (3) : 1104-1116, 2007.
24) Masyuk T, Radtke B, Stroope A, et al : Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58 (1) : 409-421, 2013.
25) Kugita M, Nishii K, Tamio Yamaguchi T, et al : Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. PLoS One 12 (5) : e0177934, 2017.
26) Stallone G, Schena A, Infante B, et al : Sirolimus for Kaposi's sarcoma in renal-transplant recipients, Clinical Trial N Engl J Med 352 (13) 1317-1323, 2005.
27) Tao Y, Kim J, Schrier R, et al : Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16 (1) : 46-51, 2005.
28) Wahl P, Hir M, Vogetseder A, et al : Mitotic activation of Akt signaling pathway in Han : SPRD rats with polycystic kidney disease. Nephrology (Carlton) 12 (4) : 357-363, 2007.
29) Zafar I, Belibi F, He Z, et al : Long-term rapamycin therapy in the Han : SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant 24 (8) : 2349-2353, 2009.
30) Wu M, Wahl P, Hir M, et al : Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30 (4) : 253-259, 2007.
31) Tao Y, Kim J, Schrier R, et al : Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16 (1) : 46-51, 2005.
32) Ravichandran K, Zafar I, Ozkok A, et al : An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease. Nephrol Dial Transplant 30 (1) : 45-53, 2015.
33) Renken C, Fischer D, Kundt G, et al : Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 26 (1) : 92-100, 2011.
34) Ren X, Sato Y, Harada K, et al : Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLoS One 9 (1) : e87660, 2014.
35) Zafar I, Ravichandran K, Belibi F, et al : Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int 78 (8) : 754-761, 2010.
36) Distefano G, Boca M, Rowe I, et al : Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29 (9) : 2359-2371, 2009.
37) Holditch S, Brown C, Atwood D, et al : A study of sirolimus and mTOR kinase inhibitor in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 317 (1) : F187-196, 2019.
38) Zittema D, Versteeg IB, Gansevoort RT, et al : Dose-Titrated Vasopressin V2 Receptor Antagonist Improves Renoprotection in a Mouse Model for Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 44 (3) : 194-203, 2016.
39) Hopp K, Hommerding CJ, Wang X, et al : Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol 26 (1) : 39-47, 2015.
40) Torres VE, Wang X, Qian Q, et al : Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10 (4) : 363-364, 2004.
P.919 掲載の参考文献
1) Torres V, Meijer E, Bae K, et al : Rationale and design of the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3-4 Study. Am J Kidney Dis 57 (5) : 692-699, 2011.
2) Torres V, Chapman A, Devuyst O, et al : TEMPO 3 : 4 Trial Investigators, Tolvaptan in patients with autosomal dominant polycystic kidney disease, N Engl J Med 367 (25) : 2407-2418, 2012.
3) Torres V, Higashihara E, Devuyst O, et al : TEMPO 3 : 4 Trial Investigators, Effect of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease by CKD Stage : Results from the TEMPO 3 : 4 Trial. Clinical Trial Clin J Am Soc Nephrol 11 (5) : 803-811, 2016.
4) Gansevoort R, Meijer E, Chapman A, et al : TEMPO 3 : 4 Investigators, Albuminuria and tolvaptan in autosomal-dominant polycystic kidney disease : results of the TEMPO 3 : 4 Trial. Nephrol Dial Transplant 31 (11) : 1887-1894, 2016.
5) Devuyst O, Chapman A, Gansevoort R, et al : Urine Osmolality, Response to Tolvaptan, and Outcome in Autosomal Dominant Polycystic Kidney Disease : Results from the TEMPO 3 : 4 Trial. J Am Soc Nephrol 28 (5) : 1592-1602, 2017.
6) Gansevoort R, Gastel M, Chapman A, et al : TEMPO 3 : 4 Investigators, Plasma copeptin levels predict disease progression and tolvaptan efficacy in autosomal dominant polycystic kidney disease. Kidney Int 96 (1) : 159-169, 2019.
