日本臨牀 80/増刊6 COPDと気管支喘息、その周辺疾患

出版社: 日本臨牀社
発行日: 2022-06-30
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: COPDと気管支喘息、その周辺疾患
電子書籍版: 2022-06-30 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

24,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

2,420 円(税込)

目次

  • 特集 COPDと気管支喘息、その周辺疾患
       ―病態・診断・治療の最新動向―

    序文

    I.総論(COPDと気管支喘息)
      1.COPDと喘息:病態を治療に結びつける
      2.咳嗽と喀痰から考えるCOPDと喘息
      3.COPDの診断 喘息合併の有無を見極めよう
      4.喘息の診断:閉塞性換気障害をみたとき、どのように喘息の診断を組み立てるか
      5.喘息COPDオーバラップ(ACO)の概念と病態
      6.COPDと喘息の境界領域:Asthma-COPD overlap(ACO)診断と治療
     7.吸入支援(指導)
     8.日本人集団における気流閉塞、2型気道炎症に関するGWAS

    II. COPD総論
      1.COPD概念の歴史的変遷
      2. 日本におけるCOPDの疫学と動向
      3. COPDの分子病態
      4.北海道COPDコホート研究から得たCOPDの病態と治療
      5.新時代のCOPD治療―3本の矢の使い方
      6. 日本人COPDに向けた個別化医療
      7. COPD 病期分類、病型分類
      8. COPDの遺伝的素因
      9. COPD発症機序仮説
      10. GOLD COPD document
      11.高齢化社会における身体活動性維持の重要性

    III. 気管支喘息総論
      1. 気管支喘息:概念の歴史的変遷
      2. アレルギー性気道炎症から考える喘息病態と治療
      3. 喘息における自然免疫応答
      4.喘息における閉塞性換気障害
      5. 喘息における好酸球性炎症
      6. 喘息における好中球性気道炎症
      7. 喘息病態におけるIgE
      8. クラスター分類から考える気管支喘息
      9. 喘息病態における2型自然リンパ球
      10. 好酸球性慢性副鼻腔炎と喘息
      11. 喘息における好塩基球の役割
      12. 喘息における呼気NOと末梢血好酸球数

    IV.COPD 診断へのアプローチ
      1.「典型的なCOPD」および「典型的な喘息」の診断は可能か?
      2. COPDと呼吸困難
      3. COPD 呼吸機能検査
      4. COPD 6分間歩行試験
      5. COPDの画像診断
      6. COPDと肺高血圧症
      7. COPDにおける併存症総論
      8. COPDと肺癌
      9. QOL評価
      10. プライマリケア医におけるCOPD診断
      11. 非喫煙COPD

    V. 喘息 診断へのアプローチ
      1. 慢性咳嗽の観点から診た喘息の鑑別―咳症状の好発時間・日内変動を中心に―
      2. 感染性咳嗽と喘息
      3. 咳喘息
      4. One airway, One disease
      5. 小児気管支喘息と関連疾患
     6. 小児喘息の遷延化
     7. 肥満と喘息
      8. 運動誘発喘息
     9. 腸内細菌叢と喘息

    VI.COPDの治療と管理
      1.非薬物治療
      2.薬物治療
      3.肺炎球菌ワクチン・インフルエンザワクチン
      4. 新型コロナウイルスワクチン

    VII.喘息の治療と管理
      1. アレルゲン免疫療法
      2. 吸入ステロイド薬
      3. 喘息における気管支拡張薬、ロイコトリエン受容体拮抗薬
      4. 喘息におけるICS/LABA/LAMAの位置づけ
      5. 喘息治療における生物学的製剤の役割
      6. 抗IgE抗体治療
      7. 生物学的製剤 抗IL-5抗体
      8. 前向き観察研究 J-BEST: 抗IL-5受容体抗体
      9. 生物学的製剤 IL-4, IL-13受容体抗体
      10. 生物学的製剤 TSLPモノクローナル抗体
      11. 喘息管理における心身医学的アプローチ

    VIII. COPD病態 up-to-date
      1. α1-アンチトリプシン欠乏症
      2. 気腫と線維化の類似点と相違点
      3. COPDにおける下気道細菌叢
      4. COPD増悪は予防可能か
      5. COPD増悪と喘息増悪
      6. COPDの予後因子
      7. 日本と諸外国のCOPDガイドライン
     8. 循環器内科医から診るCOPD
      9. 心不全の心拍管理
     10. COPDにおける骨粗鬆症

    IX.喘息病態 up-to-date
     1.喘息に対する抗炎症性脂質メディエーター
     2.喘息増悪における血中好酸球数とFeNOのカットオフ値
      3.アレルギー疾患における好酸球の役割―耳鼻科から―
      4.好酸球性気道炎症と組織線維化
      5. ETosisと好酸球性炎症
      6.アレルギー疾患における免疫記憶の役割
      7.IgE産生制御機構
      8.アレルギー性炎症におけるTpath2細胞の役割
      9.2型自然リンパ球の訓練免疫

    X.COPD・喘息の周辺疾患
      1.気管支拡張症
      2.リンパ脈管筋腫症
      3.慢性肺アスペルギルス症
      4.アレルギー性気管支肺アスペルギルス症/アレルギー性気管支肺真菌症
      5.アレルギー性気管支肺真菌症病態と診断
      6.アレルギー性気管支肺真菌症の治療

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 総論 ( COPD と気管支喘息 )

