日本臨牀 80/増刊6 COPDと気管支喘息、その周辺疾患

出版社: 日本臨牀社
発行日: 2022-06-30
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: COPDと気管支喘息、その周辺疾患
電子書籍版: 2022-06-30 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

24,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

24,200 円(税込)

目次

  • 特集 COPDと気管支喘息、その周辺疾患
       ―病態・診断・治療の最新動向―

    序文

    I.総論(COPDと気管支喘息)
      1.COPDと喘息:病態を治療に結びつける
      2.咳嗽と喀痰から考えるCOPDと喘息
      3.COPDの診断 喘息合併の有無を見極めよう
      4.喘息の診断:閉塞性換気障害をみたとき、どのように喘息の診断を組み立てるか
      5.喘息COPDオーバラップ(ACO)の概念と病態
      6.COPDと喘息の境界領域:Asthma-COPD overlap(ACO)診断と治療
     7.吸入支援(指導)
     8.日本人集団における気流閉塞、2型気道炎症に関するGWAS

    II. COPD総論
      1.COPD概念の歴史的変遷
      2. 日本におけるCOPDの疫学と動向
      3. COPDの分子病態
      4.北海道COPDコホート研究から得たCOPDの病態と治療
      5.新時代のCOPD治療―3本の矢の使い方
      6. 日本人COPDに向けた個別化医療
      7. COPD 病期分類、病型分類
      8. COPDの遺伝的素因
      9. COPD発症機序仮説
      10. GOLD COPD document
      11.高齢化社会における身体活動性維持の重要性

    III. 気管支喘息総論
      1. 気管支喘息:概念の歴史的変遷
      2. アレルギー性気道炎症から考える喘息病態と治療
      3. 喘息における自然免疫応答
      4.喘息における閉塞性換気障害
      5. 喘息における好酸球性炎症
      6. 喘息における好中球性気道炎症
      7. 喘息病態におけるIgE
      8. クラスター分類から考える気管支喘息
      9. 喘息病態における2型自然リンパ球
      10. 好酸球性慢性副鼻腔炎と喘息
      11. 喘息における好塩基球の役割
      12. 喘息における呼気NOと末梢血好酸球数

    IV.COPD 診断へのアプローチ
      1.「典型的なCOPD」および「典型的な喘息」の診断は可能か?
      2. COPDと呼吸困難
      3. COPD 呼吸機能検査
      4. COPD 6分間歩行試験
      5. COPDの画像診断
      6. COPDと肺高血圧症
      7. COPDにおける併存症総論
      8. COPDと肺癌
      9. QOL評価
      10. プライマリケア医におけるCOPD診断
      11. 非喫煙COPD

    V. 喘息 診断へのアプローチ
      1. 慢性咳嗽の観点から診た喘息の鑑別―咳症状の好発時間・日内変動を中心に―
      2. 感染性咳嗽と喘息
      3. 咳喘息
      4. One airway, One disease
      5. 小児気管支喘息と関連疾患
     6. 小児喘息の遷延化
     7. 肥満と喘息
      8. 運動誘発喘息
     9. 腸内細菌叢と喘息

    VI.COPDの治療と管理
      1.非薬物治療
      2.薬物治療
      3.肺炎球菌ワクチン・インフルエンザワクチン
      4. 新型コロナウイルスワクチン

    VII.喘息の治療と管理
      1. アレルゲン免疫療法
      2. 吸入ステロイド薬
      3. 喘息における気管支拡張薬、ロイコトリエン受容体拮抗薬
      4. 喘息におけるICS/LABA/LAMAの位置づけ
      5. 喘息治療における生物学的製剤の役割
      6. 抗IgE抗体治療
      7. 生物学的製剤 抗IL-5抗体
      8. 前向き観察研究 J-BEST: 抗IL-5受容体抗体
      9. 生物学的製剤 IL-4, IL-13受容体抗体
      10. 生物学的製剤 TSLPモノクローナル抗体
      11. 喘息管理における心身医学的アプローチ

    VIII. COPD病態 up-to-date
      1. α1-アンチトリプシン欠乏症
      2. 気腫と線維化の類似点と相違点
      3. COPDにおける下気道細菌叢
      4. COPD増悪は予防可能か
      5. COPD増悪と喘息増悪
      6. COPDの予後因子
      7. 日本と諸外国のCOPDガイドライン
     8. 循環器内科医から診るCOPD
      9. 心不全の心拍管理
     10. COPDにおける骨粗鬆症

    IX.喘息病態 up-to-date
     1.喘息に対する抗炎症性脂質メディエーター
     2.喘息増悪における血中好酸球数とFeNOのカットオフ値
      3.アレルギー疾患における好酸球の役割―耳鼻科から―
      4.好酸球性気道炎症と組織線維化
      5. ETosisと好酸球性炎症
      6.アレルギー疾患における免疫記憶の役割
      7.IgE産生制御機構
      8.アレルギー性炎症におけるTpath2細胞の役割
      9.2型自然リンパ球の訓練免疫

    X.COPD・喘息の周辺疾患
      1.気管支拡張症
      2.リンパ脈管筋腫症
      3.慢性肺アスペルギルス症
      4.アレルギー性気管支肺アスペルギルス症/アレルギー性気管支肺真菌症
      5.アレルギー性気管支肺真菌症病態と診断
      6.アレルギー性気管支肺真菌症の治療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 総論 ( COPD と気管支喘息 )