7) Raina R, Chakraborty R, DeCoy M, et al : Autosomal-dominant polycystic kidney disease : tolvaptan use in adolescents and young adults with rapid progression. Pediatr Res 89 (4) : 894-899, 2021.
8) Muto S, Kawano H, Higashihara E, et al : The effect of tolvaptan on autosomal dominant polycystic kidney disease patients : a subgroup analysis of the Japanese patient subset from TEMPO 3 : 4 trial. Clin Exp Nephrol 19 (5) : 867-877, 2015.
9) Horie S, Satoru Muto S, Kawano H, et al : Preservation of kidney function irrelevant of total kidney volume growth rate with tolvaptan treatment in patients with autosomal dominant polycystic kidney disease. Clin Exp Nephrol 25 (5) : 467-478, 2021.
10) Muto S, Okada T, Shibasaki Y, et al : Effect of tolvaptan in Japanese patients with autosomal dominant polycystic kidney disease : a post hoc analysis of TEMPO 3 : 4 and TEMPO Extension Japan. Clin Exp Nephrol 25 (9) : 1003-1010, 2021.
11) Torres V, Chapman A, Devuyst O, et al : TEMPO 4 : 4 Trial Investigators, Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease : the TEMPO 4 : 4 Trial. Nephrol Dial Transplant 33 (3) : 477-489, 2018.
12) Ouyang J, Carroll K, Koch G, et al : Coping with missing data in phase III pivotal registration trials : Tolvaptan in subjects with kidney disease, a case study. Pharm Stat 16 (4) : 250-266, 2017.
13) Edwards M, Chebib F, Irazabal M, et al : Long-Term Administration of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease. Clinical Trial Clin J Am Soc Nephrol 13 (8) : 1153-1161, 2018.
14) Torres V, Devuyst O, Chapman A, et al : REPRISE Trial Investigators, Rationale and Design of a Clinical Trial Investigating Tolvaptan Safety and Efficacy in Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 45 (3) : 257-266, 2017.
15) McEwan P, Wilton H, Ong A, et al : A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD) : the ADPKD Outcomes Model. BMC Nephrol 19 (1) : 37, 2018.
16) Bennett H, McEwan P, Hamilton K, et al : Modelling the long-term benefits of tolvaptan therapy on renal function decline in autosomal dominant polycystic kidney disease : an exploratory analysis using the ADPKD outcomes model. BMC Nephrol 20 (1) : 136, 2019.
17) Torres V, Chapman A, Devuyst O, et al : Multi-center Study of Long-Term Safety of Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol 16 (1) : 48-58, 2020.
18) Natoli T, Smith L, Rogers K, et al : Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16 (7) : 788-92, 2010.
19) Natoli T, Husson H, Rogers K, et al : Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum Mol Genet 21 (15) : 3397-3407, 2012.
20) Bae K, Kumamoto K, Yoshimura A, et al : Novel 3D capsule device to restrict kidney volume expansion on polycystic kidney progression : feasibility study in a rat model. J Nephrol 35 (3) : 1033-1040, 2020.
P.923 掲載の参考文献
1) Torres VE, Chapman AB, Devuyst O, et al : TEMPO 3 : 4 Trial Investigators. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 367 : 2407-2418, 2012.
2) Gattone VH 2nd, Wang X, Harris PC, et al : Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9 : 1323-1326, 2003.
3) Torres VE, Wang X, Qian Q, et al : Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10 : 363-364, 2004.
4) Grantham JJ, Torres VE, Chapman AB, et al : Volume progression in polycystic kidney disease. N Engl J Med 354 : 2122-2130, 2006.
5) Grantham JJ, Chapman AB, Torres VE : Volume progression in autosomal dominant polycystic kidney disease : the major factor determining clinical outcomes. Clin J Am Soc Nephrol 1 : 148- 157, 2006.