P.25 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン 2019作成委員会編), 日本呼吸器学会, 2019.
2) Fukumitsu K, et al : Tiotropium Attenuates Refractory Cough and Capsaicin Cough Reflex Sensitivity in Patients with Asthma. J Allergy Clin Immunol Pract 6 : 1613-1620.e2, 2018.
3) Satia I, et al : Allergen challenge increases capsaicin-evoked cough responses in patients with allergic asthma. J Allergy Clin Immunol 144 : 788-795.e1, 2019.
4) Thomson NC, et al : Chronic cough and sputum production are associated with worse clinical outcomes in stable asthma. Respir Med 107 : 1501-1508, 2013.
5) Fahy JV, Dickey BF : Airway mucus function and dysfunction. N Engl J Med 363 : 2233-2247, 2010.
6) Voynow JA, et al : Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol 287 : L1293-1302, 2004.
7) Nadel JA, et al : Role of neutrophil elastase in hypersecretion in asthma. Eur Respir J 13 : 190-196, 1999.
8) Radicioni G, et al : Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease : an analysis of the SPIROMICS cohort. Lancet Respir Med 9 : 1241-1254, 2021.
10) Hogg JC, et al : Survival after lung volume reduction in chronic obstructive pulmonary disease : insights from small airway pathology. Am J Respir Crit Care Med 176 : 454-459, 2007.
11) Dunican EM, et al : Mucus Plugs and Emphysema in the Pathophysiology of Airflow Obstruction and Hypoxemia in Smokers. Am J Respir Crit Care Med 203 : 957-968, 2021.
12) Lachowicz-Scroggins ME, et al : Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med 194 : 1296-1299, 2016.
13) Innes AL, et al : Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma. Am J Respir Crit Care Med 180 : 203-210, 2009.
14) Dunican EM, et al : Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128 : 997-1009, 2018.
15) Chong J, et al : Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 9 : CD002309, 2017.
16) Tanabe T, et al : Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol 45 : 1075-1083, 2011.
17) Ehre C, et al : An Improved Inhaled Mucolytic to Treat Airway Muco-obstructive Diseases. Am J Respir Crit Care Med 199 : 171-180, 2019.
18) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
19) Global strategy for the Diagnosis, Management, and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (COPD), 2022. [https://goldcopd.org/2022-gold-reports-2/]
20) Arai N, et al : Inhibition of neutrophil elastase-induced goblet cell metaplasia by tiotropium in mice. Eur Respir J 35 : 1164-1171, 2010.
21) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
22) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
23) Svenningsen S, et al : Normalisation of MRI ventilation heterogeneity in severe asthma by dupilumab. Thorax 74 : 1087-1088, 2019.
24) Morgan LE, et al : Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat Commun 12 : 249, 2021.
25) Gibson PG, et al : Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES) : a randomised, double-blind, placebo-controlled trial. Lancet 390 : 659-668, 2017.
26) Nagashima A, et al : Clarithromycin Suppresses Chloride Channel Accessory 1 and Inhibits Interleukin-13-Induced Goblet Cell Hyperplasia in Human Bronchial Epithelial Cells. Antimicrob Agents Chemother 60 : 6585-6590, 2016.
27) Komiya K, et al : Tiotropium inhibits mucin production stimulated by neutrophil elastase but not by IL-13. Pulm Pharmacol Ther 48 : 161-167, 2018.
28) 玉置淳 : 気道分泌の調節機構と病態生理. 日本呼吸器学会雑誌 36 : 217-223, 1998.
29) Nadel JA : Neural control of airway submucosal gland secretion. Eur J Respir Dis Suppl 128 (Pt 1) : 322-326, 1983.
30) Nguyen LP, et al : Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 38 : 256-262, 2008.
31) Nguyen LP, et al : β2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A 114 : E9163-E9171, 2017.
P.32 掲載の参考文献
1) 第1章 疾患概念と基礎知識. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p8-46, 日本呼吸器学会, 2018.
2) 第2章 診断. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p48-81, 日本呼吸器学会, 2018.
3) Onishi K, et al : Prevalence of airflow limitation in outpatients with cardiovascular diseases in Japan. Int J Chron Obstruct Pulmon Dis 9 : 563-568, 2014.
5) Tsukuya G, et al : Validation of a COPD screening questionnaire and establishment of diagnostic cutpoints in a Japanese general population : the Hisayama study. Allergol Int 64 : 49-53, 2015.
6) Tatsumi K, et al : Clinical phenotypes of COPD : results of a Japanese epidemiological survey. Respirology 9 : 331-336, 2004.
7) 「喘息予防・管理ガイドライン 2021」作成委員 : 第2章 疫学. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
8) Tamada T, et al : Coexisting COPD in elderly asthma with fixed airflow limitation : Assessment by DLco% predicted and HRCT. J Asthma 54 : 606-615, 2017.
10) Bisgaard H, et al : Asthma-like symptoms in young children increase the risk of COPD. J Allergy Clin Immunol 147 : 569-576.e9, 2021.
11) Chapter 4 : Management of stable COPD. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2020 Report), p78-101, Global Initiative for Chronic Obstructive Lung Disease, 2020, [https://goldcopd.org/gold-reports] (2022年1月閲覧)
12) 第5章 診断. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018作成委員会編), p44-47, 日本呼吸器学会, 2017.
13) Hashimoto S, et al : Asthma and Chronic Obstructive Pulmonary Disease Overlap According to the Japanese Respiratory Society Diagnostic Criteria : The Prospective, Observational ACO Japan Cohort Study. Adv Ther 38 : 1168-1184, 2021.
14) Hizawa N, et al : A Prospective Cohort Study to Assess Obstructive Respiratory Disease Phenotypes and Endotypes in Japan : The TRAIT Study Design. Int J Chron Obstruct Pulmon Dis 16 : 1813-1822, 2021.
P.38 掲載の参考文献
1) Fortis S, et al : Ratio of FEV1/Slow Vital Capacity of < 0.7 Is Associated With Clinical, Functional, and Radiologic Features of Obstructive Lung Disease in Smokers With Preserved Lung Function. Chest 160 : 94-103, 2021.
2) Wijnant SRA, et al : Trajectory and mortality of preserved ratio impaired spirometry : the Rotterdam Study. Eur Respir J 55 : 1901217, 2020.
3) Marott JL, et al : Trajectory of Preserved Ratio Impaired Spirometry : Natural History and Long-Term Prognosis. Am J Respir Crit Care Med 204 : 910-920, 2021.
4) Tashkin DP, et al : Bronchodilator responsiveness in patients with COPD. Eur Respir J 31 : 742-750, 2008.
5) Sin DD, et al : What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J 48 : 664-673, 2016.
6) 呼吸機能検査ハンドブック (日本呼吸器学会肺生理専門委員会呼吸機能検査ハンドブック作成委員会編), 日本呼吸器学会, 2021.
7) Qin R, et al : FEF25-75% Is a More Sensitive Measure Reflecting Airway Dysfunction in Patients with Asthma : A Comparison Study Using FEF25-75% and FEV1. J Allergy Clin Immunol Pract 9 : 3649-3659.e6, 2021.
8) Gelb AF : Normal Routine Spirometry Can Mask Chronic Obstructive Pulmonary Disease and Emphysema and Asthma in Symptomatic Patients. J Allergy Clin Immunol Pract 9 : 3660-3661, 2021.
9) Nakano Y, et al : Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162 : 1102-1108, 2000.
10) Tommola M, et al : Differences between asthma-COPD overlap syndrome and adult-onset asthma. Eur Respir J 49 : 1602383, 2017.
11) Stanescu D, et al : Identification of smokers susceptible to development of chronic airflow limitation : a 13-year follow-up. Chest 114 : 416-425, 1998.
12) in't Veen JCCM, et al : Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med 161 : 1902-1906, 2000.
P.43 掲載の参考文献
1) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), 日本呼吸器学会, 2017.
2) Stocks J, et al : Early lung development : lifelong effect on respiratory health and disease. Lancet Respir Med 1 : 728-742, 2013.
3) Global Initiative for Asthma (GINA), Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Diagnosis and Initial Treatment of Asthma, COPD and Asthma-COPD Overlap, A Joint Project of GINA and GOLD, updated April 2017, GINA/GOLD, 2017. [https://ginasthma.org/wp-content/uploads/2019/11/GINA-GOLD-2017-overlap-pocket-guide-wms-2017-ACO.pdf] (2021年6月閲覧)
4) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease, 2022 Report, GOLD, 2022. [https://www.goldcopd.org] (2021年6月閲覧).
5) Global Initiative for Asthma : Global Strategy for Asthma Management, and Prevention, GINA Full Report 2021 Front Cover ONLY, GINA, 2021. [ginasthma.org] (2021年6月閲覧).
6) Alshabanat A, et al : Asthma and COPD Overlap Syndrome (ACOS) : A Systematic Review and Meta Analysis. PLoS One 10 : e0136065, 2015.
7) de Marco R, et al : The coexistence of asthma and chronic obstructive pulmonary disease (COPD) : prevalence and risk factors in young, middle-aged and elderly people from the general population. PLoS One 8 : e62985, 2013.
8) Hashimoto S, et al : Asthma and Chronic Obstructive Pulmonary Disease Overlap According to the Japanese Respiratory Society Diagnostic Criteria : The Prospective, Observational ACO Japan Cohort Study. Adv Ther 38 : 1168-1184, 2021.
9) Lee H, et al : Characteristics of Specialist-Diagnosed Asthma-COPD Overlap in Severe Asthma : Observations from the Korean Severe Asthma Registry (KoSAR). Allergy 76 : 223-232, 2021.
10) Brightling C, Greening N : Airway inflammation in COPD : progress to precision medicine. Eur Respir J 54 : 1900651, 2019.
12) Anabuki K, et al : Sex-specific differences in the association between birth weight and lung volume in Japanese young adults. Respir Investig 57 : 598-604, 2019.
13) Ali GB, et al : Infant body mass index trajectories and asthma and lung function. J Allergy Clin Immunol 148 : 763-770, 2021.
15) Miura S, et al : Accelerated decline in lung function in adults with a history of remitted childhood asthma. Eur Respir J 59 : 2100305, 2022.
P.50 掲載の参考文献
1) Leung C, Sin DD : Asthma-COPD Overlap : What Are the Important Questions? Chest 161 : 330-344, 2022.
2) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (一般社団法人日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018作成委員会編), 日本呼吸器学会, 2017.
3) Soler-Cataluna JJ, et al : Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol 48 : 331-337, 2012.
4) Koblizek V, et al : Chronic Obstructive Pulmonary Disease : official diagnosis and treatment guidelines of the Czech Pneumological and Phthisiological Society ; a novel phenotypic approach to COPD with patient-oriented care. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 157 : 189-201, 2013.
5) Kankaanranta H, et al : Diagnosis and pharmacotherapy of stable chronic obstructive pulmonary disease : the finnish guidelines. Basic Clin Pharmacol Toxicol 116 : 291-307, 2015.
6) Cosio BG, et al : Defining the asthma-COPD overlap syndrome in a COPD cohort. Chest 49 : 45-52, 2016.
7) Plaza V, et al : Consensus on the Asthma-COPD Overlap Syndrome (ACOS) Between the Spanish COPD Guidelines (GesEPOC) and the Spanish Guidelines on the Management of Asthma (GEMA). Arch Bronconeumol 53 : 443-449, 2017.
8) COVID19 流行期日常診療におけるCOPDの作業診断と管理手順. 日本呼吸器学会閉塞性肺疾患学術部会, 2021年1月. [https://www.jrs.or.jp/covid19/file/OLD_20210108_att.pdf] (2022年4月閲覧)
9) Orooj M, et al : Effect of pulmonary rehabilitation in patients with asthma COPD overlap syndrome : a randomized control trial Oman Med J 35 : e136, 2020.
10) Ishiura Y, et al : Triple Therapy with Budesonide/Glycopyrrolate/Formoterol Fumarate Improves Inspiratory Capacity in Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Int J Chron Obstruct Pulmon Dis 15 : 269-277, 2020.
11) Reddel HK, et al : Heterogeneity within and between physician-diagnosed asthma and/or COPD : NOVELTY cohort. Eur Respir J 58 : 2003927, 2021.
12) Hanania NA, et al : Omalizumab effectiveness in asthma-COPD overlap : Post hoc analysis of PROSPERO. J Allergy Clin Immunol 143 : 1629-1633.e2, 2019.
13) Pavord ID, et al : Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N Engl J Med 377 : 1613-1629, 2017.
P.56 掲載の参考文献
1) Melani AS, et al : Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med 105 : 930-938, 2011.
2) Usmani OS, et al : Critical inhaler errors in asthma and COPD : a systematic review of impact on health outcomes. Respir Res 19 : 10, 2018.
3) Axtell S, et al : Effectiveness of Various Methods of Teaching Proper Inhaler Technique. J Pharm Pract 30 : 195-201, 2017.
4) Price D, et al : Factors associated with appropriate inhaler use in patients with COPD-lessons from the REAL survey. Int J Chron Obstruct Pulmon Dis 13 : 695-702, 2018.
5) Ovchinikova L, et al : Inhaler technique maintenance : gaining an understanding from the patient's perspective. J Asthma 48 : 616-624, 2011.
6) Dima AL, et al : Asthma inhaler adherence determinants in adults : systematic review of observational data. Eur Respir J 45 : 994-1018, 2015.
7) Boulet LP, et al : Adherence : the goal to control asthma. Clin Chest Med 33 : 405-417, 2012.
8) Price D, et al : Establishing the relationship of inhaler satisfaction, treatment adherence, and patient outcomes : a prospective, real-world, cross-sectional survey of US adult asthma patients and physicians. World Allergy Organ J 8 : 26, 2015.
9) 日本アレルギー学会 : アレルギー総合ガイドライン 2019. 協和企画, 2019.
10) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
11) Barbara S, et al : Inhaler technique : does age matter? A systematic review. Eur Respir Rev 26 : 170055, 2017.
12) Nakada H, et al : Effect of a lever aid on hand strength required for using a handheld inhaler correctly. Int J Pharm 596 : 120249, 2021.
13) Basheti IA, et al : Improved asthma outcomes with a simple inhaler technique intervention by community pharmacists. J Allergy Clin Immunol 119 : 1537-1538, 2007.
14) Klijn SL, et al : Effectiveness and success factors of educational inhaler technique interventions in asthma & COPD patients : a systematic review. NPJ Prim Care Respir Med 27 : 24, 2017.
15) 独立行政法人環境再生保全機構ホームページ : <吸入器別> 正しい吸入方法. [https://www.erca.go.jp/yobou/zensoku/basic/adult/control/inhalers/method01.html] (2022年5月閲覧)
16) 小沼利光, ほか : 長期吸入療法患者に対する吸入薬再指導の有用性について. 日本病院薬剤師会雑誌 44 : 1615-1618, 2008.
17) Baba R, et al : Repetitive instructions at short intervals contribute to the improvement of inhalation technique. Asia Pac Allergy 10 : e19, 2020.
18) 名古屋大学大学院医学研究科医療薬学・医学部附属病院薬剤部 : 薬剤師外来について. [https://www.med.nagoya-u.ac.jp/pharmacy/patient/use.html] (2022年5月閲覧)
19) Price D, et al : Maximizing Adherence and Gaining New Information For Your Chronic Obstructive Pulmonary Disease (MAGNIFY COPD) : Study Protocol for the Pragmatic, Cluster Randomized Trial Evaluating the Impact of Dual Bronchodilator with Add-On Sensor and Electronic Monitoring on Clinical Outcomes. Pragmat Obs Res 12 : 25-35, 2021.
20) D'Arcy S, et al : A method to assess adherence in inhaler use through analysis of acoustic recordings of inhaler events. PLoS One 9 : e98701, 2014.
P.63 掲載の参考文献
1) Schunemann HJ, et al : Pulmonary function is a long-term predictor of mortality in the general population : 29-year follow-up of the Buffalo Health Study. Chest 118 : 656-664, 2000.
2) Tuder RM, Petrache I : Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 122 : 2749-2755, 2012.
3) Sakornsakolpat P, et al : Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 51 : 494-505, 2019.
4) Shrine N, et al : New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet 51 : 481-493, 2019.
5) Tatsumi K, et al : Clinical phenotypes of COPD : results of a Japanese epidemiological survey. Respirology 9 : 331-336, 2004.
6) Landis SH, et al : Continuing to Confront COPD International Patient Survey : methods, COPD prevalence, and disease burden in 2012-2013. Int J Chron Obstruct Pulmon Dis 9 : 597-611, 2014.
7) Hozawa A, et al : Study profile of The Tohoku Medical Megabank Community-Based Cohort Study. J Epidemiol 31 : 65-76, 2021.
8) Kuriyama S, et al : The Tohoku Medical Megabank Project : Design and Mission. J Epidemiol 26 : 493-511, 2016.
9) Yamada M, et al : Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Commun Biol 4 : 1288, 2021.
10) Hudson BI, Lippman ME : Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med 69 : 349-364, 2018.
11) Jiang Z, et al : A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 194 : 185-197, 2016.
12) Yatime L, et al : The Structure of the RAGE : S100A6 Complex Reveals a Unique Mode of Homodimerization for S100 Proteins. Structure 24 : 2043-2052, 2016.
13) Dweik RA, et al : An official ATS clinical practice guideline : interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184 : 602-615, 2011.
14) Kuang Z, et al : The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. J Cell Biol 190 : 129-141, 2010.
15) Froehlich J, et al : FAM65B controls the proliferation of transformed and primary T cells. Oncotarget 7 : 63215-63225, 2016.