P.25 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン 2019作成委員会編), 日本呼吸器学会, 2019.
3) Satia I, et al : Allergen challenge increases capsaicin-evoked cough responses in patients with allergic asthma. J Allergy Clin Immunol 144 : 788-795.e1, 2019.
4) Thomson NC, et al : Chronic cough and sputum production are associated with worse clinical outcomes in stable asthma. Respir Med 107 : 1501-1508, 2013.
5) Fahy JV, Dickey BF : Airway mucus function and dysfunction. N Engl J Med 363 : 2233-2247, 2010.
6) Voynow JA, et al : Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol 287 : L1293-1302, 2004.
7) Nadel JA, et al : Role of neutrophil elastase in hypersecretion in asthma. Eur Respir J 13 : 190-196, 1999.
8) Radicioni G, et al : Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease : an analysis of the SPIROMICS cohort. Lancet Respir Med 9 : 1241-1254, 2021.
10) Hogg JC, et al : Survival after lung volume reduction in chronic obstructive pulmonary disease : insights from small airway pathology. Am J Respir Crit Care Med 176 : 454-459, 2007.
11) Dunican EM, et al : Mucus Plugs and Emphysema in the Pathophysiology of Airflow Obstruction and Hypoxemia in Smokers. Am J Respir Crit Care Med 203 : 957-968, 2021.
12) Lachowicz-Scroggins ME, et al : Abnormalities in MUC5AC and MUC5B Protein in Airway Mucus in Asthma. Am J Respir Crit Care Med 194 : 1296-1299, 2016.
13) Innes AL, et al : Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma. Am J Respir Crit Care Med 180 : 203-210, 2009.
14) Dunican EM, et al : Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128 : 997-1009, 2018.
15) Chong J, et al : Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 9 : CD002309, 2017.
16) Tanabe T, et al : Clarithromycin inhibits interleukin-13-induced goblet cell hyperplasia in human airway cells. Am J Respir Cell Mol Biol 45 : 1075-1083, 2011.
17) Ehre C, et al : An Improved Inhaled Mucolytic to Treat Airway Muco-obstructive Diseases. Am J Respir Crit Care Med 199 : 171-180, 2019.
18) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
19) Global strategy for the Diagnosis, Management, and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (COPD), 2022. [https://goldcopd.org/2022-gold-reports-2/]
20) Arai N, et al : Inhibition of neutrophil elastase-induced goblet cell metaplasia by tiotropium in mice. Eur Respir J 35 : 1164-1171, 2010.
21) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
22) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
23) Svenningsen S, et al : Normalisation of MRI ventilation heterogeneity in severe asthma by dupilumab. Thorax 74 : 1087-1088, 2019.
24) Morgan LE, et al : Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat Commun 12 : 249, 2021.
26) Nagashima A, et al : Clarithromycin Suppresses Chloride Channel Accessory 1 and Inhibits Interleukin-13-Induced Goblet Cell Hyperplasia in Human Bronchial Epithelial Cells. Antimicrob Agents Chemother 60 : 6585-6590, 2016.
27) Komiya K, et al : Tiotropium inhibits mucin production stimulated by neutrophil elastase but not by IL-13. Pulm Pharmacol Ther 48 : 161-167, 2018.
28) 玉置淳 : 気道分泌の調節機構と病態生理. 日本呼吸器学会雑誌 36 : 217-223, 1998.
29) Nadel JA : Neural control of airway submucosal gland secretion. Eur J Respir Dis Suppl 128 (Pt 1) : 322-326, 1983.
30) Nguyen LP, et al : Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol 38 : 256-262, 2008.
31) Nguyen LP, et al : β2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A 114 : E9163-E9171, 2017.
P.32 掲載の参考文献
1) 第1章 疾患概念と基礎知識. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p8-46, 日本呼吸器学会, 2018.
2) 第2章 診断. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p48-81, 日本呼吸器学会, 2018.
3) Onishi K, et al : Prevalence of airflow limitation in outpatients with cardiovascular diseases in Japan. Int J Chron Obstruct Pulmon Dis 9 : 563-568, 2014.
5) Tsukuya G, et al : Validation of a COPD screening questionnaire and establishment of diagnostic cutpoints in a Japanese general population : the Hisayama study. Allergol Int 64 : 49-53, 2015.
6) Tatsumi K, et al : Clinical phenotypes of COPD : results of a Japanese epidemiological survey. Respirology 9 : 331-336, 2004.
7) 「喘息予防・管理ガイドライン 2021」作成委員 : 第2章 疫学. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
8) Tamada T, et al : Coexisting COPD in elderly asthma with fixed airflow limitation : Assessment by DLco% predicted and HRCT. J Asthma 54 : 606-615, 2017.
10) Bisgaard H, et al : Asthma-like symptoms in young children increase the risk of COPD. J Allergy Clin Immunol 147 : 569-576.e9, 2021.
11) Chapter 4 : Management of stable COPD. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2020 Report), p78-101, Global Initiative for Chronic Obstructive Lung Disease, 2020, [https://goldcopd.org/gold-reports] (2022年1月閲覧)
12) 第5章 診断. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018作成委員会編), p44-47, 日本呼吸器学会, 2017.
14) Hizawa N, et al : A Prospective Cohort Study to Assess Obstructive Respiratory Disease Phenotypes and Endotypes in Japan : The TRAIT Study Design. Int J Chron Obstruct Pulmon Dis 16 : 1813-1822, 2021.
P.38 掲載の参考文献
1) Fortis S, et al : Ratio of FEV1/Slow Vital Capacity of < 0.7 Is Associated With Clinical, Functional, and Radiologic Features of Obstructive Lung Disease in Smokers With Preserved Lung Function. Chest 160 : 94-103, 2021.
2) Wijnant SRA, et al : Trajectory and mortality of preserved ratio impaired spirometry : the Rotterdam Study. Eur Respir J 55 : 1901217, 2020.
3) Marott JL, et al : Trajectory of Preserved Ratio Impaired Spirometry : Natural History and Long-Term Prognosis. Am J Respir Crit Care Med 204 : 910-920, 2021.
4) Tashkin DP, et al : Bronchodilator responsiveness in patients with COPD. Eur Respir J 31 : 742-750, 2008.
5) Sin DD, et al : What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J 48 : 664-673, 2016.
6) 呼吸機能検査ハンドブック (日本呼吸器学会肺生理専門委員会呼吸機能検査ハンドブック作成委員会編), 日本呼吸器学会, 2021.
7) Qin R, et al : FEF25-75% Is a More Sensitive Measure Reflecting Airway Dysfunction in Patients with Asthma : A Comparison Study Using FEF25-75% and FEV1. J Allergy Clin Immunol Pract 9 : 3649-3659.e6, 2021.
8) Gelb AF : Normal Routine Spirometry Can Mask Chronic Obstructive Pulmonary Disease and Emphysema and Asthma in Symptomatic Patients. J Allergy Clin Immunol Pract 9 : 3660-3661, 2021.
9) Nakano Y, et al : Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162 : 1102-1108, 2000.
10) Tommola M, et al : Differences between asthma-COPD overlap syndrome and adult-onset asthma. Eur Respir J 49 : 1602383, 2017.
11) Stanescu D, et al : Identification of smokers susceptible to development of chronic airflow limitation : a 13-year follow-up. Chest 114 : 416-425, 1998.
12) in't Veen JCCM, et al : Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med 161 : 1902-1906, 2000.
P.43 掲載の参考文献
1) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), 日本呼吸器学会, 2017.
3) Global Initiative for Asthma (GINA), Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Diagnosis and Initial Treatment of Asthma, COPD and Asthma-COPD Overlap, A Joint Project of GINA and GOLD, updated April 2017, GINA/GOLD, 2017. [https://ginasthma.org/wp-content/uploads/2019/11/GINA-GOLD-2017-overlap-pocket-guide-wms-2017-ACO.pdf] (2021年6月閲覧)
4) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease, 2022 Report, GOLD, 2022. [https://www.goldcopd.org] (2021年6月閲覧).
5) Global Initiative for Asthma : Global Strategy for Asthma Management, and Prevention, GINA Full Report 2021 Front Cover ONLY, GINA, 2021. [ginasthma.org] (2021年6月閲覧).
7) de Marco R, et al : The coexistence of asthma and chronic obstructive pulmonary disease (COPD) : prevalence and risk factors in young, middle-aged and elderly people from the general population. PLoS One 8 : e62985, 2013.
12) Anabuki K, et al : Sex-specific differences in the association between birth weight and lung volume in Japanese young adults. Respir Investig 57 : 598-604, 2019.
13) Ali GB, et al : Infant body mass index trajectories and asthma and lung function. J Allergy Clin Immunol 148 : 763-770, 2021.
15) Miura S, et al : Accelerated decline in lung function in adults with a history of remitted childhood asthma. Eur Respir J 59 : 2100305, 2022.
P.50 掲載の参考文献
1) Leung C, Sin DD : Asthma-COPD Overlap : What Are the Important Questions? Chest 161 : 330-344, 2022.
2) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (一般社団法人日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018作成委員会編), 日本呼吸器学会, 2017.
3) Soler-Cataluna JJ, et al : Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol 48 : 331-337, 2012.
4) Koblizek V, et al : Chronic Obstructive Pulmonary Disease : official diagnosis and treatment guidelines of the Czech Pneumological and Phthisiological Society ; a novel phenotypic approach to COPD with patient-oriented care. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 157 : 189-201, 2013.
5) Kankaanranta H, et al : Diagnosis and pharmacotherapy of stable chronic obstructive pulmonary disease : the finnish guidelines. Basic Clin Pharmacol Toxicol 116 : 291-307, 2015.
6) Cosio BG, et al : Defining the asthma-COPD overlap syndrome in a COPD cohort. Chest 49 : 45-52, 2016.
7) Plaza V, et al : Consensus on the Asthma-COPD Overlap Syndrome (ACOS) Between the Spanish COPD Guidelines (GesEPOC) and the Spanish Guidelines on the Management of Asthma (GEMA). Arch Bronconeumol 53 : 443-449, 2017.
8) COVID19 流行期日常診療におけるCOPDの作業診断と管理手順. 日本呼吸器学会閉塞性肺疾患学術部会, 2021年1月. [https://www.jrs.or.jp/covid19/file/OLD_20210108_att.pdf] (2022年4月閲覧)
9) Orooj M, et al : Effect of pulmonary rehabilitation in patients with asthma COPD overlap syndrome : a randomized control trial Oman Med J 35 : e136, 2020.
10) Ishiura Y, et al : Triple Therapy with Budesonide/Glycopyrrolate/Formoterol Fumarate Improves Inspiratory Capacity in Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Int J Chron Obstruct Pulmon Dis 15 : 269-277, 2020.
11) Reddel HK, et al : Heterogeneity within and between physician-diagnosed asthma and/or COPD : NOVELTY cohort. Eur Respir J 58 : 2003927, 2021.
12) Hanania NA, et al : Omalizumab effectiveness in asthma-COPD overlap : Post hoc analysis of PROSPERO. J Allergy Clin Immunol 143 : 1629-1633.e2, 2019.
13) Pavord ID, et al : Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N Engl J Med 377 : 1613-1629, 2017.
P.56 掲載の参考文献
1) Melani AS, et al : Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med 105 : 930-938, 2011.
2) Usmani OS, et al : Critical inhaler errors in asthma and COPD : a systematic review of impact on health outcomes. Respir Res 19 : 10, 2018.
3) Axtell S, et al : Effectiveness of Various Methods of Teaching Proper Inhaler Technique. J Pharm Pract 30 : 195-201, 2017.
4) Price D, et al : Factors associated with appropriate inhaler use in patients with COPD-lessons from the REAL survey. Int J Chron Obstruct Pulmon Dis 13 : 695-702, 2018.
5) Ovchinikova L, et al : Inhaler technique maintenance : gaining an understanding from the patient's perspective. J Asthma 48 : 616-624, 2011.
6) Dima AL, et al : Asthma inhaler adherence determinants in adults : systematic review of observational data. Eur Respir J 45 : 994-1018, 2015.
7) Boulet LP, et al : Adherence : the goal to control asthma. Clin Chest Med 33 : 405-417, 2012.
8) Price D, et al : Establishing the relationship of inhaler satisfaction, treatment adherence, and patient outcomes : a prospective, real-world, cross-sectional survey of US adult asthma patients and physicians. World Allergy Organ J 8 : 26, 2015.
9) 日本アレルギー学会 : アレルギー総合ガイドライン 2019. 協和企画, 2019.
10) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
11) Barbara S, et al : Inhaler technique : does age matter? A systematic review. Eur Respir Rev 26 : 170055, 2017.
12) Nakada H, et al : Effect of a lever aid on hand strength required for using a handheld inhaler correctly. Int J Pharm 596 : 120249, 2021.
13) Basheti IA, et al : Improved asthma outcomes with a simple inhaler technique intervention by community pharmacists. J Allergy Clin Immunol 119 : 1537-1538, 2007.
14) Klijn SL, et al : Effectiveness and success factors of educational inhaler technique interventions in asthma & COPD patients : a systematic review. NPJ Prim Care Respir Med 27 : 24, 2017.
15) 独立行政法人環境再生保全機構ホームページ : <吸入器別> 正しい吸入方法. [https://www.erca.go.jp/yobou/zensoku/basic/adult/control/inhalers/method01.html] (2022年5月閲覧)
16) 小沼利光, ほか : 長期吸入療法患者に対する吸入薬再指導の有用性について. 日本病院薬剤師会雑誌 44 : 1615-1618, 2008.
17) Baba R, et al : Repetitive instructions at short intervals contribute to the improvement of inhalation technique. Asia Pac Allergy 10 : e19, 2020.
18) 名古屋大学大学院医学研究科医療薬学・医学部附属病院薬剤部 : 薬剤師外来について. [https://www.med.nagoya-u.ac.jp/pharmacy/patient/use.html] (2022年5月閲覧)
19) Price D, et al : Maximizing Adherence and Gaining New Information For Your Chronic Obstructive Pulmonary Disease (MAGNIFY COPD) : Study Protocol for the Pragmatic, Cluster Randomized Trial Evaluating the Impact of Dual Bronchodilator with Add-On Sensor and Electronic Monitoring on Clinical Outcomes. Pragmat Obs Res 12 : 25-35, 2021.
20) D'Arcy S, et al : A method to assess adherence in inhaler use through analysis of acoustic recordings of inhaler events. PLoS One 9 : e98701, 2014.
P.63 掲載の参考文献
1) Schunemann HJ, et al : Pulmonary function is a long-term predictor of mortality in the general population : 29-year follow-up of the Buffalo Health Study. Chest 118 : 656-664, 2000.
2) Tuder RM, Petrache I : Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 122 : 2749-2755, 2012.
3) Sakornsakolpat P, et al : Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet 51 : 494-505, 2019.
4) Shrine N, et al : New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet 51 : 481-493, 2019.
5) Tatsumi K, et al : Clinical phenotypes of COPD : results of a Japanese epidemiological survey. Respirology 9 : 331-336, 2004.
6) Landis SH, et al : Continuing to Confront COPD International Patient Survey : methods, COPD prevalence, and disease burden in 2012-2013. Int J Chron Obstruct Pulmon Dis 9 : 597-611, 2014.
7) Hozawa A, et al : Study profile of The Tohoku Medical Megabank Community-Based Cohort Study. J Epidemiol 31 : 65-76, 2021.
8) Kuriyama S, et al : The Tohoku Medical Megabank Project : Design and Mission. J Epidemiol 26 : 493-511, 2016.
9) Yamada M, et al : Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Commun Biol 4 : 1288, 2021.
10) Hudson BI, Lippman ME : Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med 69 : 349-364, 2018.
11) Jiang Z, et al : A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 194 : 185-197, 2016.
12) Yatime L, et al : The Structure of the RAGE : S100A6 Complex Reveals a Unique Mode of Homodimerization for S100 Proteins. Structure 24 : 2043-2052, 2016.
13) Dweik RA, et al : An official ATS clinical practice guideline : interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184 : 602-615, 2011.
14) Kuang Z, et al : The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. J Cell Biol 190 : 129-141, 2010.
15) Froehlich J, et al : FAM65B controls the proliferation of transformed and primary T cells. Oncotarget 7 : 63215-63225, 2016.