6) Myint TM, Rangan GK, Webster AC : Treatments to slow progression of autosomal dominant polycystic kidney disease : systematic review and meta-analysis of randomized trials. Nephrology (Carlton) 19 : 217-226, 2014.
7) Serra AL, Poster D, Kistler AD, et al : Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363 : 820-829, 2010.
8) Perico N, Antiga L, Caroli A, et al. Sirolimus therapy to halt progression of ADPKD. J Am Soc Nephrol 21 : 1031-1040, 2010.
9) Walz G, Budde K, Mannaa M, et al : Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363 : 830-840, 2010.
10) Stallone G, Infante B, Grandaliano G, et al : Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study) : a randomized, controlled study. Nephrol Dial Transplant 27 : 3560-3567, 2012.
11) Ruggenenti P, Remuzzi A, Ondei P, et al : Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int 68 : 206-216, 2005.
12) van Keimpema L, Nevens F, Vanslembrouck R, et al : Lanreotide reduces the volume of polycystic liver : a randomized, double-blind, placebo-controlled trial. Gastroenterology 137 : 1661-1668, 2009.
13) Hogan MC, Masyuk TV, Page LJ, et al : Randomized clinical trial of long- acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol 21 : 1052-1061, 2010.
15) Messchendorp AL, Casteleijn NF, Meijer E, et al : Somatostatin in renal physiology and autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 35 : 1306-1316, 2020.
16) Schrier RW, Abebe KZ, Perrone RD, et al : Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med 371 : 2255-2266, 2014.
17) Irazabal MV, Abebe KZ, Bae KT, et al : Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease : the HALT-PKD clinical trial. Nephrol Dial Transplant 32 : 1857-1865, 2017.
18) Mitch WE, Walser M, Buffington GA, et al : A simple method of estimating progression of chronic renal failure. Lancet 2 : 1326-1328, 1976.
19) Li L, Astor BC, Lewis J, et al : Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 59 : 504-512, 2012.
20) Brosnahan GM, Abebe KZ, Moore CG, et al : Patterns of kidney function decline in autosomal dominant polycystic kidney disease : a post hoc analysis from the HALT-PKD trials. Am J Kidney Dis 71 : 666-676, 2018.
21) Higashihara E, Nutahara K, Itoh M, et al : Longterm outcomes of longitudinal efficacy study with tolvaptan in autosomal dominant polycystic kidney disease. Kidney Int Rep 7 : 270-281, 2022.
22) Higashihara E, Nutahara K, Okegawa T, et al : Kidney volume and function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 18 : 157-165, 2014.
23) Grantham JJ, Mulamalla S, Swenson-Fields KI : Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 7 : 556-566, 2011.
24) Sholokh A, Klussmann E : Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiologica 232 : e13641, 2021.
25) Meijer E, Boertien WE, Zietse R, et al : Potential eleterious effects of vasopressin in chronic kidney disease and particularly autosomal dominant polycystic kidney disease. Kidney Blood Press Res 34 : 235-244, 2011.
26) Perkovic V, Jardine MJ, Neal B, et al : Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380 : 2295-306, 2019.
27) Heerspink HJL, Stefansson BV, Correa-Rotter R, et al : Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383 : 1436-1446, 2020.
28) Brown R, Ollerstam A, Johansson B, et al. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regulatory Integrative Comp Physiol 281 : R1362-1367, 2001.
29) Sun D, Samuelson LC, Yang T, et al : Mediation of tubuloglomerular feedback by adenosine : Evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98 : 9983-9988, 2001.
30) Patzak A, Lai EY, Fahling M, Sendeski M, et al : Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. Am J Physiol Regul Integr Comp Physiol 293 : R2232-2242, 2007.
31) Nishiyama A, Inscho EW, Navar LG : Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280 : F406-414, 2001.
32) Holz FG, Steinhausen M : Renovascular effects of adenosine receptor agonists. Renal Physiol 10 : 272-282, 1987.
33) Ren Y, Garvin JL, Carretero OA : Efferent arteriole tubuloglomerular feedback in the renal nephron. Kidney Int 59 : 222-229, 2001.