II COPD 総論

P.72 掲載の参考文献
1) Terminology, Definitions, and Classification of Chronic Pulmonary Emphysema and Related Conditions : a report of the conclusions of a ciba guest symposium. Thorax 14 : 286-299, 1959.
2) Definition and classification of chronic bronchitis for clinical and epidemiological purposes. A report to the Medical Research Council by their Committee on the Aetiology of Chronic Bronchitis. Lancet 1 : 775-779, 1965.
3) American Thoracic Society : Chronic bronchitis, asthma, and pulmonary emphysema. A statement by the committee on diagnostic standards for nontuberculous respiratory diseases. Am Rev Respir Dis 85 : 762-768, 1962.
4) American Thoracic Society : A statement of the committee on therapy ; Chronic obstructive lung disease. Am Rev Respir Dis 92 : 513-518, 1965.
5) Burrows B, et al : The emphysematous and bronchial types of chronic airways obstruction. A clinicopathological study of patients in London and Chicago. Lancet 1 : 830-835, 1966.
6) Filley GF, et al : Chronic obstructive bronchopulmonary disease. II. Oxygen transport in two clinical types. Am J Med 44 : 26-38, 1968.
8) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis 136 : 225-244, 1987.
9) National Institute of Health, National Heart, Lung, and Blood Institute. Global Initiative for Chronic Obstructive Lung Disease for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, NHLBI/WHO Workshop Report, 2001.
10) Fletcher CM, Pride NB : Definitions of emphysema, chronic bronchitis, asthma, and airflow obstruction : 25 years on from the Ciba symposium. Thorax 39 : 81-85, 1984.
11) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Updated 2006, 2011, 2017.
13) 日本胸部疾患学会肺生理専門委員会 : 慢性閉塞性肺疾患・気管支喘息の診断と治療指針, 日本胸部疾患学会, 1995.
14) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン (日本呼吸器学会COPD ガイドライン作成委員会編), 日本呼吸器学会, 1999.
15) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第2版] (日本呼吸器学会COPDガイドライン第2版作成委員会編), 日本呼吸器学会, 2004.
16) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第3版] (日本呼吸器学会COPDガイドライン第3版作成委員会編), 日本呼吸器学会, 2009.
17) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第4版] (日本呼吸器学会COPDガイドライン第4版作成委員会編), 日本呼吸器学会, 2013.
18) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
P.78 掲載の参考文献
1) WHO : The top 10 causes of death, 2019. [https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death] (2022年2月閲覧)
6) Fukuyama S, et al : Prevalence of Airflow Limitation Defined by Pre- and Post-Bronchodilator Spirometry in a Community-Based Health Checkup : The Hisayama Study. Tohoku J Exp Med 238 : 179-184, 2016.
8) 厚生労働省 : 令和元年国民健康・栄養調査報告. [https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html] (2022年2月閲覧)
9) e-Stat : 患者調査-患者調査上巻 (全国). 総患者数, 性・年齢階級×傷病小分類別. 各年次. [https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00450022&tstat=000001031167] (2022年2月閲覧)
10) Mannino DM, et al : Lung function and mortality in the United States : data from the First National Health and Nutrition Examination Survey follow up study. Thorax 58 : 388-393, 2003.
11) Anthonisen NR, et al : Prognosis in chronic obstructive pulmonary disease. Am Rev Respir Dis 133 : 14-20, 1986.
12) Aida A, et al : Prognostic value of hypercapnia in patients with chronic respiratory failure during long-term oxygen therapy. Am J Respir Crit Care Med 158 : 188-193, 1998.
14) e-Stat : 人口動態調査-人口動態統計確定数死亡. 下巻2. 死亡数, 性・年齢 (5歳階級) ・死因 (死因簡単分類) 別. 各年次. [https://www.e-stat.go.jp/stat-search/database?page=1&toukei=00450011&tstat=000001028897] (2022年2月閲覧)
17) Soriano JB, et al : Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest 128 : 2099-2107, 2005.
18) Kudo K, et al : Association of Airflow Limitation With Carotid Atherosclerosis in a Japanese Community-The Hisayama Study. Circ J 81 : 1846-1853, 2017.
19) 厚生労働省 : 令和元 (2019) 年度国民医療費の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/kiryohi/19/index.html] (2022年2月閲覧)
20) GOLD日本委員会 : COPD認知度把握調査結果. [http://www.gold-jac.jp/copd_facts_in_japan/copd_degree_of_recognition.html] (2022年2月閲覧)
P.83 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2022 [第6版] (日本呼吸器学会COPDガイドライン第6版作成委員会編), 日本呼吸器学会, 2018.
2) Hogg JC, et al : The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol Rev 97 : 529-552, 2017.
3) Zhang XY, et al : Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res 23 : 66, 2022.
4) Aghapour M, et al : Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease : Role of Cigarette Smoke Exposure. Am J Respir Cell Mol Biol 58 : 157-169, 2018.
5) Conlon TM, et al : Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588 : 151-156, 2020.
6) Kumar M, et al : Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 51 : 323-333, 2014.
7) Van Eldere J, et al : Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis 14 : 1281-1292, 2014.
8) Gaschler GJ, et al : Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile. Am J Respir Crit Care Med 179 : 666-675, 2009.
9) Uemasu K, et al : Serine Protease Imbalance in the Small Airways and Development of Centrilobular Emphysema in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 63 : 67-78, 2020.
10) Kistemaker LE, et al : Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. Eur Respir J 42 : 1677-1688, 2013.
11) Kistemaker LE, et al : Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 308 : L96-103, 2015.
12) Wang C, et al : Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 5 : 248, 2020.
P.90 掲載の参考文献
1) Makita H, et al : Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 62 : 932-937, 2007.
3) Suzuki M, et al : Lower leptin/adiponectin ratio and risk of rapid lung function decline in chronic obstructive pulmonary disease. Ann Am Thorac Soc 11 : 1511-1519, 2014.
4) Nagai K, et al : Differential changes in quality of life components over 5 years in chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis 10 : 745-757, 2015.
5) Suzuki M, et al : Annual change in FEV1 in elderly 10-year survivors with established chronic obstructive pulmonary disease. Sci Rep 9 : 2073, 2019.
6) Suzuki M, et al : Clinical features and determinants of COPD exacerbation in the Hokkaido COPD cohort study. Eur Respir J 43 : 1289-1297, 2014.
7) Konno S, et al : Acute bronchodilator responses to β2 -agonist and anticholinergic agent in COPD : Their different associations with exacerbation. Respir Med 127 : 14-20, 2017.
8) Shimizu K, et al : Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD. Thorax 75 : 116-122, 2020.
9) Suzuki M, et al : Asthma-like Features and Clinical Course of Chronic Obstructive Pulmonary Disease. An Analysis from the Hokkaido COPD Cohort Study. Am J Respir Crit Care Med 194 : 1358-1365, 2016.
10) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
11) Abe Y, et al : Annual body weight change and prognosis in chronic obstructive pulmonary disease. Int J Chron Obstruc Pulmon Dis 16 : 3243-3253, 2021.
12) Takei N, et al : Serum Alpha-1 Antitrypsin Levels and the Clinical Course of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 14 : 2885-2893, 2019.
13) Takei N, et al : Combined assessment of pulmonary arterial enlargement and coronary calcification predicts the prognosis of patients with chronic obstructive pulmonary disease. Respir Med 185 : 106520, 2021.
14) Abe Y, et al : One-year clinically important deterioration and long-term clinical course in Japanese patients with COPD : a multicenter observational cohort study. BMC Pulm Med 21 : 159, 2021.
P.96 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) Khunti K, Davies MJ : Clinical inertia-Time to reappraise the terminology? Prim Care Diabetes 11 : 105-106, 2017.
3) Cooke CE, et al : Review : clinical inertia in the management of chronic obstructive pulmonary disease. COPD 9 : 73-80, 2012.
4) Calzetta L, et al : Pharmacological mechanisms leading to synergy in fixed-dose dual bronchodilator therapy. Curr Opin Pharmacol 40 : 95-103, 2018.
5) LaForce C, et al : Efficacy and safety of twice-daily glycopyrrolate in patients with stable, symptomatic COPD with moderate-to-severe airflow limitation : the GEM1 study. Int J Chron Obstruct Pulmon Dis 11 : 1233-1243, 2016.
6) Feldman G, et al : A randomized, blinded study to evaluate the efficacy and safety of umeclidinium 62.5 μg compared with tiotropium 18 μg in patients with COPD. Int J Chron Obstruct Pulmon Dis 11 : 719-730, 2016.
7) Feldman GJ, et al : Comparative Efficacy of Once-Daily Umeclidinium/Vilanterol and Tiotropium/Olodaterol Therapy in Symptomatic Chronic Obstructive Pulmonary Disease : A Randomized Study. Adv Ther 34 : 2518-2533, 2017.
8) Chronic obstructive pulmonary disease in over 16s : diagnosis and management. NICE guideline [NG115], Published : 5 December 2018, Last updated : 26 July 2019. [www.nice.org.uk/guidance/ng115]
9) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
10) Chen Z, et al : Triple Inhaled Therapy in COPD. N Engl J Med 383 : 1393, 2020.
11) Ichinose M, et al : The efficacy and safety of combined tiotropium and olodaterol via the Respimat(R) inhaler in patients with COPD : results from the Japanese sub-population of the Tonado (R) studies. Int J Chron Obstruct Pulmon Dis 11 : 2017-2027, 2016.
P.102 掲載の参考文献
1) 治療と管理安定期の管理. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p88-89, 日本呼吸器学会, 2018.
2) 診断診断の目安と基準. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), p44-47, 日本呼吸器学会, 2017.
3) Lipson DA, et al : Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med 378 : 1671-1680, 2018.
4) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
6) Koarai A, et al : Triple versus LAMA/LABA combination therapy for patients with COPD : a systematic review and meta-analysis. Respir Res 22 : 183, 2021.
7) Long H, et al : Single-inhaler triple vs single-inhaler dual therapy in patients with chronic obstructive pulmonary disease : a meta-analysis of randomized control trials. Respir Res 22 : 209, 2021.
8) Lai CC, et al : The Impact of 52-Week Single Inhaler Device Triple Therapy versus Dual Therapy on the Mortality of COPD Patients : A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life (Basel) 12 : 173, 2022.
9) Koarai A, et al : Triple versus LAMA/LABA combination therapy for Japanese patients with COPD : A systematic review and meta-analysis. Respir Investig 60 : 90-98, 2022.
10) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, p86-96, GOLD, 2021. [https://goldcopd.org/2022-gold-reports-2/]
11) Pascoe S, et al : Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease : analysis of the IMPACT trial. Lancet Respir Med 7 : 745-756, 2019.
12) Han MK, et al : The Effect of Inhaled Corticosteroid Withdrawal and Baseline Inhaled Treatment on Exacerbations in the IMPACT Study. A Randomized, Double-Blind, Multicenter Clinical Trial. Am J Respir Crit Care Med 202 : 1237-1243, 2020.
13) Lipson DA, et al : Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 201 : 1508-1516, 2020.
14) Calverley PMA, et al : Eosinophilia, Frequent Exacerbations, and Steroid Response in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 196 : 1219-1221, 2017.
15) Chapman KR, et al : Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET) : A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med 198 : 329-339, 2018.
16) Suissa S, Ariel A : Triple therapy trials in COPD : a precision medicine opportunity. Eur Respir J 52 : 1801848, 2018.
17) Tashkin DP, Strange C : Inhaled corticosteroids for chronic obstructive pulmonary disease : what is their role in therapy? Int J Chron Obstruct Pulmon Dis 13 : 2587-2601, 2018.
18) Ishii T, et al : Understanding low COPD exacerbation rates in Japan : a review and comparison with other countries. Int J Chron Obstruct Pulmon Dis 13 : 3459-3471, 2018.
19) Renvall MJ, et al : Predictors of body mass index in patients with moderate to severe emphysema. COPD 6 : 432-436, 2009.
P.106 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
3) Kubota M, et al : Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir Investig 52 : 242-250, 2014.
4) 日本呼吸器学会肺生理専門委員会 : 日本人のスパイログラムと動脈血液ガス分圧基準値. 日本呼吸器学会雑誌 39 : S1-S17, 2001.
5) 日本呼吸器学会肺生理専門委員会 : LMS法による日本人のスパイロメトリー新基準値, 日本呼吸器学会, 2014 (2022年4月28日更新). [https://www.jrs.or.jp/activities/guidelines/statement/20220428151435.html]
6) 日本呼吸器学会肺生理専門委員会 : 日本人のスパイログラム基準値に関するステートメント, 日本呼吸器学会, 2016. [https://www.jrs.or.jp/activities/guidelines/statement/20160721155500.html]
7) Yousuf A, et al : The different phenotypes of COPD. Br Med Bull 137 : 82-97, 2021.
8) The Netter Collection of Medical Illustrations-Respiratory System. [https://www.netterimages.com/chapters.htm?book_id=26&id=15523&page=148]
10) Le Rouzic O, et al : Defining the "Frequent Exacerbator" Phenotype in COPD : A Hypothesis-Free Approach. Chest 153 : 1106-1115, 2018.
11) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, GOLD, 2021. [https://goldcopd.org/2022-gold-reports-2/]
12) Kim V, et al : The chronic bronchitic phenotype of COPD : an analysis of the COPDGene Study. Chest 140 : 626-633, 2011.
14) Nici L, et al : Pharmacologic Management of Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 201 : e56-e69, 2020.
P.118 掲載の参考文献
1) Fletcher C, Peto R : The natural history of chronic airflow obstruction. Br Med J 1 : 1645-1648, 1977.
2) Laurell CB, Eriksson S : The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15 : 132-140, 1963.
3) Silverman EK : Genetics of COPD. Annu Rev Physiol 82 : 413-431, 2020.
4) Ingebrigtsen T, et al : Genetic influences on Chronic Obstructive Pulmonary Disease-a twin study. Respir Med 104 : 1890-1895, 2010.
5) Zhou JJ, et al : Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med 188 : 941-947, 2013.
6) Zhao X, et al : Whole genome sequence analysis of pulmonary function and COPD in 19, 996 multiethnic participants. Nat Commun 11 : 5182, 2020.
7) Ragland MF, et al : Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am J Respir Crit Care Med 200 : 677-690, 2019.
8) Cho MH, et al : Risk loci for chronic obstructive pulmonary disease : a genome-wide association study and meta-analysis. Lancet Respir Med 2 : 214-225, 2014.
9) Prokopenko D, et al : Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 59 : 614-622, 2018.
11) Smolonska J, et al : Meta-analyses on suspected chronic obstructive pulmonary disease genes : a summary of 20 years' research. Am J Respir Crit Care Med 180 : 618-631, 2009.
12) 総論CQ1~CQ4. α1-アンチトリプシン欠乏症診療の手引き 2021 [第2版] , p5-7, 厚生労働科学研究費補助金 (難治性疾患政策研究事業) /難治性呼吸器疾患・肺高血圧症に関する調査研究班, 2021.
13) Li X, et al : Genome-wide association study of lung function and clinical implication in heavy smokers. BMC Med Genet 19 : 134, 2018.
14) Cloonan SM, et al : Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22 : 163-174, 2016.
15) Acet Ozturk NA, et al : Is serum iron responsive protein-2 level associated with pulmonary functions and frequent exacerbator phenotype in COPD? Tuberk Toraks 68 : 252-259, 2020.
16) Nedeljkovic I, et al : Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics. Eur J Hum Genet 26 : 709-722, 2018.
17) Waseda K, et al : Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol 52 : 482-491, 2015.
18) Sharma A, et al : The AGE-RAGE axis and RAGE genetics in chronic obstructive pulmonary disease. Clin Rev Allergy Immunol 60 : 244-258, 2021.
19) Yamada M, et al : Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Commun Biol 4 : 1288, 2021.
20) Serveaux-Dancer M, et al : Pathological implications of receptor for advanced glycation end-product (AGER) gene polymorphism. Dis Markers 2019 : 2067353, 2019.
21) Pratte KA, et al : Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respir Res 22 : 127, 2021.
22) Li C, et al : Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun 11 : 834, 2020.
23) Liu B, et al : Targeting the PIAS1 SUMO ligase pathway to control inflammation. Trends Pharmacol Sci 29 : 505-509, 2008.
24) Hong LE, et al : A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci U S A 107 : 13509-13514, 2010.
25) Maskos U : The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease : Functional dissection and remaining challenges. J Neurochem 154 : 241-250, 2020.
26) Routhier J, et al : An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun 12 : 6384, 2021.
27) Zhou X, et al : Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 21 : 1325-1335, 2012.
28) Li Y, et al : Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 11 : 9074, 2021.
29) Hobbs BD, et al : Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 49 : 426-432, 2017.
30) Castaldi PJ, et al : Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. Am J Respir Crit Care Med 199 : 52-61, 2019.
31) Zhou LL, et al : Targeting the RNA demethylase FTO for cancer therapy. RSC Chem Biol 2 : 1352-1369, 2021.
32) Huang X, et al : m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med 24 : 12706-12715, 2020.
33) Ishigami A, et al : SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biochem Biophys Res Commun 315 : 575-580, 2004.
34) Kondo Y, et al : Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci U S A 103 : 5723-5728, 2006.
35) Koike K, et al : Vitamin C prevents cigarette smoke-induced pulmonary emphysema in mice and provides pulmonary restoration. Am J Respir Cell Mol Biol 50 : 347-357, 2014.
36) Ortega VE, et al : The Effects of Rare SERPINA1 Variants on Lung Function and Emphysema in SPIROMICS. Am J Respir Crit Care Med 201 : 540-554, 2020.
P.123 掲載の参考文献
1) 青柴和徹, 永井厚志 : 主要疾患の歴史 : 肺気腫・慢性閉塞性肺疾患 (COPD). 日本内科学会雑誌 91 : 1747-1752, 2002.
2) Laurell CB, Eriksson S : The electrophoretic α1-globlin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15 : 132-140, 1963.
3) Barnes PJ : Oxidative stress-based therapeutics in COPD. Redox Biol 33 : 101544, 2020.
4) Sidhaye VK, et al : Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res 20 : 190, 2019.
5) Segura-Valdez L, et al : Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117 : 684-694, 2000.
6) Aoshiba K, et al : Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 28 : 555-562, 2003.
7) Yoshida M, et al : Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 10 : 3145, 2019.
8) Aoshiba K, Nagai A : Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc 6 : 596-601, 2009.
9) Aoshiba K, Nagai A : An evolutionary perspective on chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41 : 507-508, 2009.
10) Aoshiba K, et al : An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 89 : 243-252, 2015.
11) Aoshiba K, et al : The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J 42 : 1689-1695, 2013.
12) Baker JR, et al : Senotherapy : A New Horizon for COPD Therapy. Chest 158 : 562-570, 2020.
13) Aghapour M, et al : Mitochondria : at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 318 : L149-L164, 2020.
14) Araya J, Kuwano K : Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 60 : 33-44, 2022.
15) Burrows B, et al : The relationship of childhood respiratory illness to adult obstructive airway disease. Am Rev Respir Dis 115 : 751-760, 1977.
17) Stocks J, et al : Early lung development : lifelong effect on respiratory health and disease. Lancet Respir Med 1 : 728-742, 2013.
P.133 掲載の参考文献
1) Troosters T, et al : Improving physical activity in COPD : towards a new paradigm. Respir Res 14 : 115, 2013.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p8-12, 95-99, 日本呼吸器学会, 2018.
3) Zuwallack R : Physical activity in patients with COPD : the role of pulmonary rehabilitation. Pneumonol Alergol Pol 77 : 72-76, 2009.
4) Garcia-Aymerich J, et al : Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease : a population based cohort study. Thorax 61 : 772-778, 2006.
8) Gimeno-Santos E, et al : Determinants and outcomes of physical activity in patients with COPD : a systematic review. Thorax 69 : 731-739, 2014.
12) Pitta F, et al : Are patients with COPD more active after pulmonary rehabilitation? Chest 134 : 273-280, 2008.
13) Kesten S, et al : Improvement in self-reported exercise participation with the combination of tiotropium and rehabilitative exercise training in COPD patients. Int J Chron Obstruct Pulmon Dis 3 : 127-136, 2008.
14) Mendoza L, et al : Pedometers to enhance physical activity in COPD : a randomised controlled trial. Eur Respir J 45 : 347-354, 2015.
16) Moy ML, et al : An Internet-Mediated Pedometer-Based Program Improves Health-Related Quality-of-Life Domains and Daily Step Counts in COPD : A Randomized Controlled Trial. Chest 148 : 128-137, 2015.
18) Maddocks M, et al : Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD : a randomised double-blind, placebo-controlled trial. Lancet Respir Med 4 : 27-36, 2016.