II COPD 総論

P.72 掲載の参考文献
1) Terminology, Definitions, and Classification of Chronic Pulmonary Emphysema and Related Conditions : a report of the conclusions of a ciba guest symposium. Thorax 14 : 286-299, 1959.
2) Definition and classification of chronic bronchitis for clinical and epidemiological purposes. A report to the Medical Research Council by their Committee on the Aetiology of Chronic Bronchitis. Lancet 1 : 775-779, 1965.
3) American Thoracic Society : Chronic bronchitis, asthma, and pulmonary emphysema. A statement by the committee on diagnostic standards for nontuberculous respiratory diseases. Am Rev Respir Dis 85 : 762-768, 1962.
4) American Thoracic Society : A statement of the committee on therapy ; Chronic obstructive lung disease. Am Rev Respir Dis 92 : 513-518, 1965.
5) Burrows B, et al : The emphysematous and bronchial types of chronic airways obstruction. A clinicopathological study of patients in London and Chicago. Lancet 1 : 830-835, 1966.
6) Filley GF, et al : Chronic obstructive bronchopulmonary disease. II. Oxygen transport in two clinical types. Am J Med 44 : 26-38, 1968.
8) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis 136 : 225-244, 1987.
9) National Institute of Health, National Heart, Lung, and Blood Institute. Global Initiative for Chronic Obstructive Lung Disease for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, NHLBI/WHO Workshop Report, 2001.
10) Fletcher CM, Pride NB : Definitions of emphysema, chronic bronchitis, asthma, and airflow obstruction : 25 years on from the Ciba symposium. Thorax 39 : 81-85, 1984.
11) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Updated 2006, 2011, 2017.
13) 日本胸部疾患学会肺生理専門委員会 : 慢性閉塞性肺疾患・気管支喘息の診断と治療指針, 日本胸部疾患学会, 1995.
14) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン (日本呼吸器学会COPD ガイドライン作成委員会編), 日本呼吸器学会, 1999.
15) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第2版] (日本呼吸器学会COPDガイドライン第2版作成委員会編), 日本呼吸器学会, 2004.
16) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第3版] (日本呼吸器学会COPDガイドライン第3版作成委員会編), 日本呼吸器学会, 2009.
17) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第4版] (日本呼吸器学会COPDガイドライン第4版作成委員会編), 日本呼吸器学会, 2013.
18) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
P.78 掲載の参考文献
1) WHO : The top 10 causes of death, 2019. [https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death] (2022年2月閲覧)
6) Fukuyama S, et al : Prevalence of Airflow Limitation Defined by Pre- and Post-Bronchodilator Spirometry in a Community-Based Health Checkup : The Hisayama Study. Tohoku J Exp Med 238 : 179-184, 2016.
8) 厚生労働省 : 令和元年国民健康・栄養調査報告. [https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html] (2022年2月閲覧)
9) e-Stat : 患者調査-患者調査上巻 (全国). 総患者数, 性・年齢階級×傷病小分類別. 各年次. [https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00450022&tstat=000001031167] (2022年2月閲覧)
10) Mannino DM, et al : Lung function and mortality in the United States : data from the First National Health and Nutrition Examination Survey follow up study. Thorax 58 : 388-393, 2003.
11) Anthonisen NR, et al : Prognosis in chronic obstructive pulmonary disease. Am Rev Respir Dis 133 : 14-20, 1986.
12) Aida A, et al : Prognostic value of hypercapnia in patients with chronic respiratory failure during long-term oxygen therapy. Am J Respir Crit Care Med 158 : 188-193, 1998.
14) e-Stat : 人口動態調査-人口動態統計確定数死亡. 下巻2. 死亡数, 性・年齢 (5歳階級) ・死因 (死因簡単分類) 別. 各年次. [https://www.e-stat.go.jp/stat-search/database?page=1&toukei=00450011&tstat=000001028897] (2022年2月閲覧)
17) Soriano JB, et al : Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest 128 : 2099-2107, 2005.
18) Kudo K, et al : Association of Airflow Limitation With Carotid Atherosclerosis in a Japanese Community-The Hisayama Study. Circ J 81 : 1846-1853, 2017.
19) 厚生労働省 : 令和元 (2019) 年度国民医療費の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/kiryohi/19/index.html] (2022年2月閲覧)
20) GOLD日本委員会 : COPD認知度把握調査結果. [http://www.gold-jac.jp/copd_facts_in_japan/copd_degree_of_recognition.html] (2022年2月閲覧)
P.83 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2022 [第6版] (日本呼吸器学会COPDガイドライン第6版作成委員会編), 日本呼吸器学会, 2018.
2) Hogg JC, et al : The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol Rev 97 : 529-552, 2017.
3) Zhang XY, et al : Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res 23 : 66, 2022.
4) Aghapour M, et al : Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease : Role of Cigarette Smoke Exposure. Am J Respir Cell Mol Biol 58 : 157-169, 2018.
5) Conlon TM, et al : Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588 : 151-156, 2020.
6) Kumar M, et al : Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 51 : 323-333, 2014.
7) Van Eldere J, et al : Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis 14 : 1281-1292, 2014.
8) Gaschler GJ, et al : Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile. Am J Respir Crit Care Med 179 : 666-675, 2009.
9) Uemasu K, et al : Serine Protease Imbalance in the Small Airways and Development of Centrilobular Emphysema in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 63 : 67-78, 2020.
10) Kistemaker LE, et al : Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. Eur Respir J 42 : 1677-1688, 2013.
11) Kistemaker LE, et al : Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol 308 : L96-103, 2015.
12) Wang C, et al : Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 5 : 248, 2020.
P.90 掲載の参考文献
1) Makita H, et al : Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 62 : 932-937, 2007.
3) Suzuki M, et al : Lower leptin/adiponectin ratio and risk of rapid lung function decline in chronic obstructive pulmonary disease. Ann Am Thorac Soc 11 : 1511-1519, 2014.
4) Nagai K, et al : Differential changes in quality of life components over 5 years in chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis 10 : 745-757, 2015.
5) Suzuki M, et al : Annual change in FEV1 in elderly 10-year survivors with established chronic obstructive pulmonary disease. Sci Rep 9 : 2073, 2019.
6) Suzuki M, et al : Clinical features and determinants of COPD exacerbation in the Hokkaido COPD cohort study. Eur Respir J 43 : 1289-1297, 2014.
7) Konno S, et al : Acute bronchodilator responses to β2 -agonist and anticholinergic agent in COPD : Their different associations with exacerbation. Respir Med 127 : 14-20, 2017.
8) Shimizu K, et al : Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD. Thorax 75 : 116-122, 2020.
9) Suzuki M, et al : Asthma-like Features and Clinical Course of Chronic Obstructive Pulmonary Disease. An Analysis from the Hokkaido COPD Cohort Study. Am J Respir Crit Care Med 194 : 1358-1365, 2016.
10) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
11) Abe Y, et al : Annual body weight change and prognosis in chronic obstructive pulmonary disease. Int J Chron Obstruc Pulmon Dis 16 : 3243-3253, 2021.
12) Takei N, et al : Serum Alpha-1 Antitrypsin Levels and the Clinical Course of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 14 : 2885-2893, 2019.
13) Takei N, et al : Combined assessment of pulmonary arterial enlargement and coronary calcification predicts the prognosis of patients with chronic obstructive pulmonary disease. Respir Med 185 : 106520, 2021.
14) Abe Y, et al : One-year clinically important deterioration and long-term clinical course in Japanese patients with COPD : a multicenter observational cohort study. BMC Pulm Med 21 : 159, 2021.
P.96 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) Khunti K, Davies MJ : Clinical inertia-Time to reappraise the terminology? Prim Care Diabetes 11 : 105-106, 2017.
3) Cooke CE, et al : Review : clinical inertia in the management of chronic obstructive pulmonary disease. COPD 9 : 73-80, 2012.
4) Calzetta L, et al : Pharmacological mechanisms leading to synergy in fixed-dose dual bronchodilator therapy. Curr Opin Pharmacol 40 : 95-103, 2018.
5) LaForce C, et al : Efficacy and safety of twice-daily glycopyrrolate in patients with stable, symptomatic COPD with moderate-to-severe airflow limitation : the GEM1 study. Int J Chron Obstruct Pulmon Dis 11 : 1233-1243, 2016.
6) Feldman G, et al : A randomized, blinded study to evaluate the efficacy and safety of umeclidinium 62.5 μg compared with tiotropium 18 μg in patients with COPD. Int J Chron Obstruct Pulmon Dis 11 : 719-730, 2016.
7) Feldman GJ, et al : Comparative Efficacy of Once-Daily Umeclidinium/Vilanterol and Tiotropium/Olodaterol Therapy in Symptomatic Chronic Obstructive Pulmonary Disease : A Randomized Study. Adv Ther 34 : 2518-2533, 2017.
8) Chronic obstructive pulmonary disease in over 16s : diagnosis and management. NICE guideline [NG115], Published : 5 December 2018, Last updated : 26 July 2019. [www.nice.org.uk/guidance/ng115]
9) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
10) Chen Z, et al : Triple Inhaled Therapy in COPD. N Engl J Med 383 : 1393, 2020.
11) Ichinose M, et al : The efficacy and safety of combined tiotropium and olodaterol via the Respimat(R) inhaler in patients with COPD : results from the Japanese sub-population of the Tonado (R) studies. Int J Chron Obstruct Pulmon Dis 11 : 2017-2027, 2016.
P.102 掲載の参考文献
1) 治療と管理安定期の管理. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p88-89, 日本呼吸器学会, 2018.
2) 診断診断の目安と基準. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), p44-47, 日本呼吸器学会, 2017.
3) Lipson DA, et al : Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med 378 : 1671-1680, 2018.
4) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
6) Koarai A, et al : Triple versus LAMA/LABA combination therapy for patients with COPD : a systematic review and meta-analysis. Respir Res 22 : 183, 2021.
7) Long H, et al : Single-inhaler triple vs single-inhaler dual therapy in patients with chronic obstructive pulmonary disease : a meta-analysis of randomized control trials. Respir Res 22 : 209, 2021.
8) Lai CC, et al : The Impact of 52-Week Single Inhaler Device Triple Therapy versus Dual Therapy on the Mortality of COPD Patients : A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life (Basel) 12 : 173, 2022.
9) Koarai A, et al : Triple versus LAMA/LABA combination therapy for Japanese patients with COPD : A systematic review and meta-analysis. Respir Investig 60 : 90-98, 2022.
10) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, p86-96, GOLD, 2021. [https://goldcopd.org/2022-gold-reports-2/]
11) Pascoe S, et al : Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease : analysis of the IMPACT trial. Lancet Respir Med 7 : 745-756, 2019.
12) Han MK, et al : The Effect of Inhaled Corticosteroid Withdrawal and Baseline Inhaled Treatment on Exacerbations in the IMPACT Study. A Randomized, Double-Blind, Multicenter Clinical Trial. Am J Respir Crit Care Med 202 : 1237-1243, 2020.
13) Lipson DA, et al : Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 201 : 1508-1516, 2020.
14) Calverley PMA, et al : Eosinophilia, Frequent Exacerbations, and Steroid Response in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 196 : 1219-1221, 2017.
15) Chapman KR, et al : Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET) : A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med 198 : 329-339, 2018.
16) Suissa S, Ariel A : Triple therapy trials in COPD : a precision medicine opportunity. Eur Respir J 52 : 1801848, 2018.
17) Tashkin DP, Strange C : Inhaled corticosteroids for chronic obstructive pulmonary disease : what is their role in therapy? Int J Chron Obstruct Pulmon Dis 13 : 2587-2601, 2018.
18) Ishii T, et al : Understanding low COPD exacerbation rates in Japan : a review and comparison with other countries. Int J Chron Obstruct Pulmon Dis 13 : 3459-3471, 2018.
19) Renvall MJ, et al : Predictors of body mass index in patients with moderate to severe emphysema. COPD 6 : 432-436, 2009.
P.106 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
3) Kubota M, et al : Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir Investig 52 : 242-250, 2014.
4) 日本呼吸器学会肺生理専門委員会 : 日本人のスパイログラムと動脈血液ガス分圧基準値. 日本呼吸器学会雑誌 39 : S1-S17, 2001.
5) 日本呼吸器学会肺生理専門委員会 : LMS法による日本人のスパイロメトリー新基準値, 日本呼吸器学会, 2014 (2022年4月28日更新). [https://www.jrs.or.jp/activities/guidelines/statement/20220428151435.html]
6) 日本呼吸器学会肺生理専門委員会 : 日本人のスパイログラム基準値に関するステートメント, 日本呼吸器学会, 2016. [https://www.jrs.or.jp/activities/guidelines/statement/20160721155500.html]
7) Yousuf A, et al : The different phenotypes of COPD. Br Med Bull 137 : 82-97, 2021.
8) The Netter Collection of Medical Illustrations-Respiratory System. [https://www.netterimages.com/chapters.htm?book_id=26&id=15523&page=148]
10) Le Rouzic O, et al : Defining the "Frequent Exacerbator" Phenotype in COPD : A Hypothesis-Free Approach. Chest 153 : 1106-1115, 2018.
11) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, GOLD, 2021. [https://goldcopd.org/2022-gold-reports-2/]
12) Kim V, et al : The chronic bronchitic phenotype of COPD : an analysis of the COPDGene Study. Chest 140 : 626-633, 2011.
14) Nici L, et al : Pharmacologic Management of Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 201 : e56-e69, 2020.
P.118 掲載の参考文献
1) Fletcher C, Peto R : The natural history of chronic airflow obstruction. Br Med J 1 : 1645-1648, 1977.
2) Laurell CB, Eriksson S : The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15 : 132-140, 1963.
3) Silverman EK : Genetics of COPD. Annu Rev Physiol 82 : 413-431, 2020.
4) Ingebrigtsen T, et al : Genetic influences on Chronic Obstructive Pulmonary Disease-a twin study. Respir Med 104 : 1890-1895, 2010.
5) Zhou JJ, et al : Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med 188 : 941-947, 2013.
6) Zhao X, et al : Whole genome sequence analysis of pulmonary function and COPD in 19, 996 multiethnic participants. Nat Commun 11 : 5182, 2020.
7) Ragland MF, et al : Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. Am J Respir Crit Care Med 200 : 677-690, 2019.
8) Cho MH, et al : Risk loci for chronic obstructive pulmonary disease : a genome-wide association study and meta-analysis. Lancet Respir Med 2 : 214-225, 2014.
9) Prokopenko D, et al : Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 59 : 614-622, 2018.
11) Smolonska J, et al : Meta-analyses on suspected chronic obstructive pulmonary disease genes : a summary of 20 years' research. Am J Respir Crit Care Med 180 : 618-631, 2009.
12) 総論CQ1~CQ4. α1-アンチトリプシン欠乏症診療の手引き 2021 [第2版] , p5-7, 厚生労働科学研究費補助金 (難治性疾患政策研究事業) /難治性呼吸器疾患・肺高血圧症に関する調査研究班, 2021.
13) Li X, et al : Genome-wide association study of lung function and clinical implication in heavy smokers. BMC Med Genet 19 : 134, 2018.
14) Cloonan SM, et al : Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22 : 163-174, 2016.
15) Acet Ozturk NA, et al : Is serum iron responsive protein-2 level associated with pulmonary functions and frequent exacerbator phenotype in COPD? Tuberk Toraks 68 : 252-259, 2020.
16) Nedeljkovic I, et al : Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics. Eur J Hum Genet 26 : 709-722, 2018.
17) Waseda K, et al : Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol 52 : 482-491, 2015.
18) Sharma A, et al : The AGE-RAGE axis and RAGE genetics in chronic obstructive pulmonary disease. Clin Rev Allergy Immunol 60 : 244-258, 2021.
19) Yamada M, et al : Genetic loci for lung function in Japanese adults with adjustment for exhaled nitric oxide levels as airway inflammation indicator. Commun Biol 4 : 1288, 2021.
20) Serveaux-Dancer M, et al : Pathological implications of receptor for advanced glycation end-product (AGER) gene polymorphism. Dis Markers 2019 : 2067353, 2019.
21) Pratte KA, et al : Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respir Res 22 : 127, 2021.
22) Li C, et al : Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun 11 : 834, 2020.
23) Liu B, et al : Targeting the PIAS1 SUMO ligase pathway to control inflammation. Trends Pharmacol Sci 29 : 505-509, 2008.
24) Hong LE, et al : A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci U S A 107 : 13509-13514, 2010.
25) Maskos U : The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease : Functional dissection and remaining challenges. J Neurochem 154 : 241-250, 2020.
26) Routhier J, et al : An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nat Commun 12 : 6384, 2021.
27) Zhou X, et al : Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 21 : 1325-1335, 2012.
28) Li Y, et al : Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 11 : 9074, 2021.
29) Hobbs BD, et al : Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet 49 : 426-432, 2017.
30) Castaldi PJ, et al : Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. Am J Respir Crit Care Med 199 : 52-61, 2019.
31) Zhou LL, et al : Targeting the RNA demethylase FTO for cancer therapy. RSC Chem Biol 2 : 1352-1369, 2021.
32) Huang X, et al : m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med 24 : 12706-12715, 2020.
33) Ishigami A, et al : SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biochem Biophys Res Commun 315 : 575-580, 2004.
34) Kondo Y, et al : Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc Natl Acad Sci U S A 103 : 5723-5728, 2006.
35) Koike K, et al : Vitamin C prevents cigarette smoke-induced pulmonary emphysema in mice and provides pulmonary restoration. Am J Respir Cell Mol Biol 50 : 347-357, 2014.
36) Ortega VE, et al : The Effects of Rare SERPINA1 Variants on Lung Function and Emphysema in SPIROMICS. Am J Respir Crit Care Med 201 : 540-554, 2020.
P.123 掲載の参考文献
1) 青柴和徹, 永井厚志 : 主要疾患の歴史 : 肺気腫・慢性閉塞性肺疾患 (COPD). 日本内科学会雑誌 91 : 1747-1752, 2002.
2) Laurell CB, Eriksson S : The electrophoretic α1-globlin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15 : 132-140, 1963.
3) Barnes PJ : Oxidative stress-based therapeutics in COPD. Redox Biol 33 : 101544, 2020.
4) Sidhaye VK, et al : Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res 20 : 190, 2019.
5) Segura-Valdez L, et al : Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117 : 684-694, 2000.
6) Aoshiba K, et al : Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 28 : 555-562, 2003.
7) Yoshida M, et al : Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 10 : 3145, 2019.
8) Aoshiba K, Nagai A : Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc 6 : 596-601, 2009.
9) Aoshiba K, Nagai A : An evolutionary perspective on chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41 : 507-508, 2009.
10) Aoshiba K, et al : An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease. Respiration 89 : 243-252, 2015.
11) Aoshiba K, et al : The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD. Eur Respir J 42 : 1689-1695, 2013.
12) Baker JR, et al : Senotherapy : A New Horizon for COPD Therapy. Chest 158 : 562-570, 2020.
13) Aghapour M, et al : Mitochondria : at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 318 : L149-L164, 2020.
14) Araya J, Kuwano K : Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 60 : 33-44, 2022.
15) Burrows B, et al : The relationship of childhood respiratory illness to adult obstructive airway disease. Am Rev Respir Dis 115 : 751-760, 1977.
P.133 掲載の参考文献
1) Troosters T, et al : Improving physical activity in COPD : towards a new paradigm. Respir Res 14 : 115, 2013.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p8-12, 95-99, 日本呼吸器学会, 2018.
3) Zuwallack R : Physical activity in patients with COPD : the role of pulmonary rehabilitation. Pneumonol Alergol Pol 77 : 72-76, 2009.
4) Garcia-Aymerich J, et al : Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease : a population based cohort study. Thorax 61 : 772-778, 2006.
8) Gimeno-Santos E, et al : Determinants and outcomes of physical activity in patients with COPD : a systematic review. Thorax 69 : 731-739, 2014.
12) Pitta F, et al : Are patients with COPD more active after pulmonary rehabilitation? Chest 134 : 273-280, 2008.
13) Kesten S, et al : Improvement in self-reported exercise participation with the combination of tiotropium and rehabilitative exercise training in COPD patients. Int J Chron Obstruct Pulmon Dis 3 : 127-136, 2008.
14) Mendoza L, et al : Pedometers to enhance physical activity in COPD : a randomised controlled trial. Eur Respir J 45 : 347-354, 2015.
16) Moy ML, et al : An Internet-Mediated Pedometer-Based Program Improves Health-Related Quality-of-Life Domains and Daily Step Counts in COPD : A Randomized Controlled Trial. Chest 148 : 128-137, 2015.
18) Maddocks M, et al : Neuromuscular electrical stimulation to improve exercise capacity in patients with severe COPD : a randomised double-blind, placebo-controlled trial. Lancet Respir Med 4 : 27-36, 2016.