34) Zhang J, Wei J, Jiang S, et al : Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. J Am Soc Nephrol 30 : 578-593, 2019.
35) Torres VE, Chapman AB, Devuyst O, et al : Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease : the TEMPO 4 : 4 Trial. Nephrol Dial Transplant 33 : 477-489, 2018.
36) Boertien WE, Meijer E, de Jong PE, et al : Short-term renal hemodynamic effects of tolvaptan in subjects with autosomal dominant polycystic kidney disease at various stages of chronic kidney disease. Kidney Int 84 : 1278-1286, 2013.
37) Pollock C, Stefansson B, Reyner D, et al : Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT) : a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 7 : 429-441, 2019.
P.933 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班 編 : エビデンスに基づく多発性嚢胞腎PKD診療ガイドライン 2020, 東京医学社, 東京, 2020. https://jsn.or.jp/academicinfo/report/evidence_PKD_guideline2020.pdf (2022年4月11日アクセス)
2) Sweeney WE, Gunay-Aygun M, Patil A, et al : Childhood polycystic kidney disease. Pediatric Nephrology. 7th ed. (ed. by Avner ED, Harmon WE, Niaudet P, et al.) pp.1103-1153, Springer, Heidelberg, 2016.
3) Ward CJ, Hogan MC, Rossetti S, et al : The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30 : 259-269, 2002.
4) Onuchic LF, Furu L, Nagasawa Y, et al : PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 70 : 1305-1317, 2002.
5) 中西浩一, 吉川徳茂 : 繊毛病. 小児疾患診療のための病態生理 2-改定第5版. 『小児内科』『小児外科』編集委員会共編, pp.479-485, 東京医学社, 東京, 2015.
6) Quinlan RJ, Tobin JL, Beales PL : Modeling ciliopathies : Primary cilia in development and disease. Curr Top Dev Biol 84 : 249-310, 2008.
7) Burgmaier K, Kilian S, Bammens B, et al : Clinical courses and complications of young adults with Autosomal recessive polycystic kidney disease (ARPKD). Sci Rep 9 : 7919, 2019.
8) Bergmann C : Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr 5 : 221, 2018.
9) Lu H, Galeano MCR, Ott E, et al : Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet 49 : 1025-1034, 2017.
10) Sweeney WE, Avner ED : Polycystic Kidney Disease, Autosomal Recessive. GeneReviews(R) [Internet] (ed. by Adam MP, Ardinger HH, Pagon RA, et al), University of Washington, Seattle, 1993-2019 (http://www.ncbi.nlm.nih.gov/books/NBK1326/)
11) Guay-Woodford LM, Desmond RA : Autosomal recessive polycystic kidney disease : the clinical experience in North America. Pediatrics 111 : 1072-1080, 2003.
12) Burgmaier K, Kunzmann K, Ariceta G, et al : Risk Factors for Early Dialysis Dependency in Autosomal Recessive Polycystic Kidney Disease. J Pediatr 199 : 22-28.e6, 2018.
13) Burgmaier K, Ariceta G, Bald M, et al : Severe neurological outcomes after very early bilateral nephrectomies in patients with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep 10 : 16025, 2020.
14) Burgmaier K, Brinker L, Erger F, et al : Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 100 (3) : 650-659, 2021.
15) Garel L : Sonography of renal cystic disease and dysplasia in infants and children. Pediatric Nephrology (ed. by Brodehl J, Ehrich JHH), pp. 359-362, Springer, Berlin, 1998.
16) Nakanishi K, Sweeney WE Jr, Zerres K, et al : Proximal tubular cysts in fetal human autosomal recessive polycystic kidney disease. J Am Soc Nephrol 11 : 760, 2000.
17) 厚生労働科学研究費補助金 (難治性疾患克服研究事業) 「多発肝のう胞に対する治療ガイドライン作成と試料バンク構築」班 : 多発性肝嚢胞診療ガイドライン, 2013.