III 気管支喘息総論

P.142 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
2) Ishizaka K, et al : Antigenic structure of γE-globulin and reaginic antibody. J Immunol 99 : 849-858, 1967.
3) Herxheimer H : The late bronchial reaction in induced asthma. Int Arch Allergy Appl Immunol 3 : 323-328, 1952.
4) Dunnill MS, et al : A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 24 : 176-179, 1969.
5) Ishizaka K, Ishizaka T : Identification of IgE. J Allergy Clin Immunol 137 : 1646-1650, 2016.
6) Prausnitz C, Kustner H : Studies on supersensitivity. Centralbl Bakteriol Abt Orig 86 : 160-169, 1921.
7) Johansson SG, Bennich H : Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 13 : 381-394, 1967.
8) Wide L, et al : Diagnosis of allergy by an in-vitro test for allergen antibodies. Lancet 2 : 1105-1107, 1967.
9) 關覺二郎 : 米國産杉材工作が因ヲナセル喘息發作. 日本内科学会雑誌 13 : 884-888, 1925.
10) 猪熊茂子, 宮本昭正 : アラビアゴムによる職業性アレルギー性喘息および鼻炎. アレルギー 28 : 1-6, 1979.
11) Hirata M, et al : Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci USA 91 : 11192-11196, 1994.
12) Nagata K, et al : CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor (s). FEBS Lett 459 : 195-199, 1999.
13) Hamelmann E, et al : Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness. Am J Respir Crit Care Med 160 : 934-941, 1999.
14) Kang JY, et al : Inhibitory effects of anti-immunoglobulin E antibodies on airway remodeling in a murine model of chronic asthma. J Asthma 47 : 374-380, 2010.
15) International consensus report on diagnosis and treatment of asthma. National Heart, Lung, and Blood Institute, National Institutes of Health. Bethesda, Maryland 20892. Publication no. 92-3091, March 1992. Eur Respir J 5 : 601-641, 1992.
16) Cutz E, et al : Ultrastructure of airways in children with asthma. Histopathology 2 : 407-421, 1978.
17) Laitinen LA, et al : Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131 : 599-606, 1985.
18) Kharitonov SA, et al : Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343 : 133-135, 1994.
19) Wenzel SE, et al : Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160 : 1001-1008, 1999.
20) Izuhara K, et al : Periostin in allergic inflammation. Allergol Int 63 : 143-151, 2014.
21) Moro K, et al : Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463 : 540-544, 2010.
22) Infante-Duarte C, et al : Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165 : 6107-6115, 2000.
23) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global strategy for diagnosis, management and prevention of COPD (Update 2017). [http://goldcopd.org.] (2022年4月閲覧)
P.149 掲載の参考文献
1) Del Giacco SR, et al : Allergy in severe asthma. Allergy 72 : 207-220, 2017.
2) Tanaka J, et al : Prevalence of inhaled allergen-specific IgE antibody positivity in the healthy Japanese population. Allergol Int 71 : 117-124, 2022.
3) Loxham M, Davies DE : Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 139 : 1736-1751, 2017.
4) Bao K, Reinhardt RL : The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 75 : 25-37, 2015.
5) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
6) Duong QA, et al : Antibiotic exposure and adverse long-term health outcomes in children : A systematic review and meta-analysis. J Infect, 2022. (DOI : 10.1016/j.jinf.2022.01.005)
7) Doherty TA, Broide DH : Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int 68 : 9-16, 2019.
8) Matsumoto H, et al : Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells. Cytokine 57 : 19-24, 2012.
9) Okumura S, et al : FcepsilonRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J Allergy Clin Immunol 115 : 272-279, 2005.
10) Svenningsen S, et al : CT and Functional MRI to Evaluate Airway Mucus in Severe Asthma. Chest 155 : 1178-1189, 2019.
11) Nakamura Y, et al : Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to TH2-type immune responses and airway inflammation. J Allergy Clin Immunol 122 : 1208-1214, 2008.
12) Nagasaki T, et al : Smoking attenuates the age-related decrease in IgE levels and maintains eosinophilic inflammation. Clin Exp Allergy 43 : 608-615, 2013.
13) Nagasaki T, et al : Sensitization to Staphylococcus aureus enterotoxins in smokers with asthma. Ann Allergy Asthma Immunol 119 : 408-414.e2, 2017.
14) Cook Q, et al : The impact of environmental injustice and social determinants of health on the role of air pollution in asthma and allergic disease in the United States. J Allergy Clin Immunol 148 : 1089-1101, 2021.
15) Burge PS, et al : Do laboratory challenge tests for occupational asthma represent what happens in the workplace? Eur Respir J 51 : 1800059, 2018.
16) Gill MA : The role of dendritic cells in asthma. J Allergy Clin Immunol 129 : 889-901, 2012.
P.154 掲載の参考文献
1) El-Husseini ZW, et al : The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med 8 : 1045-1056, 2020.
2) Hammad H, Lambrecht BN : The basic immunology of asthma. Cell 184 : 1469-1485, 2021.
3) Gong T, et al : DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20 : 95-112, 2020.
4) Hewitt RJ, Lloyd CM : Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21 : 347-362, 2021.
5) Ordovas-Montanes J, et al : Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560 : 649-654, 2018.
6) Sonnenberg GF, Hepworth MR : Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 19 : 599-613, 2019.
7) Morita H, et al : Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 138 : 1253-1264, 2016.
8) Brusselle GG, Koppelman GH : Biologic Therapies for Severe Asthma. N Engl J Med 386 : 157-171, 2022.
9) Bal SM, et al : Plasticity of innate lymphoid cell subsets. Nat Rev Immunol 20 : 552-565, 2020.
10) Corren J, Ziegler SF : TSLP : from allergy to cancer. Nat Immunol 20 : 1603-1609, 2019.
11) Shikotra A, et al : Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol 129 : 104-111.e1-9, 2012.
12) Camelo A, et al : IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv 1 : 577-589, 2017.
13) Liu S, et al : Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma : The role of thymic stromal lymphopoietin. J Allergy Clin Immunol 141 : 257-268.e6, 2018.
14) Asano K, et al : Adult-onset eosinophilic airway diseases. Allergy 75 : 3087-3099, 2020.
15) Stadhouders R, et al : Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immunol 142 : 1793-1807, 2018.
P.158 掲載の参考文献
1) 気管支喘息. 呼吸機能検査ハンドブック (日本呼吸器学会編), p80-82, 日本呼吸器学会, 2021.
2) スパイロメトリー. 呼吸機能検査ハンドブック (日本呼吸器学会編), p4-23, 日本呼吸器学会, 2021.
3) 用語の定義. 呼吸機能検査ガイドライン (日本呼吸器学会編), p2-4, 日本呼吸器学会, 2004.
4) 気流閉塞の定義と概念. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会編), p26-27, 日本呼吸器学会, 2017.
5) 総説. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会編), p2-22, 協和企画, 2021.
6) 病態生理. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会編), p50-70, 協和企画, 2021.
7) 喘息の病態. 喘息診療実践ガイドライン 2021 (日本喘息学会編), p2-3, 協和企画, 2021.
8) 喀痰の発生機序. 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会編), p20-23, 日本呼吸器学会, 2019.
9) 気管支喘息. 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会編), p67-70, 日本呼吸器学会, 2019.
10) 喘息リモデリング. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会編), p86-90, 日本呼吸器学会, 2017.
11) 難治性喘息の病態. 難治性喘息診断と治療の手引き 2019 (日本呼吸器学会編), p20-28, 日本呼吸器学会, 2018.
12) 福居嘉信, ほか : 呼吸器内科医による成人喘息診断の実態-アンケート調査の結果-. 日本呼吸器学会雑誌 46 : 601-607, 2008.
13) 新実彰男 : 不可逆性気流閉塞を伴う喘息 (成人). 喘息 23 : 120-127, 2010.
14) 福居嘉信 : 当科に通院する喘息患者の1秒率. 旭川市立病院医誌 54 : 2022 (掲載予定).
P.163 掲載の参考文献
1) Petsky HL, et al : Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev 8 : CD005603, 2017.
2) Calhoun WJ, et al : Comparison of physician-, biomarker-, and symptom-based strategies for adjustment of inhaled corticosteroid therapy in adults with asthma : the BASALT randomized controlled trial. JAMA 308 : 987-997, 2012.
3) Ortega H, et al : Cluster analysis and characterization of response to mepolizumab. A step closer to personalized medicine for patients with severe asthma. Ann Am Thorac Soc 11 : 1011-1017, 2014.
4) Heaney LG, et al : Eosinophilic and Noneosinophilic Asthma : An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest 160 : 814-830, 2021.
5) Matsusaka M, et al : Subphenotypes of type 2 severe asthma in adults. J Allergy Clin Immunol Pract 6 : 274-276.e2, 2018.
6) Frossing L, et al : The Prevalence of Subtypes of Type 2 Inflammation in an Unselected Population of Patients with Severe Asthma. J Allergy Clin Immunol Pract 9 : 1267-1275, 2021.
7) Kimura H, et al : Determination of the cutoff values of Th2 markers for the prediction of future exacerbation in severe asthma : An analysis from the Hokkaido Severe Asthma Cohort Study. Allergol Int 70 : 68-73, 2021.
9) Moore WC, et al : Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181 : 315-323, 2010.
10) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
11) Lefaudeux D, et al : U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 139 : 1797-1807, 2017.
12) Qiu R, et al : Asthma Phenotypes Defined From Parameters Obtained During Recovery From a Hospital-Treated Exacerbation. J Allergy Clin Immunol Pract 6 : 1960-1967, 2018.
13) Konno S, et al : Distinct Phenotypes of Smokers with Fixed Airflow Limitation Identified by Cluster Analysis of Severe Asthma. Ann Am Thorac Soc 15 : 33-41, 2018.
14) Wu W, et al : Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. Am J Respir Crit Care Med 199 : 1358-1367, 2019.
15) Kuo CS, et al : T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49 : 1602135, 2017.
16) Peters MC, et al : A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am J Respir Crit Care Med 199 : 465-477, 2019.
17) Bleecker ER, et al : Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. Eur Respir J 52 : 1800936, 2018.
18) FitzGerald JM, et al : Predictors of enhanced response with benralizumab for patients with severe asthma : pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir Med 6 : 51-64, 2018.
19) Harvey ES, et al : Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J 55 : 1902420, 2020.
20) Beckert H, et al : Single and Synergistic Effects of Type 2 Cytokines on Eosinophils and Asthma Hallmarks. J Immunol 204 : 550-558, 2020.
21) Dunican EM, et al : Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128 : 997-1009, 2018.
22) Suzuki S, et al : Induction of Airway Allergic Inflammation by Hypothiocyanite via Epithelial Cells. J Biol Chem 291 : 27219-27227, 2016.
23) Takabayashi T, et al : Increased expression of L-plastin in nasal polyp of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. Allergy 74 : 1307-1316, 2019.
24) Ueki S, et al : Eosinophil extracellular trap cell death-derived DNA traps : Their presence in secretions and functional attributes. J Allergy Clin Immunol 137 : 258-267, 2016.
P.170 掲載の参考文献
1) Chung KF : Asthma phenotyping : a necessity for improved therapeutic precision and new targeted therapies. J Intern Med 279 : 192-204, 2016.
2) Hastie AT, et al : Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125 : 1028-1036.e13, 2010.
3) Kuo CHS, et al : T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49 : 1602135, 2017.
4) Nakagome K, et al : Neutrophilic inflammation in severe asthma. Int Arch Allergy Immunol 158 (Suppl 1) : 96-102, 2012.
5) Nakagome K, et al : Dopamine D1-like receptor antagonist attenuates Th17-mediated immune response and ovalbumin antigen-induced neutrophilic airway inflammation. J Immunol 186 : 5975-5982, 2011.
6) Bullens DM, et al : IL-17 mRNA in sputum of asthmatic patients : linking T cell driven inflammation and granulocytic influx? Respir Res 7 : 135, 2006.
7) Kyriakopoulos C, et al : Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 7 : 00309-2020, 2021.
8) Ray A, Kolls JK : Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 38 : 942-954, 2017.
9) Baines KJ, et al : Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol 127 : 153-160, 160.e1-9, 2011.