III 気管支喘息総論

P.142 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
2) Ishizaka K, et al : Antigenic structure of γE-globulin and reaginic antibody. J Immunol 99 : 849-858, 1967.
3) Herxheimer H : The late bronchial reaction in induced asthma. Int Arch Allergy Appl Immunol 3 : 323-328, 1952.
4) Dunnill MS, et al : A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 24 : 176-179, 1969.
5) Ishizaka K, Ishizaka T : Identification of IgE. J Allergy Clin Immunol 137 : 1646-1650, 2016.
6) Prausnitz C, Kustner H : Studies on supersensitivity. Centralbl Bakteriol Abt Orig 86 : 160-169, 1921.
7) Johansson SG, Bennich H : Immunological studies of an atypical (myeloma) immunoglobulin. Immunology 13 : 381-394, 1967.
8) Wide L, et al : Diagnosis of allergy by an in-vitro test for allergen antibodies. Lancet 2 : 1105-1107, 1967.
9) 關覺二郎 : 米國産杉材工作が因ヲナセル喘息發作. 日本内科学会雑誌 13 : 884-888, 1925.
10) 猪熊茂子, 宮本昭正 : アラビアゴムによる職業性アレルギー性喘息および鼻炎. アレルギー 28 : 1-6, 1979.
11) Hirata M, et al : Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci USA 91 : 11192-11196, 1994.
12) Nagata K, et al : CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor (s). FEBS Lett 459 : 195-199, 1999.
13) Hamelmann E, et al : Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness. Am J Respir Crit Care Med 160 : 934-941, 1999.
14) Kang JY, et al : Inhibitory effects of anti-immunoglobulin E antibodies on airway remodeling in a murine model of chronic asthma. J Asthma 47 : 374-380, 2010.
15) International consensus report on diagnosis and treatment of asthma. National Heart, Lung, and Blood Institute, National Institutes of Health. Bethesda, Maryland 20892. Publication no. 92-3091, March 1992. Eur Respir J 5 : 601-641, 1992.
16) Cutz E, et al : Ultrastructure of airways in children with asthma. Histopathology 2 : 407-421, 1978.
17) Laitinen LA, et al : Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131 : 599-606, 1985.
18) Kharitonov SA, et al : Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343 : 133-135, 1994.
20) Izuhara K, et al : Periostin in allergic inflammation. Allergol Int 63 : 143-151, 2014.
21) Moro K, et al : Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463 : 540-544, 2010.
22) Infante-Duarte C, et al : Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165 : 6107-6115, 2000.
23) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global strategy for diagnosis, management and prevention of COPD (Update 2017). [http://goldcopd.org.] (2022年4月閲覧)
P.149 掲載の参考文献
1) Del Giacco SR, et al : Allergy in severe asthma. Allergy 72 : 207-220, 2017.
2) Tanaka J, et al : Prevalence of inhaled allergen-specific IgE antibody positivity in the healthy Japanese population. Allergol Int 71 : 117-124, 2022.
3) Loxham M, Davies DE : Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 139 : 1736-1751, 2017.
4) Bao K, Reinhardt RL : The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 75 : 25-37, 2015.
5) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
6) Duong QA, et al : Antibiotic exposure and adverse long-term health outcomes in children : A systematic review and meta-analysis. J Infect, 2022. (DOI : 10.1016/j.jinf.2022.01.005)
7) Doherty TA, Broide DH : Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int 68 : 9-16, 2019.
8) Matsumoto H, et al : Interleukin-13 enhanced Ca2+ oscillations in airway smooth muscle cells. Cytokine 57 : 19-24, 2012.
9) Okumura S, et al : FcepsilonRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J Allergy Clin Immunol 115 : 272-279, 2005.
10) Svenningsen S, et al : CT and Functional MRI to Evaluate Airway Mucus in Severe Asthma. Chest 155 : 1178-1189, 2019.
11) Nakamura Y, et al : Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to TH2-type immune responses and airway inflammation. J Allergy Clin Immunol 122 : 1208-1214, 2008.
12) Nagasaki T, et al : Smoking attenuates the age-related decrease in IgE levels and maintains eosinophilic inflammation. Clin Exp Allergy 43 : 608-615, 2013.
13) Nagasaki T, et al : Sensitization to Staphylococcus aureus enterotoxins in smokers with asthma. Ann Allergy Asthma Immunol 119 : 408-414.e2, 2017.
14) Cook Q, et al : The impact of environmental injustice and social determinants of health on the role of air pollution in asthma and allergic disease in the United States. J Allergy Clin Immunol 148 : 1089-1101, 2021.
15) Burge PS, et al : Do laboratory challenge tests for occupational asthma represent what happens in the workplace? Eur Respir J 51 : 1800059, 2018.
16) Gill MA : The role of dendritic cells in asthma. J Allergy Clin Immunol 129 : 889-901, 2012.
P.154 掲載の参考文献
1) El-Husseini ZW, et al : The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir Med 8 : 1045-1056, 2020.
2) Hammad H, Lambrecht BN : The basic immunology of asthma. Cell 184 : 1469-1485, 2021.
3) Gong T, et al : DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20 : 95-112, 2020.
4) Hewitt RJ, Lloyd CM : Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 21 : 347-362, 2021.
5) Ordovas-Montanes J, et al : Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560 : 649-654, 2018.
6) Sonnenberg GF, Hepworth MR : Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 19 : 599-613, 2019.
7) Morita H, et al : Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 138 : 1253-1264, 2016.
8) Brusselle GG, Koppelman GH : Biologic Therapies for Severe Asthma. N Engl J Med 386 : 157-171, 2022.
9) Bal SM, et al : Plasticity of innate lymphoid cell subsets. Nat Rev Immunol 20 : 552-565, 2020.
10) Corren J, Ziegler SF : TSLP : from allergy to cancer. Nat Immunol 20 : 1603-1609, 2019.
11) Shikotra A, et al : Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol 129 : 104-111.e1-9, 2012.
12) Camelo A, et al : IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv 1 : 577-589, 2017.
13) Liu S, et al : Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma : The role of thymic stromal lymphopoietin. J Allergy Clin Immunol 141 : 257-268.e6, 2018.
15) Stadhouders R, et al : Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immunol 142 : 1793-1807, 2018.
P.158 掲載の参考文献
1) 気管支喘息. 呼吸機能検査ハンドブック (日本呼吸器学会編), p80-82, 日本呼吸器学会, 2021.
2) スパイロメトリー. 呼吸機能検査ハンドブック (日本呼吸器学会編), p4-23, 日本呼吸器学会, 2021.
3) 用語の定義. 呼吸機能検査ガイドライン (日本呼吸器学会編), p2-4, 日本呼吸器学会, 2004.
4) 気流閉塞の定義と概念. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会編), p26-27, 日本呼吸器学会, 2017.
5) 総説. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会編), p2-22, 協和企画, 2021.
6) 病態生理. 喘息予防・管理ガイドライン 2021 (日本アレルギー学会編), p50-70, 協和企画, 2021.
7) 喘息の病態. 喘息診療実践ガイドライン 2021 (日本喘息学会編), p2-3, 協和企画, 2021.
8) 喀痰の発生機序. 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会編), p20-23, 日本呼吸器学会, 2019.
9) 気管支喘息. 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会編), p67-70, 日本呼吸器学会, 2019.
10) 喘息リモデリング. 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会編), p86-90, 日本呼吸器学会, 2017.
11) 難治性喘息の病態. 難治性喘息診断と治療の手引き 2019 (日本呼吸器学会編), p20-28, 日本呼吸器学会, 2018.
12) 福居嘉信, ほか : 呼吸器内科医による成人喘息診断の実態-アンケート調査の結果-. 日本呼吸器学会雑誌 46 : 601-607, 2008.
13) 新実彰男 : 不可逆性気流閉塞を伴う喘息 (成人). 喘息 23 : 120-127, 2010.
14) 福居嘉信 : 当科に通院する喘息患者の1秒率. 旭川市立病院医誌 54 : 2022 (掲載予定).
P.163 掲載の参考文献
1) Petsky HL, et al : Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev 8 : CD005603, 2017.
2) Calhoun WJ, et al : Comparison of physician-, biomarker-, and symptom-based strategies for adjustment of inhaled corticosteroid therapy in adults with asthma : the BASALT randomized controlled trial. JAMA 308 : 987-997, 2012.
3) Ortega H, et al : Cluster analysis and characterization of response to mepolizumab. A step closer to personalized medicine for patients with severe asthma. Ann Am Thorac Soc 11 : 1011-1017, 2014.
4) Heaney LG, et al : Eosinophilic and Noneosinophilic Asthma : An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest 160 : 814-830, 2021.
7) Kimura H, et al : Determination of the cutoff values of Th2 markers for the prediction of future exacerbation in severe asthma : An analysis from the Hokkaido Severe Asthma Cohort Study. Allergol Int 70 : 68-73, 2021.
10) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
11) Lefaudeux D, et al : U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 139 : 1797-1807, 2017.
12) Qiu R, et al : Asthma Phenotypes Defined From Parameters Obtained During Recovery From a Hospital-Treated Exacerbation. J Allergy Clin Immunol Pract 6 : 1960-1967, 2018.
13) Konno S, et al : Distinct Phenotypes of Smokers with Fixed Airflow Limitation Identified by Cluster Analysis of Severe Asthma. Ann Am Thorac Soc 15 : 33-41, 2018.
14) Wu W, et al : Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. Am J Respir Crit Care Med 199 : 1358-1367, 2019.
15) Kuo CS, et al : T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49 : 1602135, 2017.
16) Peters MC, et al : A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am J Respir Crit Care Med 199 : 465-477, 2019.
17) Bleecker ER, et al : Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. Eur Respir J 52 : 1800936, 2018.
18) FitzGerald JM, et al : Predictors of enhanced response with benralizumab for patients with severe asthma : pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir Med 6 : 51-64, 2018.
19) Harvey ES, et al : Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J 55 : 1902420, 2020.
20) Beckert H, et al : Single and Synergistic Effects of Type 2 Cytokines on Eosinophils and Asthma Hallmarks. J Immunol 204 : 550-558, 2020.
21) Dunican EM, et al : Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128 : 997-1009, 2018.
22) Suzuki S, et al : Induction of Airway Allergic Inflammation by Hypothiocyanite via Epithelial Cells. J Biol Chem 291 : 27219-27227, 2016.
23) Takabayashi T, et al : Increased expression of L-plastin in nasal polyp of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. Allergy 74 : 1307-1316, 2019.
24) Ueki S, et al : Eosinophil extracellular trap cell death-derived DNA traps : Their presence in secretions and functional attributes. J Allergy Clin Immunol 137 : 258-267, 2016.
P.170 掲載の参考文献
1) Chung KF : Asthma phenotyping : a necessity for improved therapeutic precision and new targeted therapies. J Intern Med 279 : 192-204, 2016.
2) Hastie AT, et al : Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125 : 1028-1036.e13, 2010.
3) Kuo CHS, et al : T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J 49 : 1602135, 2017.
4) Nakagome K, et al : Neutrophilic inflammation in severe asthma. Int Arch Allergy Immunol 158 (Suppl 1) : 96-102, 2012.
6) Bullens DM, et al : IL-17 mRNA in sputum of asthmatic patients : linking T cell driven inflammation and granulocytic influx? Respir Res 7 : 135, 2006.
7) Kyriakopoulos C, et al : Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 7 : 00309-2020, 2021.
8) Ray A, Kolls JK : Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 38 : 942-954, 2017.
9) Baines KJ, et al : Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J Allergy Clin Immunol 127 : 153-160, 160.e1-9, 2011.
10) Baines KJ, et al : Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J Allergy Clin Immunol 133 : 997-1007, 2014.