18) Capisonda R, Phan V, Traubuci J, et al : Autosomal recessive polycystic kidney disease : outcomes from a single-center experience. Pediatr Nephrol 18 : 119, 2003.
19) Zerres K, Rudnik-Schoneborn S, Deget F, et al : Autosomal recessive polycystic kidney disease in 115 children : clinical presentation, course and influence of gender. Acta Paediatr 85 : 437, 1996.
20) Kaariainen H, Jaaskelainen J, Kivisaari L, et al : Dominant and recessive polycystic kidney disease in children : classification by intravenous pyelography, ultrasound, and computed tomography. Pediatr Radiol 18 : 45, 1998.
21) Gagnadoux MF, Habib R, Levy M, et al : Cystic renal diseases in children. Adv Nephrol Necker Hosp 18 : 33, 1989.
22) Roy S, Dillon MJ, Trompeter RS, et al : Autosomal recessive polycystic kidney disease : long-term outcome of neonatal survivors. Pediatr Nephrol 11 : 302, 1997.
23) 宍戸清一郎, 相川 厚, 大島伸一, 他 : 本邦における小児腎移植の現況と長期成績. 移植 42 : 347-353, 2007.
24) 日本肝移植研究会 : 肝移植症例登録報告. 移植 37 : 245-251, 2002.
25) Nakamura M, Fuchinoue S, Nakajima I, et al : Three cases of sequential liver-kidney transplantation from living-related donors. Nephrol Dial Transpl 16 : 166-168, 2001.
26) Davis, Ho M, Hupertz V, et al : Survival of childhood polycystic kidney disease following renal transplantation : the impact of advanced hepatobiliary disease. Pediatric Transplantation 7 : 364-369, 2003.
27) Khan K, Schwarzenberg SJ, Sharp HL, et al : Morbidity from congenital hepatic fibrosis after renal transplantation for autosomal recessive polycystic kidney disease. Am J Transplant 2 : 360-365, 2002.
28) Jamil B, McMahon LP, Savige JA, et al : A study of long-term morbidity associated with autosomal recessive polycystic kidney disease. Nephrol Dial Transplant 14 : 205-209, 1999.
29) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎疾患に関する調査研究班 編 : エビデンスに基づく多発性嚢胞腎 (PKD) 診療ガイドライン 2017, 東京医学社, 東京, 2017. https://jsn.or.jp/academicinfo/report/evidence-04-Multiple-cystic-kidney.pdf (2022年4月11日アクセス)
30) Ishiko S, Morisada N, Kondo A, et al : Clinical features of autosomal recessive polycystic kidney disease in the Japanese population and analysis of splicing in PKHD1 gene for determination of phenotypes. Clin Exp Nephrol. 26 (2) : 140-153, 2022.
31) Sakakibara N, Nozu K, Yamamura T, et al : Comprehensive genetic analysis using next-generation sequencing for the diagnosis of nephronophthisis-related ciliopathies in the Japanese population. J Hum Genet, 2022. [Epub ahead of print]

【研究】

P.940 掲載の参考文献
1) 小川覚, 田中健一 : 心臓血管外科手術における止血凝固モニタリング. Cardio Vascular Anesthesia 23 (1) : 5-10, 2019.
2) CA-300 取扱説明書 (製品同梱) (株) アペレ
3) 木下春奈, 東條圭一, 藤井正実 : 血液凝固測定器の比較. 体外循環技術 36 (4) : 353-355, 2009.
4) 井上芳博, 土橋弥生, 大坂守明, 他 : メシル酸ナファモスタットを使用した持続的血液浄化療法における至適ACT値の検証 日本急性血液浄化学会誌 1 (1) : 124-130, 2010.
5) 大久保淳, 倉島直樹, 頼建光 : 持続的濾過透析 (CHDF) 施行時における至適活性化全凝固時間 (ACT) の検討. 日本急性血液浄化学会誌 3 (1) : 29-33, 2012.