10) Baines KJ, et al : Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J Allergy Clin Immunol 133 : 997-1007, 2014.
11) Kim RY, et al : Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 196 : 283-297, 2017.
12) Lachowicz-Scroggins ME, et al : Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med 199 : 1076-1085, 2019.
13) Radermecker C, et al : Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol 20 : 1444-1455, 2019.
14) Toussaint M, et al : Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 23 : 681-691, 2017.
15) Thorne PS, et al : Endotoxin Exposure : Predictors and Prevalence of Associated Asthma Outcomes in the United States. Am J Respir Crit Care Med 192 : 1287-1297, 2015.
16) Simpson JL, et al : Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 62 : 211-218, 2007.
17) McSharry C, et al : Increased sputum endotoxin levels are associated with an impaired lung function response to oral steroids in asthmatic patients. J Allergy Clin Immunol 134 : 1068-1075, 2014.
18) Moore WC, et al : Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol 133 : 1557-1563.e5, 2014.
19) Hinks TSC, et al : Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol 138 : 61-75, 2016.
20) Wenzel SE, et al : Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160 : 1001-1008, 1999.
21) Soma T, et al : Relationship between airway inflammation and airflow limitation in elderly asthmatics. Asia Pac Allergy 10 : e17, 2020.
22) Takaku Y, et al : CXC chemokine superfamily induced by Interferon-γ in asthma : a cross-sectional observational study. Asthma Res Pract 2 : 6, 2016.
23) Takaku Y, et al : IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2 integrin and CXCR3. Respir Res 12 : 138, 2011.
24) Nishihara F, et al : Trans-basement membrane migration of eosinophils induced by LPS-stimulated neutrophils from human peripheral blood in vitro. ERJ Open Res 1 : 00003-2015, 2015.
25) Hastie AT, et al : Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. Am J Respir Crit Care Med 203 : 882-892, 2021.
26) Kawashima A, et al : Effect of formoterol on eosinophil trans-basement membrane migration induced by interleukin-8-stimulated neutrophils. Int Arch Allergy Immunol 161 (Suppl 2) : 10-15, : 2013.
27) De Volder J, et al : Targeting neutrophils in asthma : A therapeutic opportunity? Biochem Pharmacol 182 : 114292, 2020.
P.176 掲載の参考文献
1) Ishizaka K, Ishizaka T : Identification of IgE. J Allergy Clin Immunol 137 : 1646-1650, 2016.
3) Thomsen SF, et al : Genetic influence on the age at onset of asthma : a twin study. J Allergy Clin Immunol 126 : 626-630, 2010.
4) Eder W, et al : Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113 : 482-488, 2004.
5) Lynch SV, et al : Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134 : 593-601.e12, 2014.
6) Hunninghake GM, et al : Polymorphisms in IL13, total IgE, eosinophilia, and asthma exacerbations in childhood. J Allergy Clin Immunol 120 : 84-90, 2007.
7) Weidinger S, et al : Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 4 : e1000166, 2008.
8) Schedel M, et al : A signal transducer and activator of transcription 6 haplotype influences the regulation of serum IgE levels. J Allergy Clin Immunol 114 : 1100-1105, 2004.
9) Hizawa N, et al : Increased total serum IgE levels in patients with asthma and promoter polymorphisms at CTLA4 and FCER1B. J Allergy Clin Immunol 108 : 74-79, 2001.
10) Menz G, et al : Molecular concepts of IgE-initiated inflammation in atopic and nonatopic asthma. Allergy 53 : 15-21, 1998.
11) Gill MA : The role of dendritic cells in asthma. J Allergy Clin Immunol 129 : 889-901, 2012.
P.183 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
2) Carr TF, et al : Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 197 : 22-37, 2018.
3) Moore WC, et al : Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181 : 315-323, 2010.
5) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
6) Modena BD, et al : Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways. Am J Respir Crit Care Med 190 : 1363-1372, 2014.
7) Lefaudeux D, et al : U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 139 : 1797-1807, 2017.
8) Gomez JL, et al : Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J 50 : 2017.
9) Lim HF, Nair P : Airway Inflammation and Inflammatory Biomarkers. Semin Respir Crit Care Med 39 : 56-63, 2018.
10) Chupp GL, et al : A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 357 : 2016-2027, 2007.
11) Kaneko Y, et al : Asthma Phenotypes in Japanese Adults?Their Associations with the CCL5 ADRB2 Genotypes. Allergol Int 62 : 113-121, 2013.
12) Moffatt MF, et al : Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448 : 470-473, 2007.
13) Miller M, et al : ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 109 : 16648-16653, 2012.
14) Loser S, et al : Pulmonary ORMDL3 is critical for induction of Alternaria-induced allergic airways disease. J Allergy Clin Immunol 139 : 1496-1507.e3, 2017.
16) Bouzigon E, et al : Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359 : 1985-1994, 2008.
17) Kitazawa H, et al : ORMDL3/GSDMB genotype as a risk factor for early-onset adult asthma is linked to total serum IgE levels but not to allergic sensitization. Allergol Int 70 : 55-60, 2021.
19) Bochkov YA, et al : Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 112 : 5485-5490, 2015.
20) Jackson DJ, et al : Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 178 : 667-672, 2008.
22) Kanazawa J, et al : A cis-eQTL allele regulating reduced expression of CHI3L1 is associated with lateonset adult asthma in Japanese cohorts. BMC Med Genet 20 : 58, 2019.
23) Rathcke CN, Vestergaard H : YKL-40-an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 8 : 61, 2009.
24) Thomsen SB, et al : The Association between genetic variations of CHI3L1, levels of the encoded glycoprotein YKL-40 and the lipid profile in a Danish population. PLoS One 7 : e47094, 2012.
P.190 掲載の参考文献
1) Guia S, et al : Helper-like Innate Lymphoid Cells in Humans and Mice. Trends Immunol 41 : 436-452, 2020.
2) Rodriguez-Rodriguez N, et al : Group 2 Innate Lymphoid Cells : Team Players in Regulating Asthma. Annu Rev Immunol 39 : 167-198, 2021.
3) Wang S, et al : Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. Cell 171 : 201-216.e18, 2017.
4) Meininger I, et al : Tissue-Specific Features of Innate Lymphoid Cells. Trends Immunol 41 : 902-917, 2020.
5) Ferreira MA, et al : Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 49 : 1752-1757, 2017.
6) Wechsler ME, et al : Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med 385 : 1656-1668, 2021.
7) Busse WW, et al : Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188 : 1294-1302, 2013.
8) Menzies-Gow A, et al : Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 384 : 1800-1809, 2021.
9) Kato A : Group 2 Innate Lymphoid Cells in Airway Diseases. Chest 156 : 141-149, 2019.
10) Singh D, et al : CRTH2 antagonists in asthma : current perspectives. Clin Pharmacol 9 : 165-173, 2017.
11) Klose CS, et al : Neuronal regulation of innate lymphoid cells. Curr Opin Immunol 56 : 94-99, 2019.
P.195 掲載の参考文献
1) Tokunaga T, et al : Novel scoring system and algorithm for classifying chronic rhinosinusitis : the JESREC Study. Allergy 70 : 995-1003, 2015.
2) Stevens WW, et al : Clinical Characteristics of Patients with Chronic Rhinosinusitis with Nasal Polyps, Asthma, and Aspirin-Exacerbated Respiratory Disease. J Allergy Clin Immunol Pract 5 : 1061-1070.e3, 2017.
3) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
4) Amelink M, et al : Severe adult-onset asthma : A distinct phenotype. J Allergy Clin Immunol 132 : 336-341, 2013.
5) Celejewska-Wojcik N, et al : Subphenotypes of nonsteroidal antiinflammatory disease-exacerbated respiratory disease identified by latent class analysis. Allergy 75 : 831-840, 2020.
6) Tanosaki T, et al : Clinical characteristics of patients with not well-controlled severe asthma in Japan : Analysis of the Keio Severe Asthma Research Program in Japanese population (KEIO-SARP) registry. Allergol Int 70 : 61-67, 2021.
7) Mjosberg JM, et al : Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12 : 1055-1062, 2011.
8) Endo Y, et al : The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42 : 294-308, 2015.
9) Miyata J, et al : Cysteinyl leukotriene metabolism of human eosinophils in allergic disease. Allergol Int 69 : 28-34, 2020.
12) Kim YC, et al : Staphylococcus aureus Nasal Colonization and Asthma in Adults : Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract 7 : 606-615.e9, 2019.
13) Tomassen P, et al : Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137 : 1449-1456.e4, 2016.
15) Wu W, et al : Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. Am J Respir Crit Care Med 199 : 1358-1367, 2019.
P.201 掲載の参考文献
1) Siracusa MC, et al : TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477 : 229-233, 2011.
2) Karasuyama H, et al : Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 142 : 370-380, 2018.
3) Sawaguchi M, et al : Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J Immunol 188 : 1809-1818, 2012.
4) Motomura Y, et al : Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40 : 758-771, 2014.
5) Shibata S, et al : Basophils trigger emphysema development in a murine model of COPD through IL-4-mediated generation of MMP-12-producing macrophages. Proc Natl Acad Sci U S A 115 : 13057-13062, 2018.
6) Kimura I, et al : Appearance of basophils in the sputum of patients with bronchial asthma. Clin Allergy 5 : 95-98, 1975.
7) Kepley CL, et al : Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med 164 : 1053-1058, 2001.
8) Suzuki Y, et al : Airway basophils are increased and activated in eosinophilic asthma. Allergy 72 : 1532-1539, 2017.
9) Izumo T, et al : Effectiveness and safety of benralizumab for severe asthma in clinical practice (J-BEST) : a prospective study. Ann Transl Med 8 : 438, 2020.
10) Caruso C, et al : Basophil activation and serum IL-5 levels as possible monitor biomarkers in severe eosinophilic asthma patients treated with anti-IL-5 drugs. Allergy 76 : 1569-1571, 2021.
11) Wakahara K, et al : Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans. Allergy 68 : 180-189, 2013.
12) Cheng LE, et al : IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J Exp Med 212 : 513-524, 2015.
P.205 掲載の参考文献
1) 浅見麻紀, 松永和人 : 喘息診療における気道炎症モニタリングの意義-呼気NO測定, 喀痰好酸球, 末梢血好酸球-. 日本内科学会雑誌 108 : 1134-1140, 2019.
2) American Thoracic Society, et al : ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 171 : 912-930, 2005.
6) Li JH, et al : Diagnostic possibility of the combination of exhaled nitric oxide and blood eosinophil count for eosinophilic asthma. BMC Pulm Med 21 : 259, 2021.
7) van Veen IH, et al : Exhaled nitric oxide predicts lung function decline in difficult-to-treat asthma. Eur Respir J 32 : 344-349, 2008.
8) Petsky HL, et al : Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils) : a systematic review and meta-analysis. Thorax 73 : 1110-1119, 2018.
9) Khatri SB, et al : Use of Fractional Exhaled Nitric Oxide to Guide the Treatment of Asthma : An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 204 : e97-e109, 2021.
10) 松本久子 : 2型炎症反応を中心とした成人喘息におけるバイオマーカー. アレルギー 67 : 891-900, 2018.
11) Chipps BE, et al : A Comprehensive Analysis of the Stability of Blood Eosinophil Levels. Ann Am Thorac Soc 18 : 1978-1987, 2021.
12) Buhl R, et al : Severe eosinophilic asthma : a roadmap to consensus. Eur Respir J 49 : 1700634, 2017.
13) Busse WW, et al : Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study : a post-hoc analysis. Lancet Respir Med 9 : 1165-1173, 2021.
14) Wenzel SE : Severe Adult Asthmas : Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. Am J Respir Crit Care Med 203 : 809-821, 2021.