11) Kim RY, et al : Role for NLRP3 Inflammasome-mediated, IL-1β-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med 196 : 283-297, 2017.
12) Lachowicz-Scroggins ME, et al : Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med 199 : 1076-1085, 2019.
13) Radermecker C, et al : Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol 20 : 1444-1455, 2019.
14) Toussaint M, et al : Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 23 : 681-691, 2017.
15) Thorne PS, et al : Endotoxin Exposure : Predictors and Prevalence of Associated Asthma Outcomes in the United States. Am J Respir Crit Care Med 192 : 1287-1297, 2015.
16) Simpson JL, et al : Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax 62 : 211-218, 2007.
17) McSharry C, et al : Increased sputum endotoxin levels are associated with an impaired lung function response to oral steroids in asthmatic patients. J Allergy Clin Immunol 134 : 1068-1075, 2014.
19) Hinks TSC, et al : Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol 138 : 61-75, 2016.
21) Soma T, et al : Relationship between airway inflammation and airflow limitation in elderly asthmatics. Asia Pac Allergy 10 : e17, 2020.
22) Takaku Y, et al : CXC chemokine superfamily induced by Interferon-γ in asthma : a cross-sectional observational study. Asthma Res Pract 2 : 6, 2016.
23) Takaku Y, et al : IFN-γ-inducible protein of 10 kDa upregulates the effector functions of eosinophils through β2 integrin and CXCR3. Respir Res 12 : 138, 2011.
25) Hastie AT, et al : Mixed Sputum Granulocyte Longitudinal Impact on Lung Function in the Severe Asthma Research Program. Am J Respir Crit Care Med 203 : 882-892, 2021.
26) Kawashima A, et al : Effect of formoterol on eosinophil trans-basement membrane migration induced by interleukin-8-stimulated neutrophils. Int Arch Allergy Immunol 161 (Suppl 2) : 10-15, : 2013.
27) De Volder J, et al : Targeting neutrophils in asthma : A therapeutic opportunity? Biochem Pharmacol 182 : 114292, 2020.
P.176 掲載の参考文献
1) Ishizaka K, Ishizaka T : Identification of IgE. J Allergy Clin Immunol 137 : 1646-1650, 2016.
3) Thomsen SF, et al : Genetic influence on the age at onset of asthma : a twin study. J Allergy Clin Immunol 126 : 626-630, 2010.
4) Eder W, et al : Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113 : 482-488, 2004.
5) Lynch SV, et al : Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134 : 593-601.e12, 2014.
6) Hunninghake GM, et al : Polymorphisms in IL13, total IgE, eosinophilia, and asthma exacerbations in childhood. J Allergy Clin Immunol 120 : 84-90, 2007.
7) Weidinger S, et al : Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 4 : e1000166, 2008.
8) Schedel M, et al : A signal transducer and activator of transcription 6 haplotype influences the regulation of serum IgE levels. J Allergy Clin Immunol 114 : 1100-1105, 2004.
9) Hizawa N, et al : Increased total serum IgE levels in patients with asthma and promoter polymorphisms at CTLA4 and FCER1B. J Allergy Clin Immunol 108 : 74-79, 2001.
10) Menz G, et al : Molecular concepts of IgE-initiated inflammation in atopic and nonatopic asthma. Allergy 53 : 15-21, 1998.
11) Gill MA : The role of dendritic cells in asthma. J Allergy Clin Immunol 129 : 889-901, 2012.
P.183 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
2) Carr TF, et al : Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 197 : 22-37, 2018.
5) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
6) Modena BD, et al : Gene expression in relation to exhaled nitric oxide identifies novel asthma phenotypes with unique biomolecular pathways. Am J Respir Crit Care Med 190 : 1363-1372, 2014.
7) Lefaudeux D, et al : U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol 139 : 1797-1807, 2017.
8) Gomez JL, et al : Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J 50 : 2017.
9) Lim HF, Nair P : Airway Inflammation and Inflammatory Biomarkers. Semin Respir Crit Care Med 39 : 56-63, 2018.
10) Chupp GL, et al : A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 357 : 2016-2027, 2007.
11) Kaneko Y, et al : Asthma Phenotypes in Japanese Adults?Their Associations with the CCL5 ADRB2 Genotypes. Allergol Int 62 : 113-121, 2013.
12) Moffatt MF, et al : Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448 : 470-473, 2007.
13) Miller M, et al : ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 109 : 16648-16653, 2012.
14) Loser S, et al : Pulmonary ORMDL3 is critical for induction of Alternaria-induced allergic airways disease. J Allergy Clin Immunol 139 : 1496-1507.e3, 2017.
16) Bouzigon E, et al : Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359 : 1985-1994, 2008.
17) Kitazawa H, et al : ORMDL3/GSDMB genotype as a risk factor for early-onset adult asthma is linked to total serum IgE levels but not to allergic sensitization. Allergol Int 70 : 55-60, 2021.
19) Bochkov YA, et al : Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 112 : 5485-5490, 2015.
20) Jackson DJ, et al : Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 178 : 667-672, 2008.
22) Kanazawa J, et al : A cis-eQTL allele regulating reduced expression of CHI3L1 is associated with lateonset adult asthma in Japanese cohorts. BMC Med Genet 20 : 58, 2019.
23) Rathcke CN, Vestergaard H : YKL-40-an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc Diabetol 8 : 61, 2009.
24) Thomsen SB, et al : The Association between genetic variations of CHI3L1, levels of the encoded glycoprotein YKL-40 and the lipid profile in a Danish population. PLoS One 7 : e47094, 2012.
P.190 掲載の参考文献
1) Guia S, et al : Helper-like Innate Lymphoid Cells in Humans and Mice. Trends Immunol 41 : 436-452, 2020.
2) Rodriguez-Rodriguez N, et al : Group 2 Innate Lymphoid Cells : Team Players in Regulating Asthma. Annu Rev Immunol 39 : 167-198, 2021.
3) Wang S, et al : Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. Cell 171 : 201-216.e18, 2017.
4) Meininger I, et al : Tissue-Specific Features of Innate Lymphoid Cells. Trends Immunol 41 : 902-917, 2020.
5) Ferreira MA, et al : Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat Genet 49 : 1752-1757, 2017.
6) Wechsler ME, et al : Efficacy and safety of Itepekimab in patients with moderate-to-severe asthma. N Engl J Med 385 : 1656-1668, 2021.
7) Busse WW, et al : Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188 : 1294-1302, 2013.
8) Menzies-Gow A, et al : Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 384 : 1800-1809, 2021.
9) Kato A : Group 2 Innate Lymphoid Cells in Airway Diseases. Chest 156 : 141-149, 2019.
10) Singh D, et al : CRTH2 antagonists in asthma : current perspectives. Clin Pharmacol 9 : 165-173, 2017.
11) Klose CS, et al : Neuronal regulation of innate lymphoid cells. Curr Opin Immunol 56 : 94-99, 2019.
P.195 掲載の参考文献
2) Stevens WW, et al : Clinical Characteristics of Patients with Chronic Rhinosinusitis with Nasal Polyps, Asthma, and Aspirin-Exacerbated Respiratory Disease. J Allergy Clin Immunol Pract 5 : 1061-1070.e3, 2017.
3) Wu W, et al : Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol 133 : 1280-1288, 2014.
4) Amelink M, et al : Severe adult-onset asthma : A distinct phenotype. J Allergy Clin Immunol 132 : 336-341, 2013.
5) Celejewska-Wojcik N, et al : Subphenotypes of nonsteroidal antiinflammatory disease-exacerbated respiratory disease identified by latent class analysis. Allergy 75 : 831-840, 2020.
6) Tanosaki T, et al : Clinical characteristics of patients with not well-controlled severe asthma in Japan : Analysis of the Keio Severe Asthma Research Program in Japanese population (KEIO-SARP) registry. Allergol Int 70 : 61-67, 2021.
7) Mjosberg JM, et al : Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12 : 1055-1062, 2011.
8) Endo Y, et al : The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42 : 294-308, 2015.
9) Miyata J, et al : Cysteinyl leukotriene metabolism of human eosinophils in allergic disease. Allergol Int 69 : 28-34, 2020.
12) Kim YC, et al : Staphylococcus aureus Nasal Colonization and Asthma in Adults : Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract 7 : 606-615.e9, 2019.
13) Tomassen P, et al : Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137 : 1449-1456.e4, 2016.
15) Wu W, et al : Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. Am J Respir Crit Care Med 199 : 1358-1367, 2019.
P.201 掲載の参考文献
1) Siracusa MC, et al : TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477 : 229-233, 2011.
2) Karasuyama H, et al : Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 142 : 370-380, 2018.
3) Sawaguchi M, et al : Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J Immunol 188 : 1809-1818, 2012.
4) Motomura Y, et al : Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40 : 758-771, 2014.
5) Shibata S, et al : Basophils trigger emphysema development in a murine model of COPD through IL-4-mediated generation of MMP-12-producing macrophages. Proc Natl Acad Sci U S A 115 : 13057-13062, 2018.
6) Kimura I, et al : Appearance of basophils in the sputum of patients with bronchial asthma. Clin Allergy 5 : 95-98, 1975.
7) Kepley CL, et al : Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med 164 : 1053-1058, 2001.
8) Suzuki Y, et al : Airway basophils are increased and activated in eosinophilic asthma. Allergy 72 : 1532-1539, 2017.
9) Izumo T, et al : Effectiveness and safety of benralizumab for severe asthma in clinical practice (J-BEST) : a prospective study. Ann Transl Med 8 : 438, 2020.
10) Caruso C, et al : Basophil activation and serum IL-5 levels as possible monitor biomarkers in severe eosinophilic asthma patients treated with anti-IL-5 drugs. Allergy 76 : 1569-1571, 2021.
11) Wakahara K, et al : Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans. Allergy 68 : 180-189, 2013.
12) Cheng LE, et al : IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J Exp Med 212 : 513-524, 2015.
P.205 掲載の参考文献
1) 浅見麻紀, 松永和人 : 喘息診療における気道炎症モニタリングの意義-呼気NO測定, 喀痰好酸球, 末梢血好酸球-. 日本内科学会雑誌 108 : 1134-1140, 2019.
2) American Thoracic Society, et al : ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 171 : 912-930, 2005.
6) Li JH, et al : Diagnostic possibility of the combination of exhaled nitric oxide and blood eosinophil count for eosinophilic asthma. BMC Pulm Med 21 : 259, 2021.
8) Petsky HL, et al : Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils) : a systematic review and meta-analysis. Thorax 73 : 1110-1119, 2018.
9) Khatri SB, et al : Use of Fractional Exhaled Nitric Oxide to Guide the Treatment of Asthma : An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 204 : e97-e109, 2021.
10) 松本久子 : 2型炎症反応を中心とした成人喘息におけるバイオマーカー. アレルギー 67 : 891-900, 2018.
11) Chipps BE, et al : A Comprehensive Analysis of the Stability of Blood Eosinophil Levels. Ann Am Thorac Soc 18 : 1978-1987, 2021.
12) Buhl R, et al : Severe eosinophilic asthma : a roadmap to consensus. Eur Respir J 49 : 1700634, 2017.
13) Busse WW, et al : Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study : a post-hoc analysis. Lancet Respir Med 9 : 1165-1173, 2021.
14) Wenzel SE : Severe Adult Asthmas : Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. Am J Respir Crit Care Med 203 : 809-821, 2021.