6) 児島弘臣, 秋沢忠男, 北岡建樹 : 短時間作用性透析用抗凝固薬の評価 : 凝固時間測定法の問題点. 日本透析療法学会雑誌 21 (7) : 621-627, 1988.

【Diagnosis】

P.949 掲載の参考文献
1) 田中純子 : C型肝炎の疫学. 医学と薬学 74 (5) : 517-523, 2017.
2) Choo QL, Kuo G, Weiner AJ, et al : Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244 : 359-362, 1989.
3) 阿部郁朗 : HCV検出最新検査法. 医学と薬学 62 (3) : 372-377, 2009.
4) 田中榮司 : HCV関連マーカー測定法の進歩. 臨床検査 46 (3) : 243-250, 2002.
5) 鎌田正智, 出口松夫, 柳原武彦, 他 : 測定原理の異なる7種HCV抗体測定試薬の評価. Progress in Medicine 19 (11) : 2580-2585, 1999.
6) 吉岡範, 出口松夫, 浅利誠志, 他 : HCV抗体測定における3種化学発光法の比較. 日本臨床検査自動化学会誌 31 (5) : 833-837, 2006.
7) 小林葉子, 友田雅巳, 佐藤麻子, 他 : HCV抗体スクリーニング検査試薬の性能評価. 臨床病理 65 (2) : 147-152, 2017.
8) 田中純子 : 新たなC型肝炎ウイルス検査手順の検証について. 肝炎ウイルス感染状況の把握及び肝炎ウイルス排除への方策に資する疫学研究 令和2年度分担研究報告書 : 103-105, 2020.
9) 鈴木一幸, 阿部弘一, 小山富子 : C型肝炎検診をとりまく状況. 日本医事新報 4144 : 1-6, 2003.
10) 田中純子 : 健康増進事業による住民健診におけるC型肝炎ウイルス検査測定法の妥当性についての検討. 肝炎ウイルス感染状況の把握及び肝炎ウイルス排除への方策に資する疫学研究 令和元年度研究報告書 : 129-134, 2019.
P.956 掲載の参考文献
1) Domachowske JB, Rosenberg HF : Respiratory syncytial virus infection : immune response, immunopathogenesis, and treatment. Clin Microbiol Rev 12 (2) : 298-309, 1999.
2) Nair H, Nokes DJ, Gessner BD, et al : Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children : a systematic review and meta-analysis. Lancet 375 (9725) : 1545-1555, 2010.
3) 国立感染症研究所感染症情報センター : RSウイルス感染症とは. IDWR 2004年 第22号掲載. https://www.niid.go.jp/niid/ja/kansennohanashi/317-rs-intro.html
4) Sruamsiri R, Kubo H, Mahlich J : Hospitalization costs and length of stay of Japanese children with respiratory syncytial virus : A structural equation modeling approach. Medicine 97 (29) : e11491, 2018.
5) 日本におけるパリビズマブの使用に関するガイドライン」改訂検討ワーキンググループ : 日本におけるパリビズマブの使用に関するコンセンサスガイドライン. 2019年4月. https://www.jpeds.or.jp/uploads/files/20190402palivizumabGL.pdf
6) Centers for Disease Control and Prevention. Respiratory Syncytial Virus Infection (RSV). For Healthcare Providers. Last reviewed : December 18, 2020. https://www.cdc.gov/rsv/clinical/index.html.
7) Chartrand C, Tremblay N, Renaud C, et al : Diagnostic Accuracy of Rapid Antigen Detection Tests for Respiratory Syncytial Virus Infection : Systematic Review and Meta-analysis. J Clin Microbiol 53 (12) : 3738-3749, 2015. doi : 10.1128/JCM.01816-15.
8) Pfeil J, Tabatabai J, Sander A, et al : Screening for respiratory syncytial virus and isolation strategies in children hospitalized with acute respiratory tract infection. Medicine (Baltimore) 93 (25) : e144, 2014. doi : 10.1097/MD.0000000000000144.