IV COPD 診断へのアプローチ

P.215 掲載の参考文献
1) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society. Am J Respir Crit Care Med 152 : S77-121, 1995.
2) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), 日本呼吸器学会, 2017.
3) Global Initiative for Asthma, Global Initiative for Chronic Obstructive lung Disease : Diagnosis of Diseases of Chronic Airflow Limitation : Asthma, COPD, and Asthma-COPD Overlap Syndrome (ACOS) GINA/GOLD, 2014. [https://ginasthma.org/wp-content/uploads/2019/11/GINA_GOLD_ACOS_2014-wms.pdf]
4) 慢性閉塞性肺疾患・気管支喘息の診断と治療指針 (日本胸部疾患学会肺生理専門委員会編), メディカルレビュー社, 1995.
5) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン (日本呼吸器学会COPDガイドライン作成委員会編), 日本呼吸器学会, 1999.
6) COPD診断と治療のためのガイドライン [第6版] (日本呼吸器学会COPDガイドライン第6版作成委員会編). (public comment ; [https://www.jrs.or.jp/modules/information/index.php?content_id=1858] (2022年2月20日閲覧)
7) Global Initiative for Chronic Obstructive lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Plumonary Disease. [https://www.goldcopd.org] (2022年2月閲覧)
8) Schapira RM, et al : The value of the forced expiratory time in the physical diagnosis of obstructive airways disease. JAMA 270 : 731-736, 1993.
9) 厚生省免疫・アレルギー研究班 : 喘息予防・管理ガイドライン [1998改訂版] (牧野荘平, ほか編), 協和企画, 1998.
10) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
11) Global Initiative for Asthma : Global Strategy for Asthma Management and Prevention. [https://ginasthma.org] (2022年2月閲覧)
12) Soler-Cataluna JJ, et al : Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol 48 : 331-337, 2012.
13) Sin DD, et al : What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J 48 : 664-673, 2016.
14) Caillaud D, et al : Asthma-COPD overlap syndrome (ACOS) vs ?pure' COPD : a distinct phenotype? Allergy 72 : 137-145, 2017.
15) Tanabe N, et al : Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 7 : 00672-2020, 2021.
16) Smith AD, et al : Diagnosing asthma : comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 169 : 473-478, 2004.
17) Aaron SD, et al : Underdiagnosis and Overdiagnosis of Asthma. Am J Respir Crit Care Med 198 : 1012-1020, 2018.
18) Suzuki M, et al : Asthma-like Features and Clinical Course of Chronic Obstructive Pulmonary Disease. An Analysis from the Hokkaido COPD Cohort Study. Am J Respir Crit Care Med 194 : 1358-1365, 2016.
19) Haraguchi R, et al : An empirical trial of one-week treatment with inhaled corticosteroids for distinguishing asthmatic syndrome from asthma mimics. Acta Medica Kinki University 36 : 15-22, 2011.
P.220 掲載の参考文献
1) Karnani NG, et al : Evaluation of chronic dyspnea. Am Fam Physician 71 : 1529-1537, 2005.
2) Wahls SA : Causes and evaluation of chronic dyspnea. Am Fam Physician 86 : 173-182, 2012.
3) Parshall MB, et al : An official American Thoracic Society statement : update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 185 : 435-452, 2012.
4) O'Donnell DE, et al : Qualitative aspects of exertional dyspnea in patients with interstitial lung disease. J Appl Physiol (1985) 84 : 2000-2009, 1998.
5) Mahler DA, et al : Descriptors of breathlessness in cardiorespiratory diseases. Am J Respir Crit Care Med 154 : 1357-1363, 1996.
6) Moy ML, et al : Quality of dyspnea in bronchoconstriction differs from external resistive loads. Am J Respir Crit Care Med 162 : 451-455, 2000.
7) O'Donnell DE, et al : Mechanisms of activity-related dyspnea in pulmonary diseases. Respir Physiol Neurobiol 167 : 116-132, 2009.
8) Chang AS, et al : Prospective use of descriptors of dyspnea to diagnose common respiratory diseases. Chest 148 : 895-902, 2015.
P.224 掲載の参考文献
1) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, 2020 report, GOLD, 2020.
2) Gibson GL : Lung volumes and elasticity. In : Lung Function Tests : Physiological Principles and Clinical Applications (ed by Hughes JMB, Pride NB), p45-56, WB Saunders, London, 1999.
3) 呼吸機能検査ハンドブック (日本呼吸器学会肺生理専門委員会呼吸機能検査ハンドブック作成委員会編), 日本呼吸器学会, 2021.
4) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
5) Lung function testing : selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis 144 : 1202-1218, 1991.
6) American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer Factor). Recommendations for a standard technique-1995 update. Am J Respir Crit Care Med 152 (6 Pt 1) : 2185-2198, 1995.
7) Hughes JMB, Pride NB : Examination of the carbon monoxide diffusing capacity (DLCO) in relation to its KCO and VA components. Am J Respir Crit Med 186 : 132-139, 2012.
8) Shirai T, Kurosawa H : Clinical Application of the Forced Oscillation Technique. Intern Med 55 : 559-566, 2016.
9) Oostveen E, et al : The forced oscillation technique in clinical practice : methodology, recommendations and future developments. Eur Respir J 22 : 1026-1041, 2003.
10) Grimby G, et al : Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Invest 47 : 1455-1465, 1968.
11) 黒澤一 : 広域周波オシレーション法. 医学のあゆみ 244 : 951-956, 2013.
P.230 掲載の参考文献
1) 呼吸リハビリテーションマニュアル-運動療法- [第2版] (日本呼吸ケア・リハビリテーション学会呼吸リハビリテーション委員会ワーキンググループ, ほか編), p17-18, 26-29. 45-46, 130-133, 照林社, 2012.
2) de Torres JP, et al : Prognostic evaluation of COPD patients : GOLD 2011 versus BODE and the COPD comorbidity index COTE. Thorax 69 : 799-804, 2014.
3) Holland AE, et al : An official European Respiratory Society/American Thoracic Society technical standard : field walking tests in chronic respiratory disease. Eur Respir J 44 : 1428-1446, 2014.
4) ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories : ATS statement : guidelines for the six-minute walk test. Am J Respir Crit Care Med 166 : 111-117, 2002.
5) Stevens D, et al : Comparison of hallway and treadmill six-minute walk tests. Am J Respir Crit Care Med 160 : 1540-1543, 1999.
6) Brooks D, et al : Comparison between an indoor and an outdoor 6-minute walk test among individuals with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 84 : 873-876, 2003.
7) Bansal V, et al : Modifying track layout from straight to circular has a modest effect on the 6-min walk distance. Chest 133 : 1155-1160, 2008.
8) Sciurba F, et al : Six-minute walk distance in chronic obstructive pulmonary disease : reproducibility and effect of walking course layout and length. Am J Respir Crit Care Med 167 : 1522-1527, 2003.
9) Weir NA, et al : The influence of alternative instruction on 6-min walk test distance. Chest 144 : 1900-1905, 2013.
10) Guyatt GH, et al : Effect of encouragement on walking test performance. Thorax 39 : 818-822, 1984.
12) Troosters T, et al : Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease. Eur Respir J 20 : 564-569, 2002.
13) Puente-Maestu L, et al : Use of exercise testing in the evaluation of interventional efficacy : an official ERS statement. Eur Respir J 47 : 429-460, 2016.
14) Singh SJ, et al : An official systematic review of the European Respiratory Society/American Thoracic Society : measurement properties of field walking tests in chronic respiratory disease. Eur Respir J 44 : 1447-1478, 2014.
P.238 掲載の参考文献
1) Lynch DA, et al : CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease : A Statement of the Fleischner Society. Radiology 277 : 192-205, 2015.
2) Tanabe N, et al : Pathological Comparisons of Paraseptal and Centrilobular Emphysema in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 202 : 803-811, 2020.
3) Shimizu K, et al : Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD. Thorax 75 : 116-122, 2020.
5) Nakano Y, et al : The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171 : 142-146, 2005.
6) Tanabe N, et al : Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 7 : 00672-2020, 2021.
7) Tanabe N, et al : Quantitative measurement of airway dimensions using ultra-high resolution computed tomography. Respir Investig 56 : 489-496, 2018.
8) Smith BM, et al : Comparison of spatially matched airways reveals thinner airway walls in COPD. The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study and the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 69 : 987-996, 2014.
9) Kirby M, et al : Computed Tomography Total Airway Count is Associated with the Number of Micro-Computed Tomography Terminal Bronchioles. Am J Respir Crit Care Med 201 : 613-615, 2020.
10) Tanabe N, et al : Associations of airway tree to lung volume ratio on computed tomography with lung function and symptoms in chronic obstructive pulmonary disease. Respir Res 20 : 77, 2019.
11) Smith BM, et al : Association of Dysanapsis With Chronic Obstructive Pulmonary Disease Among Older Adults. JAMA 323 : 2268-2280, 2020.
12) Galban CJ, et al : Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18 : 1711-1715, 2012.
13) Vasilescu DM, et al : Noninvasive Imaging Biomarker Identifies Small Airway Damage in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 200 : 575-581, 2019.
14) Young AL, et al : Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 201 : 294-302, 2020.
15) Yamashiro T, et al : Asynchrony in respiratory movements between the pulmonary lobes in patients with COPD : continuous measurement of lung density by 4-dimensional dynamic-ventilation CT. Int J Chron Obstruct Pulmon Dis 12 : 2101-2109, 2017.
16) Yamada Y, et al : Comparison of inspiratory and expiratory lung and lobe volumes among supine, standing, and sitting positions using conventional and upright CT. Sci Rep 10 : 16203, 2020.
P.244 掲載の参考文献
2) Galie N, et al : 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension : The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) : Endorsed by : Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37 : 67-119, 2016.
3) 福田恵一, ほか : 肺高血圧症治療ガイドライン [2017年改訂版] (日本循環器学会, ほか編). [http://www.j-circ.or.jp/guideline/pdf/JCS2017_fukuda_h.pdf] (2000年4月閲覧)
4) Weitzenblum E, et al : Pulmonary hypertension and cor pulmonale in chronic obstructive pulmonary Disease. In : Chronic Obstructive Lung Diseases (ed by Voelkel NF, MacNee W), p306-318, BC Decker, Hamilton, 2002.
6) Barbera JA, et al : Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21 : 892-905, 2003.
7) Seimetz M, et al : Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 147 : 293-305, 2011.
9) Matsuoka S, et al : Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. Am J Respir Crit Care Med 181 : 218-225, 2010.
10) Ghofrani HA, Grimminger F : Soluble guanylate cyclase stimulation : an emerging option in pulmonary hypertension therapy. Eur Respir Rev 18 : 35-41, 2009.
12) Tanabe N, et al : Multi-Institutional Prospective Cohort Study of Patients With Pulmonary Hypertension Associated With Respiratory Diseases. Circ J 85 : 333-342, 2021.
13) Vizza CD, et al : Pulmonary Hypertension in Patients With COPD : Results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Chest 160 : 678-689, 2021.
14) Waxman A, et al : Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N Engl J Med 384 : 325-334, 2021.
15) Nathan SD, et al : Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J 53 : 1801914, 2019.
16) 巽浩一郎, 田村雄一 : 慢性肺疾患および低酸素. 第6 回肺高血圧症ワールドシンポジウム (Nice 2018). 肺高血圧症 : 最新の診断と治療日本語版 (監訳) 厚生労働省科学研究費補助金「難治性呼吸器疾患・肺高血圧症に関する調査研究班」, 日本肺高血圧・肺循環学会, p51-65, 中外医学社, 2020.
P.250 掲載の参考文献
1) Almagro P, et al : Mortality After Hospitalization for COPD. Chest 121 : 1441-1448, 2002.
4) von Leupoldt A, et al : The Impact of Anxiety and Depression on Outcomes of Pulmonary Rehabilitation in Patients With COPD. Chest 140 : 730-736, 2011.
5) Burgel PR, et al : A simple algorithm for the identification of clinical COPD phenotypes. Eur Respir J 50 : 1701034, 2017.