IV COPD 診断へのアプローチ

P.215 掲載の参考文献
1) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. American Thoracic Society. Am J Respir Crit Care Med 152 : S77-121, 1995.
2) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き2018作成委員会編), 日本呼吸器学会, 2017.
3) Global Initiative for Asthma, Global Initiative for Chronic Obstructive lung Disease : Diagnosis of Diseases of Chronic Airflow Limitation : Asthma, COPD, and Asthma-COPD Overlap Syndrome (ACOS) GINA/GOLD, 2014. [https://ginasthma.org/wp-content/uploads/2019/11/GINA_GOLD_ACOS_2014-wms.pdf]
4) 慢性閉塞性肺疾患・気管支喘息の診断と治療指針 (日本胸部疾患学会肺生理専門委員会編), メディカルレビュー社, 1995.
5) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン (日本呼吸器学会COPDガイドライン作成委員会編), 日本呼吸器学会, 1999.
6) COPD診断と治療のためのガイドライン [第6版] (日本呼吸器学会COPDガイドライン第6版作成委員会編). (public comment ; [https://www.jrs.or.jp/modules/information/index.php?content_id=1858] (2022年2月20日閲覧)
7) Global Initiative for Chronic Obstructive lung Disease : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Plumonary Disease. [https://www.goldcopd.org] (2022年2月閲覧)
8) Schapira RM, et al : The value of the forced expiratory time in the physical diagnosis of obstructive airways disease. JAMA 270 : 731-736, 1993.
9) 厚生省免疫・アレルギー研究班 : 喘息予防・管理ガイドライン [1998改訂版] (牧野荘平, ほか編), 協和企画, 1998.
10) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
11) Global Initiative for Asthma : Global Strategy for Asthma Management and Prevention. [https://ginasthma.org] (2022年2月閲覧)
12) Soler-Cataluna JJ, et al : Consensus document on the overlap phenotype COPD-asthma in COPD. Arch Bronconeumol 48 : 331-337, 2012.
13) Sin DD, et al : What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J 48 : 664-673, 2016.
14) Caillaud D, et al : Asthma-COPD overlap syndrome (ACOS) vs ?pure' COPD : a distinct phenotype? Allergy 72 : 137-145, 2017.
15) Tanabe N, et al : Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 7 : 00672-2020, 2021.
16) Smith AD, et al : Diagnosing asthma : comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Crit Care Med 169 : 473-478, 2004.
17) Aaron SD, et al : Underdiagnosis and Overdiagnosis of Asthma. Am J Respir Crit Care Med 198 : 1012-1020, 2018.
18) Suzuki M, et al : Asthma-like Features and Clinical Course of Chronic Obstructive Pulmonary Disease. An Analysis from the Hokkaido COPD Cohort Study. Am J Respir Crit Care Med 194 : 1358-1365, 2016.
19) Haraguchi R, et al : An empirical trial of one-week treatment with inhaled corticosteroids for distinguishing asthmatic syndrome from asthma mimics. Acta Medica Kinki University 36 : 15-22, 2011.
P.220 掲載の参考文献
1) Karnani NG, et al : Evaluation of chronic dyspnea. Am Fam Physician 71 : 1529-1537, 2005.
2) Wahls SA : Causes and evaluation of chronic dyspnea. Am Fam Physician 86 : 173-182, 2012.
3) Parshall MB, et al : An official American Thoracic Society statement : update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med 185 : 435-452, 2012.
4) O'Donnell DE, et al : Qualitative aspects of exertional dyspnea in patients with interstitial lung disease. J Appl Physiol (1985) 84 : 2000-2009, 1998.
5) Mahler DA, et al : Descriptors of breathlessness in cardiorespiratory diseases. Am J Respir Crit Care Med 154 : 1357-1363, 1996.
6) Moy ML, et al : Quality of dyspnea in bronchoconstriction differs from external resistive loads. Am J Respir Crit Care Med 162 : 451-455, 2000.
7) O'Donnell DE, et al : Mechanisms of activity-related dyspnea in pulmonary diseases. Respir Physiol Neurobiol 167 : 116-132, 2009.
8) Chang AS, et al : Prospective use of descriptors of dyspnea to diagnose common respiratory diseases. Chest 148 : 895-902, 2015.
P.224 掲載の参考文献
1) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, 2020 report, GOLD, 2020.
2) Gibson GL : Lung volumes and elasticity. In : Lung Function Tests : Physiological Principles and Clinical Applications (ed by Hughes JMB, Pride NB), p45-56, WB Saunders, London, 1999.
3) 呼吸機能検査ハンドブック (日本呼吸器学会肺生理専門委員会呼吸機能検査ハンドブック作成委員会編), 日本呼吸器学会, 2021.
4) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
5) Lung function testing : selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis 144 : 1202-1218, 1991.
6) American Thoracic Society. Single-breath carbon monoxide diffusing capacity (transfer Factor). Recommendations for a standard technique-1995 update. Am J Respir Crit Care Med 152 (6 Pt 1) : 2185-2198, 1995.
7) Hughes JMB, Pride NB : Examination of the carbon monoxide diffusing capacity (DLCO) in relation to its KCO and VA components. Am J Respir Crit Med 186 : 132-139, 2012.
8) Shirai T, Kurosawa H : Clinical Application of the Forced Oscillation Technique. Intern Med 55 : 559-566, 2016.
9) Oostveen E, et al : The forced oscillation technique in clinical practice : methodology, recommendations and future developments. Eur Respir J 22 : 1026-1041, 2003.
10) Grimby G, et al : Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Invest 47 : 1455-1465, 1968.
11) 黒澤一 : 広域周波オシレーション法. 医学のあゆみ 244 : 951-956, 2013.
P.230 掲載の参考文献
1) 呼吸リハビリテーションマニュアル-運動療法- [第2版] (日本呼吸ケア・リハビリテーション学会呼吸リハビリテーション委員会ワーキンググループ, ほか編), p17-18, 26-29. 45-46, 130-133, 照林社, 2012.
2) de Torres JP, et al : Prognostic evaluation of COPD patients : GOLD 2011 versus BODE and the COPD comorbidity index COTE. Thorax 69 : 799-804, 2014.
3) Holland AE, et al : An official European Respiratory Society/American Thoracic Society technical standard : field walking tests in chronic respiratory disease. Eur Respir J 44 : 1428-1446, 2014.
4) ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories : ATS statement : guidelines for the six-minute walk test. Am J Respir Crit Care Med 166 : 111-117, 2002.
5) Stevens D, et al : Comparison of hallway and treadmill six-minute walk tests. Am J Respir Crit Care Med 160 : 1540-1543, 1999.
6) Brooks D, et al : Comparison between an indoor and an outdoor 6-minute walk test among individuals with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 84 : 873-876, 2003.
7) Bansal V, et al : Modifying track layout from straight to circular has a modest effect on the 6-min walk distance. Chest 133 : 1155-1160, 2008.
8) Sciurba F, et al : Six-minute walk distance in chronic obstructive pulmonary disease : reproducibility and effect of walking course layout and length. Am J Respir Crit Care Med 167 : 1522-1527, 2003.
9) Weir NA, et al : The influence of alternative instruction on 6-min walk test distance. Chest 144 : 1900-1905, 2013.
10) Guyatt GH, et al : Effect of encouragement on walking test performance. Thorax 39 : 818-822, 1984.
12) Troosters T, et al : Physiological responses to the 6-min walk test in patients with chronic obstructive pulmonary disease. Eur Respir J 20 : 564-569, 2002.
13) Puente-Maestu L, et al : Use of exercise testing in the evaluation of interventional efficacy : an official ERS statement. Eur Respir J 47 : 429-460, 2016.
14) Singh SJ, et al : An official systematic review of the European Respiratory Society/American Thoracic Society : measurement properties of field walking tests in chronic respiratory disease. Eur Respir J 44 : 1447-1478, 2014.
P.238 掲載の参考文献
1) Lynch DA, et al : CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease : A Statement of the Fleischner Society. Radiology 277 : 192-205, 2015.
2) Tanabe N, et al : Pathological Comparisons of Paraseptal and Centrilobular Emphysema in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 202 : 803-811, 2020.
3) Shimizu K, et al : Per cent low attenuation volume and fractal dimension of low attenuation clusters on CT predict different long-term outcomes in COPD. Thorax 75 : 116-122, 2020.
5) Nakano Y, et al : The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171 : 142-146, 2005.
6) Tanabe N, et al : Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 7 : 00672-2020, 2021.
7) Tanabe N, et al : Quantitative measurement of airway dimensions using ultra-high resolution computed tomography. Respir Investig 56 : 489-496, 2018.
8) Smith BM, et al : Comparison of spatially matched airways reveals thinner airway walls in COPD. The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study and the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 69 : 987-996, 2014.
9) Kirby M, et al : Computed Tomography Total Airway Count is Associated with the Number of Micro-Computed Tomography Terminal Bronchioles. Am J Respir Crit Care Med 201 : 613-615, 2020.
10) Tanabe N, et al : Associations of airway tree to lung volume ratio on computed tomography with lung function and symptoms in chronic obstructive pulmonary disease. Respir Res 20 : 77, 2019.
11) Smith BM, et al : Association of Dysanapsis With Chronic Obstructive Pulmonary Disease Among Older Adults. JAMA 323 : 2268-2280, 2020.
12) Galban CJ, et al : Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18 : 1711-1715, 2012.
13) Vasilescu DM, et al : Noninvasive Imaging Biomarker Identifies Small Airway Damage in Severe Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 200 : 575-581, 2019.
14) Young AL, et al : Disease Progression Modeling in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 201 : 294-302, 2020.
15) Yamashiro T, et al : Asynchrony in respiratory movements between the pulmonary lobes in patients with COPD : continuous measurement of lung density by 4-dimensional dynamic-ventilation CT. Int J Chron Obstruct Pulmon Dis 12 : 2101-2109, 2017.
16) Yamada Y, et al : Comparison of inspiratory and expiratory lung and lobe volumes among supine, standing, and sitting positions using conventional and upright CT. Sci Rep 10 : 16203, 2020.
P.244 掲載の参考文献
2) Galie N, et al : 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension : The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) : Endorsed by : Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37 : 67-119, 2016.
3) 福田恵一, ほか : 肺高血圧症治療ガイドライン [2017年改訂版] (日本循環器学会, ほか編). [http://www.j-circ.or.jp/guideline/pdf/JCS2017_fukuda_h.pdf] (2000年4月閲覧)
4) Weitzenblum E, et al : Pulmonary hypertension and cor pulmonale in chronic obstructive pulmonary Disease. In : Chronic Obstructive Lung Diseases (ed by Voelkel NF, MacNee W), p306-318, BC Decker, Hamilton, 2002.
6) Barbera JA, et al : Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21 : 892-905, 2003.
7) Seimetz M, et al : Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 147 : 293-305, 2011.
9) Matsuoka S, et al : Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema. Am J Respir Crit Care Med 181 : 218-225, 2010.
10) Ghofrani HA, Grimminger F : Soluble guanylate cyclase stimulation : an emerging option in pulmonary hypertension therapy. Eur Respir Rev 18 : 35-41, 2009.
13) Vizza CD, et al : Pulmonary Hypertension in Patients With COPD : Results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Chest 160 : 678-689, 2021.
16) 巽浩一郎, 田村雄一 : 慢性肺疾患および低酸素. 第6 回肺高血圧症ワールドシンポジウム (Nice 2018). 肺高血圧症 : 最新の診断と治療日本語版 (監訳) 厚生労働省科学研究費補助金「難治性呼吸器疾患・肺高血圧症に関する調査研究班」, 日本肺高血圧・肺循環学会, p51-65, 中外医学社, 2020.
P.250 掲載の参考文献
1) Almagro P, et al : Mortality After Hospitalization for COPD. Chest 121 : 1441-1448, 2002.
4) von Leupoldt A, et al : The Impact of Anxiety and Depression on Outcomes of Pulmonary Rehabilitation in Patients With COPD. Chest 140 : 730-736, 2011.
5) Burgel PR, et al : A simple algorithm for the identification of clinical COPD phenotypes. Eur Respir J 50 : 1701034, 2017.
6) Spece LJ, et al : Role of Comorbidities in Treatment and Outcomes after Chronic Obstructive Pulmonary Disease Exacerbations. Ann Am Thorac Soc 15 : 1033-1038, 2018.