9) 菅井和子, 野田雅博, 木村博一 : 感染症迅速診断キットの有用性と限界 RSウイルス. 小児科 53 (4) : 417-422, 2012.
10) Peters RM, Schnee SV, Tabatabai J, et al : Evaluation of Alere i RSV for Rapid Detection of Respiratory Syncytial Virus in Children Hospitalized with Acute Respiratory Tract Infection. J Clin Microbiol 55 (4) : 1032-1036, 2017. doi : 10.1128/JCM.02433-16.
11) Schnee SV, Pfeil J, Ihling CM, et al : Performance of the Alere i RSV assay for point-of-care detection of respiratory syncytial virus in children. BMC Infect Dis 17 (1) : 767, 2017. doi : 10.1186/s12879-017-2855-1.
12) Hassan F, Hays LM, Bonner A, et al : Multicenter Clinical Evaluation of the Alere i Respiratory Syncytial Virus Isothermal Nucleic Acid Amplification Assay. J Clin Microbiol 56 (3) : e01777-17, 2018. doi : 10.1128/JCM.01777-17.
13) Papenburg J, Buckeridge DL, De Serres G, Boivin G. Host and Viral Factors Affecting Clinical Performance of a Rapid Diagnostic Test for Respiratory Syncytial Virus in Hospitalized Children. J Pediatr 163 (3) : 911-913, 2013. https://doi.org/10.1016/j.jpeds.2013.03.067
P.967 掲載の参考文献
1) ノバルティス ファーマ株式会社 : ネオーラル10mgカプセル医薬品インタビューフォーム
2) 一般社団法人日本TDM 学会 : 一般社団法人日本移植学会 (編), 免疫抑制薬TDM標準化ガイドライン 2018 「臓器移植編」
3) 一般社団法人TDM品質管理機構 : TDM-QC研究会TDMコントロールサーベイ報告
4) アボットジャパン合同会社 : シクロスポリンキット Cyclosporine・アボット添付文書
5) アボットジャパン合同会社 : シクロスポリンキット アーキテクト・シクロスポリン添付文書
6) Takahashi K, Uchida k, Yoshimura N, et al : Efficacy and safety of concentration-controlled everolimus with reduced-dose cyclosporine in Japanese de novo renal transplant patients : 12-month results. Transplantation Research 2 : 14, 2013.
7) 西平守邦, 山上孝子, 安田香, 他 : 腎移植維持期におけるエベロリムス併用下でのシクロスポリン単回投与法の検討. 日本臨床腎移植学会雑誌 6 (2) : 196-200, 2018.
P.977 掲載の参考文献
1) Qun Li, Xuhua Guan, Peng Wuet al : Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 382 : 1199-1207, 2020.
2) 国立感染症研究所 病原体検出マニュアル 2019-nCoV (Ver.2.9.1, 2020年3月19日)
3) 厚生労働省 病原体検査の指針検討委員会 : 新型コロナウイルス感染症 (COVID-19) 病原体検査の指針 (第5.1版, 2022年3月17日)
4) 厚生労働省 診療の手引き検討委員会 : 新型コロナウイルス感染症 (COVID-19) 診療の手引き (第7.1版, 2022年3月25日)
5) 日本感染症学会 : COVID-19に対する薬物治療の考え方 (第13.1版, 2022年2月18日)
6) 日本感染症学会 : COVID-19ワクチンに関する提 (第4版, 2021年12月16日)
7) 若松謙太郎, 香月耕多, 池田哲治, 他 : スマートジーン(R) 新型コロナウイルス検出試薬の臨床性能評価. 日呼吸器誌 10 (3) : 229-235, 2021.
8) 若松謙太郎 香月耕多, 池田哲治, 他 : スマートジーン(R) を用いたSARS-CoV-2 核酸検出検査における陽性判定サイクル数 (Ct値) についての検討. 医学と薬学 78 (5) : 643-651, 2021.

