1) 長尾静子, 西井一宏, 高橋久英 : 動物のPKD遺伝子変異. 多発性嚢胞腎の全て (東原英二 監), pp.40-47, インターメディカ, 東京, 2006.
2) 長尾静子, 釘田雅則, 吉原大輔, 他 : 多発性嚢胞腎ADPKDの新しい展開 嚢胞性腎疾患モデル動物. 腎臓内科・泌尿器科 1 (2) : 180-193, 2015.
3) Nagao S, Kugita M, Yoshihara D, et al : Animal Models for Human Polycystic Kidney Disease. Exp Anim 61 (5) : 477-488, 2012.
4) Shan D, Rezonzew G, Mullen S, et al : Heterozygous Pkhd1 C642* mice develop cystic liver disease and proximal tubule ectasia that mimics radiographic signs of medullary sponge kidney. Am J Physiol Renal Physiol 316 (3) : F463-472, 2019.
5) Yamaguchi T, Pelling JC, Ramaswamy NT, et al : cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57 (4) : 1460-1471, 2000.
6) Torres V : Role of vasopressin antagonists. Clin J Am Soc Nephrol 3 (4) : 1212-1218, 2008.
7) 中村茂樹, 伊藤修司, 藤木浩之, 他 : 塩酸モザバプタン (OPC-31260) のバソプレシン受容体への結合親和性の検討. 薬理と治療 34 (7) : 827-834, 2006.
8) 中村茂樹, 藤木浩之, 栃沢史朗, 他 : 塩酸モザバプタン (OPC-31260) の覚醒ラットおよびイヌにおける水利尿作用の検討. 薬理と治療 34 (7) : 835-845, 2006.
9) 宮崎俊樹, 中村茂樹, 藤木浩之, 他 : 塩酸モザバプタン (OPC-31260) の実験的抗利尿ホルモン不適合分泌症候群モデルラットにおける低ナトリウム血症改善効果の検討. 薬理と治療 34 (7) : 847-854, 2006.
10) Ohnishi A, Orita Y, Okahara R, et al : Potent aquaretic agent. A novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men. J Clin Invest 92 (6) : 2653-2659, 1993.
11) Yamamura Y, Ogawa H, Yamashita H, et al : Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol 105 (4) : 787-791, 1992.
12) Gattone 2nd V, Maser R, Tian C, et al : Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 24 (3-4) : 309-318, 1999.
13) Gattone 2nd V, Wang X, Harris P, et al : Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9 (10) : 1323-1326, 2003.
14) Wang X, Gattone 2nd V, Harris P, et al : Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. Am Soc Nephrol 16 (4) : 846-851, 2005.
15) Yamaguchi T, Nagao S, Wallace D, et al : Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys Kidney Int 63 (6) : 1983-1994, 2003.
16) Nagao S, Yamaguchi T, Kusaka M, et al : Renal activation of extracellular signal-regulated kinase in rats with autosomal-dominant polycystic kidney disease. Kidney Int 63 (2) : 427-437, 2003.
17) Aihara M, Fujiki H, Mizuguchi H, et al : Tolvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing increases in kidney volume and renal injury. J Pharmacol Exp Ther 349 (2) : 258-267, 2014.
18) Nagao S, Nishii K, Katsuyama M, et al : Increased water intake decreases progression of polycystic kidney disease in the PCK rat, J Am Soc Nephrol 17 (8) : 2220-2227, 2006.
19) Nagao S, Kugita M, Kumamoto, et al : Increased salt intake does not worsen the progression of renal cystic disease in high water-loaded PCK rats, PLoS One 14 (3) : e0207461, 2019.
20) Gong A, Tietz P, Muff M, et al : Somatostatin stimulates ductal bile absorption and inhibits ductal bile secretion in mice via SSTR2 on cholangiocytes. Am J Physiol Cell Physiol 284 (5) : C1205-1214, 2003.
21) Bates C, Kegg H, Grady S, et al : Expression of somatostatin receptors 1 and 2 in the adult mouse kidney. Regul Pept 119 (1-2) : 11-20, 2004.
22) Bates C, Kegg H, Petrevski C, et al : Expression of somatostatin receptors 3, 4, and 5 in mouse kidney proximal tubules. Kidney Int 63 (1) : 53-63, 2003.
23) Masyuk T, A Masyuk A, Torres V, et al : Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3', 5'-cyclic monophosphate. Gastroenterology 132 (3) : 1104-1116, 2007.
24) Masyuk T, Radtke B, Stroope A, et al : Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58 (1) : 409-421, 2013.
25) Kugita M, Nishii K, Tamio Yamaguchi T, et al : Beneficial effect of combined treatment with octreotide and pasireotide in PCK rats, an orthologous model of human autosomal recessive polycystic kidney disease. PLoS One 12 (5) : e0177934, 2017.
26) Stallone G, Schena A, Infante B, et al : Sirolimus for Kaposi's sarcoma in renal-transplant recipients, Clinical Trial N Engl J Med 352 (13) 1317-1323, 2005.
27) Tao Y, Kim J, Schrier R, et al : Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16 (1) : 46-51, 2005.
28) Wahl P, Hir M, Vogetseder A, et al : Mitotic activation of Akt signaling pathway in Han : SPRD rats with polycystic kidney disease. Nephrology (Carlton) 12 (4) : 357-363, 2007.
29) Zafar I, Belibi F, He Z, et al : Long-term rapamycin therapy in the Han : SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant 24 (8) : 2349-2353, 2009.
30) Wu M, Wahl P, Hir M, et al : Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30 (4) : 253-259, 2007.
31) Tao Y, Kim J, Schrier R, et al : Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16 (1) : 46-51, 2005.
32) Ravichandran K, Zafar I, Ozkok A, et al : An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease. Nephrol Dial Transplant 30 (1) : 45-53, 2015.
33) Renken C, Fischer D, Kundt G, et al : Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 26 (1) : 92-100, 2011.
34) Ren X, Sato Y, Harada K, et al : Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLoS One 9 (1) : e87660, 2014.
35) Zafar I, Ravichandran K, Belibi F, et al : Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int 78 (8) : 754-761, 2010.
36) Distefano G, Boca M, Rowe I, et al : Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol 29 (9) : 2359-2371, 2009.
37) Holditch S, Brown C, Atwood D, et al : A study of sirolimus and mTOR kinase inhibitor in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 317 (1) : F187-196, 2019.
38) Zittema D, Versteeg IB, Gansevoort RT, et al : Dose-Titrated Vasopressin V2 Receptor Antagonist Improves Renoprotection in a Mouse Model for Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol 44 (3) : 194-203, 2016.
39) Hopp K, Hommerding CJ, Wang X, et al : Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol 26 (1) : 39-47, 2015.
40) Torres VE, Wang X, Qian Q, et al : Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 10 (4) : 363-364, 2004.