7) Takahashi S, Betsuyaku T : The chronic obstructive pulmonary disease comorbidity spectrum in Japan differs from that in western countries. Respir Investig 53 : 259-270, 2015.
8) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
9) Haruna A, et al : CT Scan Findings of Emphysema Predict Mortality in COPD. Chest 138 : 635-640, 2010.
10) Shibata Y, et al : A lower level of forced expiratory volume in 1 second is a risk factor for all-cause and cardiovascular mortality in a Japanese population : the Takahata study. PLoS One 8 : e83725, 2013.
13) Vanfleteren LE, et al : Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187 : 728-735, 2013.
15) Decramer M, et al : COPD as a Lung Disease with Systemic Consequences-Clinical Impact, Mechanisms, and Potential for Early Intervention. COPD 5 : 235-256, 2008.
16) Whittaker HR, et al : Accelerated FEV1 decline and risk of cardiovascular disease and mortality in a primary care population of COPD patients. Eur Respir J 57 : 2000918, 2021.
17) Cazzola M, et al : Chronic obstructive pulmonary disease and coronary disease : COPDCoRi, a simple and effective algorithm for predicting the risk of coronary artery disease in COPD patients. Respir Med 109 : 1019-1025, 2015.
18) Chen YW, et al : Prevalence and Risk Factors for Osteoporosis in Individuals With COPD : A Systematic Review and Meta-analysis. Chest 156 : 1092-1110, 2019.
19) Janson C, et al : Osteoporosis and fracture risk associated with inhaled corticosteroid use among Swedish COPD patients : the ARCTIC study. Eur Respir J 57 : 2000515, 2021.
20) Romme EA, et al : Fracture prevention in COPD patients ; a clinical 5-step approach. Respir Res 16 : 32, 2015.
21) Putcha N, et al : Mortality and Exacerbation Risk by Body Mass Index in Patients with COPD in TIOSPIR and UPLIFT. Ann Am Thorac Soc 19 : 204-213, 2022.
23) Akner G, Larsson K : Undernutrition state in patients with chronic obstructive pulmonary disease. A critical appraisal on diagnostics and treatment. Respir Med 117 : 81-91, 2016.
24) Gurgun A, et al : Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease : a prospective, randomized and controlled study. Respirology 18 : 495-500, 2013.
25) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
P.256 掲載の参考文献
1) Zhang X, et al : Chronic obstructive pulmonary disease and risk of lung cancer : a meta-analysis of prospective cohort studies. Oncotarget 8 : 78044-78056, 2017.
3) Miyazaki M, et al : Analysis of comorbid factors that increase the COPD assessment test scores. Respir Res 15 : 13, 2014.
4) Koshiol J, et al : Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS One 4 : e7380, 2009.
5) de Torres JP, et al : Lung cancer in patients with chronic obstructive pulmonary disease-incidence and predicting factors. Am J Respir Crit Care Med 184 : 913-919, 2011.
6) Sin DD, et al : Mortality in COPD : Role of comorbidities. Eur Respir J 28 : 1245-1257, 2006.
7) Makita H, et al : Unique Mortality Profile in Japanese Patients with COPD : An Analysis from the Hokkaido COPD Cohort Study. Int J Chron Obstruct Pulmon Dis 15 : 2081-2090, 2020.
8) Parris BA, et al : Chronic obstructive pulmonary disease (COPD) and lung cancer : common pathways for pathogenesis. J Thorac Dis 11 : S2155-S2172, 2019.
9) Young RP, et al : Genetic evidence linking lung cancer and COPD : a new perspective. Appl Clin Genet 4 : 99-111, 2011.
10) Bermingham ML, et al : Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 43 : 576-586, 2019.
11) Smith BM, et al : Lung cancer histologies associated with emphysema on computed tomography. Lung Cancer 76 : 61-66, 2012.
12) Lim J, et al : Relationship Between Emphysema Severity and the Location of Lung Cancer in Patients With Chronic Obstructive Lung Disease. AJR Am J Roentgenol 205 : 540-545, 2015.
13) Fry JS, et al : Systematic review with meta-analysis of the epidemiological evidence relating FEV1 decline to lung cancer risk. BMC Cancer 12 : 498, 2012.
14) Chubachi S, et al : Radiologic features of precancerous areas of the lungs in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 12 : 1613-1624, 2017.
15) Schwartz AG, et al : Risk of Lung Cancer Associated with COPD Phenotype Based on Quantitative Image Analysis. Cancer Epidemiol Biomarkers Prev 25 : 1341-1347, 2016.
16) Lim JU, et al : Chronic Obstructive Pulmonary Disease-Related Non-Small-Cell Lung Cancer Exhibits a Low Prevalence of EGFR and ALK Driver Mutations. PLoS One 10 : e0142306, 2015.
17) Gainor JF, et al : Response and durability of checkpoint blockade in never- or light-smokers with NSCLC and high PD-L1 expression. J Clin Oncol 36 (Suppl) : abstract 9011, 2018.
18) Godtfredsen NS, et al : Effect of smoking reduction on lung cancer risk. JAMA 294 : 1505-1510, 2005.
19) Anthonisen NR, et al : The effects of a smoking cessation intervention on 14.5-year mortality : a randomized clinical trial. Ann Intern Med 142 : 233-239, 2005.
20) Kobayashi S, et al : Preoperative use of inhaled tiotropium in lung cancer patients with untreated COPD. Respirology 14 : 675-679, 2009.
21) National Lung Screening Trial Research Team ; Aberle DR, et al : Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365 : 395-409, 2011.
22) Goffin JR, et al : Management and outcomes of patients with chronic obstructive lung disease and lung cancer in a public healthcare system. PLoS One 16 : e0251886, 2021.
23) Matsuo M, et al : Inspiratory capacity as a preoperative assessment of patients undergoing thoracic surgery. Interact Cardiovasc Thorac Surg 14 : 560-564, 2012.
25) Omote N, et al : Impact of mild to moderate COPD on feasibility and prognosis in non-small cell lung cancer patients who received chemotherapy. Int J Chron Obstruct Pulmon Dis 12 : 3541-3547, 2017.
26) Ajimizu H, et al : Survival impact of treatment for chronic obstructive pulmonary disease in patients with advanced non-small-cell lung cancer. Sci Rep 11 : 23677, 2021.
P.261 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) US Department of Health and Human Services, Food and Drug Administration, et al : Guidance for Industry. Patient-reported Outcome Measures : Use in Medical Product Development to Support Labeling Claims. 2009. [https://www.fda.gov/media/77832/download] (2022年4月閲覧)
3) Ware JE Jr, Sherbourne CD : The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30 : 473-483, 1992.
5) Hunt SM, et al : The Nottingham Health Profile : subjective health status and medical consultations. Soc Sci Med A 15 : 221-229, 1981.
6) Field trial WHOQOL-100 (February 1995). The 100 questions with response scales, World Health Organization (MNH/PSF/95.1), Geneva, 1995.
7) Herdman M, et al : Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 20 : 1727-1736, 2011.
8) 池田俊也, ほか : 日本語版EQ-5D-5Lにおけるスコアリング法の開発. 保健医療科学 64 : 47-55, 2015.
9) Igarashi A, et al : COPD uncovered : a cross-sectional study to assess the socioeconomic burden of COPD in Japan. Int J Chron Obstruct Pulmon Dis 13 : 2629-2641, 2018.
10) Jones PW, et al : A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis 145 : 1321-1327, 1992.
11) Guyatt GH, et al : A measure of quality of life for clinical trials in chronic lung disease. Thorax 42 : 773-778, 1987.
12) Jones PW, et al : Development and first validation of the COPD Assessment Test. Eur Respir J 34 : 648-654, 2009.
13) Meguro M, et al : Development and Validation of an Improved, COPD-Specific Version of the St. George Respiratory Questionnaire. Chest 132 : 456-463, 2007.
14) Garrod R, et al : Development and validation of a standardized measure of activity of daily living in patients with severe COPD : the London Chest Activity of Daily Living scale (LCADL). Respir Med 94 : 589-596, 2000.
15) Yoza Y, et al : Development of an activity of daily living scale for patients with COPD : the Activity of Daily Living Dyspnoea scale. Respirology 14 : 429-435, 2009.
P.267 掲載の参考文献
1) Global Initiative for Chronic Obstructive Lung Disease : Global Strategy for the Diagnosis, Management and Prevention of COPD. [http://www.goldcopd.org/] (2022年4月閲覧)
2) 一ノ瀬正和, ほか : 日本における慢性閉塞性肺疾患 (COPD) 患者の大規模電話実態調査-Confronting COPD Japan Survey-. 日本呼吸器学会雑誌 45 : 927-935, 2007.
3) Takahashi T, et al : Underdiagnosis and undertreatment of COPD in primary care settings. Respirology 8 : 504-508, 2003.
4) Kobayashi S, et al : Early Detection of Chronic Obstructive Pulmonary Disease in Primary Care. Intern Med 56 : 3153-3158, 2017.
5) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
6) 一般社団法人GOLD日本委員会 : COPD情報サイト. 問診票 (IPAG). [http://www.gold-jac.jp/support_contents/img/question.pdf] (2022年4月閲覧)
7) 一般社団法人GOLD日本委員会 : COPD情報サイト. COPD集団スクリーニング質問票 (COPD-PS(TM)) [http://www.gold-jac.jp/support_contents/img/COPD-PS.pdf] (2022年4月閲覧)
8) 九州大学病院呼吸器科 : COPDスクリーニングのための質問 (COPD-Q) [http://www.kokyu.med.kyushu-u.ac.jp/pdf/copd-q.pdf] (2022年4月閲覧)
9) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), 日本呼吸器学会, 2019.
10) 禁煙治療のための標準手順書 [第8.1版] (日本循環器学会, ほか編), 2021. [https://www.jcirc.or.jp/kinen/anti_smoke_std/pdf/anti_smoke_std_rev8_1_.pdf] (2022年4月閲覧)
11) Kobayashi S, et al : Clinical Characteristics and Outcomes of Patients with Asthma-COPD Overlap in Japanese Patients with COPD. Int J Chron Obstruct Pulmon Dis 15 : 2923-2929, 2020.
12) Tokuda Y, Miyagi S : Physical diagnosis of chronic obstructive pulmonary disease. Intern Med 46 : 1885-1891, 2007.
13) 米谷則美 : 国策としてのCOPD対策. 宮城県医師会報 817, 2014. [http://www.miyagi.med.or.jp/koushin_uploads/348_1.pdf] (2022年4月閲覧)
14) 矢内勝, 小林誠一 : COPDの地域医療連携 : 石巻地域COPDネットワーク (ICON) の取り組み. 呼吸 34 : 960-964, 2015.
P.274 掲載の参考文献
1) 疾患概念と基礎知識. COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p7-46, 日本呼吸器学会, 2018.
3) Lamprecht B, et al : COPD in never smokers : results from the population-based burden of obstructive lung disease study. Chest 139 : 752-763, 2011.
4) Syamlal G, et al : Chronic Obstructive Pulmonary Disease Prevalence Among Adults Who Have Never Smoked, by Industry and Occupation-United States, 2013-2017. MMWR Morb Mortal Wkly Rep 68 : 303-307, 2019.
5) Fukuyama S, et al : Prevalence of Airflow Limitation Defined by Pre- and Post-Bronchodilator Spirometry in a Community-Based Health Checkup : The Hisayama Study. Tohoku J Exp Med 238 : 179-184, 2016.
6) Hagstad S, et al : Prevalence and risk factors of COPD among never-smokers in two areas of Sweden-Occupational exposure to gas, dust or fumes is an important risk factor. Respir Med 109 : 1439-1445, 2015.
7) Liu S, et al : Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 62 : 889-897, 2007.
8) 環境省水・大気環境局 : 大気環境・自動車対策. [https://www.env.go.jp/seisaku/list/air.html] (2022年4月閲覧)
9) West JB : 環境因子が原因となる肺疾患及びその他の肺疾患. ウエスト呼吸生理学入門 : 疾患肺編 (堀江孝至訳), p141-161, メディカル・サイエンス・インターナショナル, 2009.
10) Downs SH, et al : Reduced exposure to PM10 and attenuated age-related decline in lung function. N Engl J Med 357 : 2338-2347, 2007.
11) Rice MB, et al : Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the Framingham heart study. Am J Respir Crit Care Med 191 : 656-664, 2015.
12) Camp PG, et al : COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur Respir J 43 : 725-734, 2014.
13) Lovasi GS, et al : Association of environmental tobacco smoke exposure in childhood with early emphysema in adulthood among nonsmokers : the MESA-lung study. Am J Epidemiol 171 : 54-62, 2010.
14) Barker AF, et al : Obliterative bronchiolitis. N Engl J Med 370 : 1820-1828, 2014.
15) Allwood BW, et al : Post-Tuberculosis Lung Disease : Clinical Review of an Under-Recognised Global Challenge. Respiration 100 : 751-763, 2021.