【Health Care】

P.986 掲載の参考文献
1) 厚生労働省 2019年 国民生活基礎調査 https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa19/index.html [最終アクセス 2022年5月21日]
2) 森本昌宏 : <総説> 肩こりの臨床-適切な診断と治療のために. 近畿大学医学雑誌 35 (3-4) : 151-156, 2010.
3) 落合孝則 : パソコン作業者の健康管理 第1回 : 肩こり, 腰痛, 目の疲れ. 日本テレワーク学会誌 8 (2) : 78-82, 2010.
4) 辻下守弘, 永田昌美, 芝寿実子, 他 : 中年女性に出現する肩こりと腰痛の重複症状の実態とその関連要因に関する研究. 甲南女子大学研究紀要. 看護学・リハビリテーション学編 (10) : 1-7, 2015.
5) 田中喜代次, 松尾知明, 蘇 りな, 他 : <総説> テレワーク・自宅待機に伴う運動不足・体力低下・有所見率増高への対策. 筑波大学体育系紀要 44 : 13-21, 2021.
6) 竹内武昭, 中尾睦宏, 野村恭子, 他 : ストレス自覚度ならびに社会生活指標が腰痛・関節痛, 肩こりに及ぼす影響 : 都道府県別データの解析. 心身医学 47 (2) : 103-110, 2007.
7) 日本整形外科学会 : パンフレット「整形外科シリーズ 4 肩こり」https://www.joa.or.jp/public/publication/pdf/joa_004.pdf. [最終アクセス 2022年5月21日]
8) 日本臨床内科医会 : わかりやすい病気のはなしシリーズ 47「肩こり」https://www.japha.jp/doc/byoki/047.pdf. [最終アクセス 2022年5月21日]
9) 柳井久江 : 4 Steps エクセル統計 第4版. オーエムエス出版, 東京, 2015.
10) 松澤正, 加藤仁志, 飯塚直貴, 他 : マッサージによる筋硬度の変化の検討. In 関東甲信越ブロック理学療法士学会 第30回関東甲信越ブロック理学療法士学会. 271-271. 社団法人日本理学療法士協会関東甲信越ブロック協議会, 2011.
11) 原田脩平, 加藤仁志, 栗林朋宏, 他 : マッサージに血流の改善効果はあるのか. In 理学療法学 Supplement 36 (2) : F3P3585-F3P3585. 公益社団法人日本理学療法士協会, 2009.
12) 菅原寿彦, 藤井亮輔, 野口栄太郎, 他 : 肩関節の痛み・可動域制限に対するマッサージ療法の有効性に関する研究. 日本東洋医学系物理療法学会誌 45 (2) : 49-55, 2020.
13) 安藤正志, 藤井翔太, 河村明和, 他 : 徒手的軟部組織刺激が可動域に及ぼす影響 (第2報).
14) 鈴木誠 : 立ち上がり動作におけるバランスをどう見るか. 理学療法学 48 (4) : 453-459, 2021.
15) 三浦拓也, 山中正紀, 武田直樹 : 体幹深層筋の活性化は体幹表層筋の活動性を減少させる. In 理学療法学 Supplement 40 (2) : 48101189-48101189. 公益社団法人日本理学療法士協会, 2013.
16) 大関純平, 深堀辰彦, 藤野洋佑, 他 : 下肢動作に伴う体幹深層筋群の筋活動性の分析-Fine Wire電極を用いた腹横筋の分析-. ヘルスプロモーション理学療法研究 2 (1) : 27-32, 2012.
17) 太田恵 : 慢性腰痛患者に対する体幹深層筋に注目した運動療法の有効性 (Doctoral dissertation, 早稲田大学), 2012.
18) 菊地真, 青野都, 石川恵子, 他 : 指圧および経穴マッサージが体温と身体柔軟性に及ぼす効果. 伝統医療看護連携研究 1 (1) : 57-64, 2020.

最近チェックした商品履歴

Loading...