6) Spece LJ, et al : Role of Comorbidities in Treatment and Outcomes after Chronic Obstructive Pulmonary Disease Exacerbations. Ann Am Thorac Soc 15 : 1033-1038, 2018.
7) Takahashi S, Betsuyaku T : The chronic obstructive pulmonary disease comorbidity spectrum in Japan differs from that in western countries. Respir Investig 53 : 259-270, 2015.
8) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
9) Haruna A, et al : CT Scan Findings of Emphysema Predict Mortality in COPD. Chest 138 : 635-640, 2010.
10) Shibata Y, et al : A lower level of forced expiratory volume in 1 second is a risk factor for all-cause and cardiovascular mortality in a Japanese population : the Takahata study. PLoS One 8 : e83725, 2013.
13) Vanfleteren LE, et al : Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187 : 728-735, 2013.
15) Decramer M, et al : COPD as a Lung Disease with Systemic Consequences-Clinical Impact, Mechanisms, and Potential for Early Intervention. COPD 5 : 235-256, 2008.
16) Whittaker HR, et al : Accelerated FEV1 decline and risk of cardiovascular disease and mortality in a primary care population of COPD patients. Eur Respir J 57 : 2000918, 2021.
17) Cazzola M, et al : Chronic obstructive pulmonary disease and coronary disease : COPDCoRi, a simple and effective algorithm for predicting the risk of coronary artery disease in COPD patients. Respir Med 109 : 1019-1025, 2015.
18) Chen YW, et al : Prevalence and Risk Factors for Osteoporosis in Individuals With COPD : A Systematic Review and Meta-analysis. Chest 156 : 1092-1110, 2019.
19) Janson C, et al : Osteoporosis and fracture risk associated with inhaled corticosteroid use among Swedish COPD patients : the ARCTIC study. Eur Respir J 57 : 2000515, 2021.
20) Romme EA, et al : Fracture prevention in COPD patients ; a clinical 5-step approach. Respir Res 16 : 32, 2015.
21) Putcha N, et al : Mortality and Exacerbation Risk by Body Mass Index in Patients with COPD in TIOSPIR and UPLIFT. Ann Am Thorac Soc 19 : 204-213, 2022.
23) Akner G, Larsson K : Undernutrition state in patients with chronic obstructive pulmonary disease. A critical appraisal on diagnostics and treatment. Respir Med 117 : 81-91, 2016.
24) Gurgun A, et al : Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease : a prospective, randomized and controlled study. Respirology 18 : 495-500, 2013.
25) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
P.256 掲載の参考文献
1) Zhang X, et al : Chronic obstructive pulmonary disease and risk of lung cancer : a meta-analysis of prospective cohort studies. Oncotarget 8 : 78044-78056, 2017.
3) Miyazaki M, et al : Analysis of comorbid factors that increase the COPD assessment test scores. Respir Res 15 : 13, 2014.
4) Koshiol J, et al : Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS One 4 : e7380, 2009.
5) de Torres JP, et al : Lung cancer in patients with chronic obstructive pulmonary disease-incidence and predicting factors. Am J Respir Crit Care Med 184 : 913-919, 2011.
6) Sin DD, et al : Mortality in COPD : Role of comorbidities. Eur Respir J 28 : 1245-1257, 2006.
7) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
8) Parris BA, et al : Chronic obstructive pulmonary disease (COPD) and lung cancer : common pathways for pathogenesis. J Thorac Dis 11 : S2155-S2172, 2019.
9) Young RP, et al : Genetic evidence linking lung cancer and COPD : a new perspective. Appl Clin Genet 4 : 99-111, 2011.
10) Bermingham ML, et al : Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 43 : 576-586, 2019.
11) Smith BM, et al : Lung cancer histologies associated with emphysema on computed tomography. Lung Cancer 76 : 61-66, 2012.
12) Lim J, et al : Relationship Between Emphysema Severity and the Location of Lung Cancer in Patients With Chronic Obstructive Lung Disease. AJR Am J Roentgenol 205 : 540-545, 2015.
13) Fry JS, et al : Systematic review with meta-analysis of the epidemiological evidence relating FEV1 decline to lung cancer risk. BMC Cancer 12 : 498, 2012.
14) Chubachi S, et al : Radiologic features of precancerous areas of the lungs in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 12 : 1613-1624, 2017.
15) Schwartz AG, et al : Risk of Lung Cancer Associated with COPD Phenotype Based on Quantitative Image Analysis. Cancer Epidemiol Biomarkers Prev 25 : 1341-1347, 2016.
16) Lim JU, et al : Chronic Obstructive Pulmonary Disease-Related Non-Small-Cell Lung Cancer Exhibits a Low Prevalence of EGFR and ALK Driver Mutations. PLoS One 10 : e0142306, 2015.
17) Gainor JF, et al : Response and durability of checkpoint blockade in never- or light-smokers with NSCLC and high PD-L1 expression. J Clin Oncol 36 (Suppl) : abstract 9011, 2018.
18) Godtfredsen NS, et al : Effect of smoking reduction on lung cancer risk. JAMA 294 : 1505-1510, 2005.
19) Anthonisen NR, et al : The effects of a smoking cessation intervention on 14.5-year mortality : a randomized clinical trial. Ann Intern Med 142 : 233-239, 2005.
20) Kobayashi S, et al : Preoperative use of inhaled tiotropium in lung cancer patients with untreated COPD. Respirology 14 : 675-679, 2009.
21) National Lung Screening Trial Research Team ; Aberle DR, et al : Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365 : 395-409, 2011.
22) Goffin JR, et al : Management and outcomes of patients with chronic obstructive lung disease and lung cancer in a public healthcare system. PLoS One 16 : e0251886, 2021.
23) Matsuo M, et al : Inspiratory capacity as a preoperative assessment of patients undergoing thoracic surgery. Interact Cardiovasc Thorac Surg 14 : 560-564, 2012.
25) Omote N, et al : Impact of mild to moderate COPD on feasibility and prognosis in non-small cell lung cancer patients who received chemotherapy. Int J Chron Obstruct Pulmon Dis 12 : 3541-3547, 2017.
26) Ajimizu H, et al : Survival impact of treatment for chronic obstructive pulmonary disease in patients with advanced non-small-cell lung cancer. Sci Rep 11 : 23677, 2021.
P.261 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) US Department of Health and Human Services, Food and Drug Administration, et al : Guidance for Industry. Patient-reported Outcome Measures : Use in Medical Product Development to Support Labeling Claims. 2009. [https://www.fda.gov/media/77832/download] (2022年4月閲覧)
3) Ware JE Jr, Sherbourne CD : The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30 : 473-483, 1992.
5) Hunt SM, et al : The Nottingham Health Profile : subjective health status and medical consultations. Soc Sci Med A 15 : 221-229, 1981.
6) Field trial WHOQOL-100 (February 1995). The 100 questions with response scales, World Health Organization (MNH/PSF/95.1), Geneva, 1995.
7) Herdman M, et al : Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 20 : 1727-1736, 2011.
8) 池田俊也, ほか : 日本語版EQ-5D-5Lにおけるスコアリング法の開発. 保健医療科学 64 : 47-55, 2015.
9) Igarashi A, et al : COPD uncovered : a cross-sectional study to assess the socioeconomic burden of COPD in Japan. Int J Chron Obstruct Pulmon Dis 13 : 2629-2641, 2018.
10) Jones PW, et al : A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis 145 : 1321-1327, 1992.
11) Guyatt GH, et al : A measure of quality of life for clinical trials in chronic lung disease. Thorax 42 : 773-778, 1987.
12) Jones PW, et al : Development and first validation of the COPD Assessment Test. Eur Respir J 34 : 648-654, 2009.
13) Meguro M, et al : Development and Validation of an Improved, COPD-Specific Version of the St. George Respiratory Questionnaire. Chest 132 : 456-463, 2007.
14) Garrod R, et al : Development and validation of a standardized measure of activity of daily living in patients with severe COPD : the London Chest Activity of Daily Living scale (LCADL). Respir Med 94 : 589-596, 2000.
15) Yoza Y, et al : Development of an activity of daily living scale for patients with COPD : the Activity of Daily Living Dyspnoea scale. Respirology 14 : 429-435, 2009.
P.267 掲載の参考文献
1) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management and Prevention of COPD. [http://www.goldcopd.org/] (2022年4月閲覧)
2) 一ノ瀬正和, ほか : 日本における慢性閉塞性肺疾患 (COPD) 患者の大規模電話実態調査-Confronting COPD Japan Survey-. 日本呼吸器学会雑誌 45 : 927-935, 2007.
3) Takahashi T, et al : Underdiagnosis and undertreatment of COPD in primary care settings. Respirology 8 : 504-508, 2003.
4) Kobayashi S, et al : Early Detection of Chronic Obstructive Pulmonary Disease in Primary Care. Intern Med 56 : 3153-3158, 2017.
5) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
6) 一般社団法人GOLD日本委員会 : COPD情報サイト. 問診票 (IPAG). [http://www.gold-jac.jp/support_contents/img/question.pdf] (2022年4月閲覧)
7) 一般社団法人GOLD日本委員会 : COPD情報サイト. COPD集団スクリーニング質問票 (COPD-PS(TM)) [http://www.gold-jac.jp/support_contents/img/COPD-PS.pdf] (2022年4月閲覧)
8) 九州大学病院呼吸器科 : COPDスクリーニングのための質問 (COPD-Q) [http://www.kokyu.med.kyushu-u.ac.jp/pdf/copd-q.pdf] (2022年4月閲覧)
9) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), 日本呼吸器学会, 2019.
10) 禁煙治療のための標準手順書 [第8.1版] (日本循環器学会, ほか編), 2021. [https://www.jcirc.or.jp/kinen/anti_smoke_std/pdf/anti_smoke_std_rev8_1_.pdf] (2022年4月閲覧)
11) Kobayashi S, et al : Clinical Characteristics and Outcomes of Patients with Asthma-COPD Overlap in Japanese Patients with COPD. Int J Chron Obstruct Pulmon Dis 15 : 2923-2929, 2020.
12) Tokuda Y, Miyagi S : Physical diagnosis of chronic obstructive pulmonary disease. Intern Med 46 : 1885-1891, 2007.
13) 米谷則美 : 国策としてのCOPD対策. 宮城県医師会報 817, 2014. [http://www.miyagi.med.or.jp/koushin_uploads/348_1.pdf] (2022年4月閲覧)
14) 矢内勝, 小林誠一 : COPDの地域医療連携 : 石巻地域COPDネットワーク (ICON) の取り組み. 呼吸 34 : 960-964, 2015.
P.274 掲載の参考文献
1) 疾患概念と基礎知識. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p7-46, 日本呼吸器学会, 2018.
3) Lamprecht B, et al : COPD in never smokers : results from the population-based burden of obstructive lung disease study. Chest 139 : 752-763, 2011.
4) Syamlal G, et al : Chronic Obstructive Pulmonary Disease Prevalence Among Adults Who Have Never Smoked, by Industry and Occupation-United States, 2013-2017. MMWR Morb Mortal Wkly Rep 68 : 303-307, 2019.
5) Fukuyama S, et al : Prevalence of Airflow Limitation Defined by Pre- and Post-Bronchodilator Spirometry in a Community-Based Health Checkup : The Hisayama Study. Tohoku J Exp Med 238 : 179-184, 2016.
6) Hagstad S, et al : Prevalence and risk factors of COPD among never-smokers in two areas of Sweden-Occupational exposure to gas, dust or fumes is an important risk factor. Respir Med 109 : 1439-1445, 2015.
7) Liu S, et al : Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 62 : 889-897, 2007.
8) 環境省水・大気環境局 : 大気環境・自動車対策. [https://www.env.go.jp/seisaku/list/air.html] (2022年4月閲覧)
9) West JB : 環境因子が原因となる肺疾患及びその他の肺疾患. ウエスト呼吸生理学入門 : 疾患肺編 (堀江孝至訳), p141-161, メディカル・サイエンス・インターナショナル, 2009.
10) Downs SH, et al : Reduced exposure to PM10 and attenuated age-related decline in lung function. N Engl J Med 357 : 2338-2347, 2007.
11) Rice MB, et al : Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med 191 : 656-664, 2015.
12) Camp PG, et al : COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur Respir J 43 : 725-734, 2014.
13) Lovasi GS, et al : Association of environmental tobacco smoke exposure in childhood with early emphysema in adulthood among nonsmokers : the MESA-lung study. Am J Epidemiol 171 : 54-62, 2010.
14) Barker AF, et al : Obliterative bronchiolitis. N Engl J Med 370 : 1820-1828, 2014.
15) Allwood BW, et al : Post-Tuberculosis Lung Disease : Clinical Review of an Under-Recognised Global Challenge. Respiration 100 : 751-763, 2021.

V 喘息 診断へのアプローチ

P.284 掲載の参考文献
1) Teeter JG, Bleecker ER : Relationship between airway obstruction and respiratory symptoms in adult asthmatics. Chest 113 : 272-277, 1998.
2) Osman LM, et al : Patient weighting of importance of asthma symptoms. Thorax 56 : 138-142, 2001.
3) Niimi A, et al : Cough variant and cough-predominant asthma are major causes of persistent cough : a multicenter study in Japan. J Asthma 50 : 932-937, 2013.
4) Sistek D, et al : Clinical diagnosis of current asthma : predictive value of respiratory symptoms in the SAPALDIA study. Swiss Study on Air Pollution and Lung Diseases in Adults. Eur Respir J 17 : 214-219, 2001.
5) 新実彰男 : 咳嗽診療の心得-たかが咳, されど咳-. 日本内科学会雑誌 109 : 2091-2094, 2020.
6) Cavallazzi R, et al : Predicting asthma in older adults on the basis of clinical history. Respir Med 142 : 36-40, 2018.
7) Matsumoto H, et al : Cough triggers and their pathophysiology in patients with prolonged or chronic cough. Allergol Int 61 : 123-132, 2012.
8) Kanemitsu Y, et al : "Cold air" and/or "talking" as cough triggers, a sign for the diagnosis of cough variant asthma. Respir Investig 54 : 413-418, 2016.
9) Niimi A : Narrative Review : how long should patients with cough variant asthma or non-asthmatic eosinophilic bronchitis be treated? J Thorac Dis 13 : 3197-3214, 2021.
10) 加藤冠, 田中裕士 : 遷延性・慢性咳嗽を呈した咳喘息の診断における強制オシレーション法の有用性. アレルギー 67 : 759-766, 2018.
12) Fukuhara A, et al : Clinical Characteristics of Cough Frequency Patterns in Patients with and without Asthma. J Allergy Clin Immunol Pract 8 : 654-661, 2020.
13) Smolensky MH, et al : Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv Drug Deliv Rev 59 : 852-882, 2007.
14) Kanemitsu Y, et al : Independent Factors Contributing to Daytime and Nighttime Asthmatic Cough Refractory to Inhaled Corticosteroids. J Investig Allergol Clin Immunol 29 : 30-39, 2019.
15) Hsu JY, et al : Coughing frequency in patients with persistent cough : assessment using a 24 hour ambulatory recorder. Eur Respir J 7 : 1246-1253, 1994.
16) Marsden PA, et al : A comparison of objective and subjective measures of cough in asthma. J Allergy Clin Immunol 122 : 903-907, 2008.
17) Lodhi S, et al : Cough rhythms in asthma : Potential implication for management. J Allergy Clin Immunol Pract 7 : 2024-2027, 2019.
18) Barnes P, et al : Nocturnal asthma and changes in circulating epinephrine, histamine, and cortisol. N Engl J Med 303 : 263-267, 1980.
20) Kraft M, et al : Distal lung dysfunction at night in nocturnal asthma. Am J Respir Crit Care Med 163 : 1551-1556, 2001.
21) Scheer FAJL, et al : The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc Natl Acad Sci U S A 118 : e2018486118, 2021.
22) 中尾篤人 : 時計じかけのアレルギー. アレルギー 71 : 22-26, 2022.
23) Lee KK, Birring SS : Cough and sleep. Lung 188 Suppl 1 : S91-94, 2010.
24) Wang HD, et al : Cough reflex in the night. Chest 114 : 1496-1497, 1998.
25) Power JT, et al : Nocturnal cough in patients with chronic bronchitis and emphysema. Am Rev Respir Dis 130 : 999-1001, 1984.
26) Kanemitsu Y, et al : Gastroesophageal dysmotility is associated with the impairment of cough-specific quality of life in patients with cough variant asthma. Allergol Int 65 : 320-326, 2016.
27) Niimi A, et al : Interfering with airway nerves in cough associated with asthma. Pulm Pharmacol Ther 59 : 101854, 2019.
28) Satia I et al. Capsaicin-evoked cough responses in asthmatic patients : Evidence for airway neuronal dysfunction. J Allergy Clin Immunol 139 : 771-779, 2017.
29) Kanemitsu Y, et al : Increased Capsaicin Sensitivity in Patients with Severe Asthma Is Associated with Worse Clinical Outcome. Am J Respir Crit Care Med 201 : 1068-1077, 2020.
30) Fujimura M, et al : Change in bronchial responsiveness and cough reflex sensitivity in patients with cough variant asthma : effect of inhaled corticosteroids. Cough 1 : 5, 2005.
31) 新実彰男 : 就寝中・早朝に悪化する咳. 診断と治療 99 : 2023-2028, 2011.
32) Morice AH, et al : Recommendations for the management of cough in adults. Thorax 61 Suppl 1 : i1-24, 2006.
P.292 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), p30-38, 日本呼吸器学会, 2019.
2) 厚生労働省 : 平成26年 (2014) 患者調査の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/kanja/14/]
3) 田中裕士 : 長引く咳, 診断と治療の考え方-感染性咳嗽を中心に-. Progress in Medicine 34 : 739-748, 2014.
4) Yamasaki A, et al : Cough and asthma diagnosis : physicians' diagnosis and treatment of patients complaining of acute, subacute and chronic cough in rural areas of Japan. Int J Gen Med 3 : 101-107, 2010.
5) 田中裕士 : 鎮咳薬・去痰薬の新しく正しい使用方法. レジデントノート 21 : 1139-1146, 2019.
6) 田中裕士 : 好発時間 : 咳嗽の起こりやすい時間帯でどこまで絞れるのか? プライマリ・ケアの現場でもう困らない! 止まらない "せき" の診かた, p13-19, 南江堂, 2016.
7) Ishiguro N, et al : Point-of-care molecular diagnosis of Mycoplasma pneumoniae including macrolide sensitivity using quenching probe polymerase chain reaction. PLoS One 16 : e0258694, 2021.
8) 小児呼吸器感染症診療ガイドライン作成委員会 : 小児呼吸器感染症診療ガイドライン 2017 (尾内一信, ほか監), p14, 協和企画, 2016.
9) Hewlett EL, Edward KM : Clinical practice. Pertussis-not just for kids. N Engl J Med 352 : 1215-1222, 2005.
10) Okada K, et al : Clinical evaluation of a new rapid immunochromatographic test for detection of Bordetella pertussis antigen. Scientific Reports 12 : 8069, 2022 (in press).
11) Miyashita N, et al : Seroepidemiology of Chlamydia pneumoniae in Japan between 1991 and 2000. J Clin Pathol 55 : 115-117, 2002.
12) Kato M, et al : Improvement of respiratory symptoms and health-related quality of life with peramivir in influenza patients with chronic respiratory disease : Additional outcomes of a randomized, open-label study. Influenza Other Respir Viruses 15 : 651-660, 2021.
13) 日本臨床内科医会インフルエンザ研究班 : インフルエンザの診断-迅速キットを中心に. インフルエンザ診療マニュアル 2016-2017年 シーズン版. 日本臨床内科医会会誌 31 (臨時付録) : 9-12, 2016.
P.297 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), 日本呼吸器学会, 2019.
5) Shioya T, et al : Effect of suplatast tosilate, a Th2 cytokine inhibitor, on cough variant asthma. Eur J Clin Pharmacol 58 : 171-176, 2002.
6) Matsumoto H, et al : Prognosis of cough variant asthma : a retrospective analysis. J Asthma 43 : 131-135, 2006.
7) 放生雅章 : 咳喘息患者に対する早期SMART療法導入治療について. アレルギーの臨床 37 : 368-372, 2017.
8) Fukumitsu K, et al : Tiotropium Attenuates Refractory Cough and Capsaicin Cough Reflex Sensitivity in Patients with Asthma. J Allergy Clin Immunol Pract 6 : 1613-1620.e2, 2018.
P.302 掲載の参考文献
1) Niimi A : Redefining "one airway, one disease" : Broader classification considering specific pathophysiology and treatment. Respir Investig 59 : 573-575, 2021.
2) Grossman J : One airway, one disease. Chest 111 : 11S-16S, 1997.
3) Pawankar R, et al : Allergic Rhinitis and Its Impact on Asthma in Asia Pacific and the ARIA Update 2008. World Allergy Organ J 5 : S212-217, 2012.
4) Bousquet J, et al : ARIA-EAACI care pathways for allergen immunotherapy in respiratory allergy. Clin Transl Allergy 11 : e12014, 2021.
5) Krouse JH, et al : Asthma and the unified airway. Otolaryngol Head Neck Surg 136 : S75-106, 2007.
6) Settipane RJ, Settipane GA : IgE and the allergy-asthma connection in the 23-year follow-up of Brown University students. Allergy Asthma Proc 21 : 221-225, 2000.
8) Ciprandi G, et al : Impact of allergic rhinitis on asthma in children : effects on bronchial hyperreactivity. Allergy 65 : 1199-1201, 2010.
9) Kikkawa S, et al : Sublingual Immunotherapy for Japanese Cedar Pollinosis Attenuates Asthma Exacerbation. Allergy Asthma Immunol Res 11 : 438-440, 2019.
10) Ueda S, et al : Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules 12 : 518, 2022.
11) Humbert M, et al : IgE-Mediated Multimorbidities in Allergic Asthma and the Potential for Omalizumab Therapy. J Allergy Clin Immunol Pract 7 : 1418-1429, 2019.
12) Kanda A, et al : Regulation of Interaction between the Upper and Lower Airways in United Airway Disease. Med Sci (Basel) 7 : 27, 2019.
13) Zhang Y, et al : Chronic rhinosinusitis in Asia. J Allergy Clin Immunol 140 : 1230-1239, 2017.
14) Naclerio R, et al : Clinical Research Needs for the Management of Chronic Rhinosinusitis with Nasal Polyps in the New Era of Biologics : A National Institute of Allergy and Infectious Diseases Workshop. J Allergy Clin Immunol Pract 8 : 1532-1549.e1, 2020.
15) Raundhal M, et al : High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest 125 : 3037-3050, 2015.
16) Kyriakopoulos C, et al : Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 7 : 00309-2020, 2021.
P.309 掲載の参考文献
1) 西間三馨, ほか : 西日本小学児童におけるアレルギー疾患有症率調査-1992, 2002, 2012年の比較-. 日本小児アレルギー学会誌 27 : 149-169, 2013.
2) Sasaki M, et al : The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children : Findings from 3 nationwide cross-sectional surveys between 2005 and 2015. Allergy 74 : 1572-1575, 2019.
4) Turato G, et al : Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am J Respir Crit Care Med 178 : 476-482, 2008.
5) Nagakumar P, et al : Pulmonary type-2 innate lymphoid cells in paediatric severe asthma : phenotype and response to steroids. Eur Respir J 54 : 1801809, 2019.
7) O'Reilly R, et al : Increased airway smooth muscle in preschool wheezers who have asthma at school age. J Allergy Clin Immunol 131 : 1024-1032, 1032.e1-16, 2013.
8) Colicino S, et al : Validation of childhood asthma predictive tools : A systematic review. Clin Exp Allergy 49 : 410-418, 2019.
9) Global Initiative for Asthma : Global Strategy for Asthma Management and Prevention, Updated 2021, GINA, 2021.
10) 馬場実 : 小児アレルギー疾患の発症と展開 : 予知と予防の可能性について. アレルギー 38 : 1061-1069, 1989.
11) Liu AH, et al : Pathways through which asthma risk factors contribute to asthma severity in innercity children. J Allergy Clin Immunol 138 : 1042-1050, 2016.
12) 日本小児アレルギー学会 : 小児気管支喘息治療・管理ガイドライン 2020 (足立雄一, ほか監), 協和企画, 2020.
13) Knox BL, et al : Medical Neglect as a Contributor to Poorly Controlled Asthma in Childhood. J Child Adolesc Trauma 13 : 327-334, 2020.
14) Amemiya A, Fujiwara T : Association of Low Family Income With Lung Function Among Children and Adolescents : Results of the J-SHINE Study. J Epidemiol 29 : 50-56, 2019.
15) Teach SJ, et al : Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 136 : 1476-1485, 2015.
P.316 掲載の参考文献
1) Phelan PD, et al : The Melbourne Asthma Study : 1964-1999. J Allergy Clin Immunol 109 : 189-194, 2002.
2) 丸尾はるみ, ほか : 小児気管支喘息の長期予後 : 第1報 予後および予後に影響を及ぼす因子について. アレルギー 39 : 621-630, 1990.
4) Sears MR : Predicting asthma outcomes. J Allergy Clin Immunol 136 : 829-836 ; quiz 837, 2015.
5) Covar RA, et al : Predictors of remitting, periodic, and persistent childhood asthma. J Allergy Clin Immunol 125 : 359-366.e3, 2010.
6) Zeiger RS, et al : Relationships between duration of asthma and asthma severity among children in the Childhood Asthma Management Program (CAMP). J Allergy Clin Immunol 103 : 376-387, 1999.
7) Segala C, et al : Asthma in adults : comparison of adult-onset asthma with childhood-onset asthma relapsing in adulthood. Allergy 55 : 634-640, 2000.
8) Miranda C, et al : Distinguishing severe asthma phenotypes : role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 113 : 101-108, 2004.
9) To M, et al : Persistent Asthma from Childhood to Adulthood Presents a Distinct Phenotype of Adult Asthma. J Allergy Clin Immunol Pract 8 : 1921-1927.e2, 2020.
10) Masaki K, et al : Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol 119 : 253-257, 2017.
11) Castanhinha S, et al : Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin Immunol 136 : 312-322.e7, 2015.
12) Kabata H, et al : Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun 4 : 2675, 2013.
13) Watai K, et al : De novo sensitization to Aspergillus fumigatus in adult asthma over a 10-year observation period. Allergy 73 : 2385-2388, 2018.
14) Singer F, et al : Abnormal small airways function in children with mild asthma. Chest 145 : 492-499, 2014.
15) Masaki K, et al : Risk factors for poor adherence to inhaled corticosteroid therapy in patients with moderate to severe asthma. Asian Pac J Allergy Immunol, 2020. (DOI : 10.12932/AP-311219-0731)
16) Farraia M, et al : Allergen immunotherapy for asthma prevention : A systematic review and meta-analysis of randomized and non-randomized controlled studies, 2022. (DOI : 10.1111/all.15295)
18) Baba SM, et al : Effectiveness of Sublingual Immunotherapy in the Treatment of HDM-Induced Nasobronchial Allergies : A 3-Year Randomized Case-Control Study From Kashmir. Front Immunol 12 : 723814, 2021.
P.322 掲載の参考文献
1) Cypess AM : Reassessing human adipose tissue. N Engl J Med 386 : 768-779, 2022.
3) 日本肥満学会肥満症診断基準検討委員会 : 新しい肥満の判定と肥満症の診断基準. 肥満研究 6 : 18-28, 2000.
4) Hjellvik V, et al : Body mass index as predictor for asthma : a cohort study of 118, 723 males and females. Eur Respir J 35 : 1235-1242, 2010.
5) Beuther DA, et al : Overweight, obesity, and incident asthma : a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med 175 : 661-666, 2007.
6) Mosen DM, et al : The relationship between obesity and asthma severity and control in adults. J Allergy Clin Immunol 122 : 507-511.e6, 2008.
7) To M, et al : Obesity-associated severe asthma in an adult Japanese population. Respir Investig 56 : 440-447, 2018.
9) Yano C, et al : Overweight improves long-term survival in Japanese patients with asthma. Allergol Int 70 : 201-207, 2021.
10) Spelta F, et al : Body weight and mortality in COPD : focus on the obesity paradox. Eat Weight Disord 23 : 15-22, 2018.
12) da Silva PL, et al : The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment. Respir Care 57 : 572-582, 2012.
13) Elliot JG, et al : Fatty airways : implications for obstructive disease. Eur Respir J 54 : 1900857, 2019.
14) To M, et al : Obesity related systemic oxidative stress : an important factor of poor asthma control. Allergol Int 67 : 147-149, 2018.
15) Barnes PJ : Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131 : 636-645, 2013.
16) Peters-Golden M, et al : Influence of body mass index on the response to asthma controller agents. Eur Respir J 27 : 495-503, 2006.
17) Farah CS, et al : Obesity is a determinant of asthma control independent of inflammation and lung mechanics. Chest 140 : 659-666, 2011.
P.328 掲載の参考文献
1) スポーツ庁 : 令和2年度「スポーツの実施状況等に関する世論調査」について, 2021. [https://www.mext.go.jp/sports/b_menu/houdou/jsa_00069.html]
2) Weiler JM, et al : Exercise-induced bronchoconstriction update-2016. J Allergy Clin Immunol 138 : 1292-1295.e36, 2016.
3) Parsons JP, et al : An official American Thoracic Society clinical practice guideline : exercise-induced bronchoconstriction. Am J Respir Crit Care Med 187 : 1016-1027, 2013.
4) Weiler JM, et al : Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction : a practice parameter. Ann Allergy Asthma Immunol 105 : S1-47, 2010.
5) Bonini M, Palange P : Exercise-induced bronchoconstriction : new evidence in pathogenesis, diagnosis and treatment. Asthma Res Pract 1 : 2, 2015.
6) Anderson SD : 'Indirect' challenges from science to clinical practice. Eur Clin Respir J 3 : 31096, 2016.
7) Weiler JM, et al : American Academy of Allergy, Asthma & Immunology Work Group report : exercise-induced asthma. J Allergy Clin Immunol 119 : 1349-1358, 2007.
8) Fitch KD : An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br J Sports Med 46 : 413-416, 2012.
10) Fitch KD, et al : Asthma and the elite athlete : summary of the International Olympic Committee's consensus conference, Lausanne, Switzerland, January 22-24, 2008. J Allergy Clin Immunol 122 : 254-260, 260.e1-7, 2008.
11) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
12) 日本アンチ・ドーピング機構 : Global DRO (禁止表国際基準にもとづいた検索サイト). [https://www.globaldro.com/JP/search]
13) Lang JE : The impact of exercise on asthma. Curr Opin Allergy Clin Immunol 19 : 118-125, 2019.
P.334 掲載の参考文献
1) Tashiro H, Shore SA : The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 64 : 283-291, 2021.
2) Murk W, et al : Prenatal or early-life exposure to antibiotics and risk of childhood asthma : a systematic review. Pediatrics 127 : 1125-1138, 2011.
3) Cho Y, et al : The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol 59 : 346-354, 2018.
4) Cho Y, et al : Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. Am J Respir Cell Mol Biol 60 : 198-208, 2019.
5) Tashiro H, Shore SA : Obesity and severe asthma. Allergol Int 68 : 135-142, 2019.
6) Tashiro H, et al : Biomarkers for Overweight in Adult-Onset Asthma. J Asthma Allergy 13 : 409-414, 2020.
7) Tashiro H, et al : Saturated Fatty Acid Increases Lung Macrophages and Augments House Dust Mite-Induced Airway Inflammation in Mice Fed with High-Fat Diet. Inflammation 40 : 1072-1086, 2017.
8) Tashiro H, et al : Microbiota Contribute to Obesity-related Increases in the Pulmonary Response to Ozone. Am J Respir Cell Mol Biol 61 : 702-712, 2019.
9) Brown TA, et al : Early life microbiome perturbation alters pulmonary responses to ozone in male mice. Physiol Rep 8 : e14290, 2020.
10) Trompette A, et al : Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20 : 159-166, 2014.
11) Tashiro H, et al : Sex Differences in the Impact of Dietary Fiber on Pulmonary Responses to Ozone. Am J Respir Cell Mol Biol 62 : 503-512, 2020.