V 喘息 診断へのアプローチ

P.284 掲載の参考文献
1) Teeter JG, Bleecker ER : Relationship between airway obstruction and respiratory symptoms in adult asthmatics. Chest 113 : 272-277, 1998.
2) Osman LM, et al : Patient weighting of importance of asthma symptoms. Thorax 56 : 138-142, 2001.
4) Sistek D, et al : Clinical diagnosis of current asthma : predictive value of respiratory symptoms in the SAPALDIA study. Swiss Study on Air Pollution and Lung Diseases in Adults. Eur Respir J 17 : 214-219, 2001.
5) 新実彰男 : 咳嗽診療の心得-たかが咳, されど咳-. 日本内科学会雑誌 109 : 2091-2094, 2020.
6) Cavallazzi R, et al : Predicting asthma in older adults on the basis of clinical history. Respir Med 142 : 36-40, 2018.
7) Matsumoto H, et al : Cough triggers and their pathophysiology in patients with prolonged or chronic cough. Allergol Int 61 : 123-132, 2012.
9) Niimi A : Narrative Review : how long should patients with cough variant asthma or non-asthmatic eosinophilic bronchitis be treated? J Thorac Dis 13 : 3197-3214, 2021.
10) 加藤冠, 田中裕士 : 遷延性・慢性咳嗽を呈した咳喘息の診断における強制オシレーション法の有用性. アレルギー 67 : 759-766, 2018.
13) Smolensky MH, et al : Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv Drug Deliv Rev 59 : 852-882, 2007.
14) Kanemitsu Y, et al : Independent Factors Contributing to Daytime and Nighttime Asthmatic Cough Refractory to Inhaled Corticosteroids. J Investig Allergol Clin Immunol 29 : 30-39, 2019.
15) Hsu JY, et al : Coughing frequency in patients with persistent cough : assessment using a 24 hour ambulatory recorder. Eur Respir J 7 : 1246-1253, 1994.
16) Marsden PA, et al : A comparison of objective and subjective measures of cough in asthma. J Allergy Clin Immunol 122 : 903-907, 2008.
17) Lodhi S, et al : Cough rhythms in asthma : Potential implication for management. J Allergy Clin Immunol Pract 7 : 2024-2027, 2019.
18) Barnes P, et al : Nocturnal asthma and changes in circulating epinephrine, histamine, and cortisol. N Engl J Med 303 : 263-267, 1980.
20) Kraft M, et al : Distal lung dysfunction at night in nocturnal asthma. Am J Respir Crit Care Med 163 : 1551-1556, 2001.
21) Scheer FAJL, et al : The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles. Proc Natl Acad Sci U S A 118 : e2018486118, 2021.
22) 中尾篤人 : 時計じかけのアレルギー. アレルギー 71 : 22-26, 2022.
23) Lee KK, Birring SS : Cough and sleep. Lung 188 Suppl 1 : S91-94, 2010.
24) Wang HD, et al : Cough reflex in the night. Chest 114 : 1496-1497, 1998.
25) Power JT, et al : Nocturnal cough in patients with chronic bronchitis and emphysema. Am Rev Respir Dis 130 : 999-1001, 1984.
26) Kanemitsu Y, et al : Gastroesophageal dysmotility is associated with the impairment of cough-specific quality of life in patients with cough variant asthma. Allergol Int 65 : 320-326, 2016.
27) Niimi A, et al : Interfering with airway nerves in cough associated with asthma. Pulm Pharmacol Ther 59 : 101854, 2019.
28) Satia I et al. Capsaicin-evoked cough responses in asthmatic patients : Evidence for airway neuronal dysfunction. J Allergy Clin Immunol 139 : 771-779, 2017.
29) Kanemitsu Y, et al : Increased Capsaicin Sensitivity in Patients with Severe Asthma Is Associated with Worse Clinical Outcome. Am J Respir Crit Care Med 201 : 1068-1077, 2020.
30) Fujimura M, et al : Change in bronchial responsiveness and cough reflex sensitivity in patients with cough variant asthma : effect of inhaled corticosteroids. Cough 1 : 5, 2005.
31) 新実彰男 : 就寝中・早朝に悪化する咳. 診断と治療 99 : 2023-2028, 2011.
32) Morice AH, et al : Recommendations for the management of cough in adults. Thorax 61 Suppl 1 : i1-24, 2006.
P.292 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), p30-38, 日本呼吸器学会, 2019.
2) 厚生労働省 : 平成26年 (2014) 患者調査の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/kanja/14/]
3) 田中裕士 : 長引く咳, 診断と治療の考え方-感染性咳嗽を中心に-. Progress in Medicine 34 : 739-748, 2014.
4) Yamasaki A, et al : Cough and asthma diagnosis : physicians' diagnosis and treatment of patients complaining of acute, subacute and chronic cough in rural areas of Japan. Int J Gen Med 3 : 101-107, 2010.
5) 田中裕士 : 鎮咳薬・去痰薬の新しく正しい使用方法. レジデントノート 21 : 1139-1146, 2019.
6) 田中裕士 : 好発時間 : 咳嗽の起こりやすい時間帯でどこまで絞れるのか? プライマリ・ケアの現場でもう困らない! 止まらない "せき" の診かた, p13-19, 南江堂, 2016.
7) Ishiguro N, et al : Point-of-care molecular diagnosis of Mycoplasma pneumoniae including macrolide sensitivity using quenching probe polymerase chain reaction. PLoS One 16 : e0258694, 2021.
8) 小児呼吸器感染症診療ガイドライン作成委員会 : 小児呼吸器感染症診療ガイドライン 2017 (尾内一信, ほか監), p14, 協和企画, 2016.
9) Hewlett EL, Edward KM : Clinical practice. Pertussis-not just for kids. N Engl J Med 352 : 1215-1222, 2005.
10) Okada K, et al : Clinical evaluation of a new rapid immunochromatographic test for detection of Bordetella pertussis antigen. Scientific Reports 12 : 8069, 2022 (in press).
11) Miyashita N, et al : Seroepidemiology of Chlamydia pneumoniae in Japan between 1991 and 2000. J Clin Pathol 55 : 115-117, 2002.
12) Kato M, et al : Improvement of respiratory symptoms and health-related quality of life with peramivir in influenza patients with chronic respiratory disease : Additional outcomes of a randomized, open-label study. Influenza Other Respir Viruses 15 : 651-660, 2021.
13) 日本臨床内科医会インフルエンザ研究班 : インフルエンザの診断-迅速キットを中心に. インフルエンザ診療マニュアル 2016-2017年 シーズン版. 日本臨床内科医会会誌 31 (臨時付録) : 9-12, 2016.
P.297 掲載の参考文献
1) 咳嗽・喀痰の診療ガイドライン 2019 (日本呼吸器学会咳嗽・喀痰の診療ガイドライン2019作成委員会編), 日本呼吸器学会, 2019.
5) Shioya T, et al : Effect of suplatast tosilate, a Th2 cytokine inhibitor, on cough variant asthma. Eur J Clin Pharmacol 58 : 171-176, 2002.
7) 放生雅章 : 咳喘息患者に対する早期SMART療法導入治療について. アレルギーの臨床 37 : 368-372, 2017.
P.302 掲載の参考文献
1) Niimi A : Redefining "one airway, one disease" : Broader classification considering specific pathophysiology and treatment. Respir Investig 59 : 573-575, 2021.
2) Grossman J : One airway, one disease. Chest 111 : 11S-16S, 1997.
3) Pawankar R, et al : Allergic Rhinitis and Its Impact on Asthma in Asia Pacific and the ARIA Update 2008. World Allergy Organ J 5 : S212-217, 2012.
4) Bousquet J, et al : ARIA-EAACI care pathways for allergen immunotherapy in respiratory allergy. Clin Transl Allergy 11 : e12014, 2021.
5) Krouse JH, et al : Asthma and the unified airway. Otolaryngol Head Neck Surg 136 : S75-106, 2007.
6) Settipane RJ, Settipane GA : IgE and the allergy-asthma connection in the 23-year follow-up of Brown University students. Allergy Asthma Proc 21 : 221-225, 2000.
8) Ciprandi G, et al : Impact of allergic rhinitis on asthma in children : effects on bronchial hyperreactivity. Allergy 65 : 1199-1201, 2010.
9) Kikkawa S, et al : Sublingual Immunotherapy for Japanese Cedar Pollinosis Attenuates Asthma Exacerbation. Allergy Asthma Immunol Res 11 : 438-440, 2019.
10) Ueda S, et al : Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules 12 : 518, 2022.
11) Humbert M, et al : IgE-Mediated Multimorbidities in Allergic Asthma and the Potential for Omalizumab Therapy. J Allergy Clin Immunol Pract 7 : 1418-1429, 2019.
12) Kanda A, et al : Regulation of Interaction between the Upper and Lower Airways in United Airway Disease. Med Sci (Basel) 7 : 27, 2019.
13) Zhang Y, et al : Chronic rhinosinusitis in Asia. J Allergy Clin Immunol 140 : 1230-1239, 2017.
14) Naclerio R, et al : Clinical Research Needs for the Management of Chronic Rhinosinusitis with Nasal Polyps in the New Era of Biologics : A National Institute of Allergy and Infectious Diseases Workshop. J Allergy Clin Immunol Pract 8 : 1532-1549.e1, 2020.
15) Raundhal M, et al : High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest 125 : 3037-3050, 2015.
16) Kyriakopoulos C, et al : Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 7 : 00309-2020, 2021.
P.309 掲載の参考文献
1) 西間三馨, ほか : 西日本小学児童におけるアレルギー疾患有症率調査-1992, 2002, 2012年の比較-. 日本小児アレルギー学会誌 27 : 149-169, 2013.
2) Sasaki M, et al : The change in the prevalence of wheeze, eczema and rhino-conjunctivitis among Japanese children : Findings from 3 nationwide cross-sectional surveys between 2005 and 2015. Allergy 74 : 1572-1575, 2019.
4) Turato G, et al : Nonatopic children with multitrigger wheezing have airway pathology comparable to atopic asthma. Am J Respir Crit Care Med 178 : 476-482, 2008.
5) Nagakumar P, et al : Pulmonary type-2 innate lymphoid cells in paediatric severe asthma : phenotype and response to steroids. Eur Respir J 54 : 1801809, 2019.
7) O'Reilly R, et al : Increased airway smooth muscle in preschool wheezers who have asthma at school age. J Allergy Clin Immunol 131 : 1024-1032, 1032.e1-16, 2013.
8) Colicino S, et al : Validation of childhood asthma predictive tools : A systematic review. Clin Exp Allergy 49 : 410-418, 2019.
9) Global Initiative for Asthma : Global Strategy for Asthma Management and Prevention, Updated 2021, GINA, 2021.
10) 馬場実 : 小児アレルギー疾患の発症と展開 : 予知と予防の可能性について. アレルギー 38 : 1061-1069, 1989.
11) Liu AH, et al : Pathways through which asthma risk factors contribute to asthma severity in innercity children. J Allergy Clin Immunol 138 : 1042-1050, 2016.
12) 日本小児アレルギー学会 : 小児気管支喘息治療・管理ガイドライン 2020 (足立雄一, ほか監), 協和企画, 2020.
13) Knox BL, et al : Medical Neglect as a Contributor to Poorly Controlled Asthma in Childhood. J Child Adolesc Trauma 13 : 327-334, 2020.
14) Amemiya A, Fujiwara T : Association of Low Family Income With Lung Function Among Children and Adolescents : Results of the J-SHINE Study. J Epidemiol 29 : 50-56, 2019.
15) Teach SJ, et al : Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 136 : 1476-1485, 2015.
P.316 掲載の参考文献
1) Phelan PD, et al : The Melbourne Asthma Study : 1964-1999. J Allergy Clin Immunol 109 : 189-194, 2002.
2) 丸尾はるみ, ほか : 小児気管支喘息の長期予後 : 第1報 予後および予後に影響を及ぼす因子について. アレルギー 39 : 621-630, 1990.
4) Sears MR : Predicting asthma outcomes. J Allergy Clin Immunol 136 : 829-836 ; quiz 837, 2015.
5) Covar RA, et al : Predictors of remitting, periodic, and persistent childhood asthma. J Allergy Clin Immunol 125 : 359-366.e3, 2010.
6) Zeiger RS, et al : Relationships between duration of asthma and asthma severity among children in the Childhood Asthma Management Program (CAMP). J Allergy Clin Immunol 103 : 376-387, 1999.
7) Segala C, et al : Asthma in adults : comparison of adult-onset asthma with childhood-onset asthma relapsing in adulthood. Allergy 55 : 634-640, 2000.
8) Miranda C, et al : Distinguishing severe asthma phenotypes : role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol 113 : 101-108, 2004.
9) To M, et al : Persistent Asthma from Childhood to Adulthood Presents a Distinct Phenotype of Adult Asthma. J Allergy Clin Immunol Pract 8 : 1921-1927.e2, 2020.
10) Masaki K, et al : Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol 119 : 253-257, 2017.
11) Castanhinha S, et al : Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin Immunol 136 : 312-322.e7, 2015.
12) Kabata H, et al : Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun 4 : 2675, 2013.
13) Watai K, et al : De novo sensitization to Aspergillus fumigatus in adult asthma over a 10-year observation period. Allergy 73 : 2385-2388, 2018.
14) Singer F, et al : Abnormal small airways function in children with mild asthma. Chest 145 : 492-499, 2014.
15) Masaki K, et al : Risk factors for poor adherence to inhaled corticosteroid therapy in patients with moderate to severe asthma. Asian Pac J Allergy Immunol, 2020. (DOI : 10.12932/AP-311219-0731)
16) Farraia M, et al : Allergen immunotherapy for asthma prevention : A systematic review and meta-analysis of randomized and non-randomized controlled studies, 2022. (DOI : 10.1111/all.15295)
18) Baba SM, et al : Effectiveness of Sublingual Immunotherapy in the Treatment of HDM-Induced Nasobronchial Allergies : A 3-Year Randomized Case-Control Study From Kashmir. Front Immunol 12 : 723814, 2021.
P.322 掲載の参考文献
1) Cypess AM : Reassessing human adipose tissue. N Engl J Med 386 : 768-779, 2022.
3) 日本肥満学会肥満症診断基準検討委員会 : 新しい肥満の判定と肥満症の診断基準. 肥満研究 6 : 18-28, 2000.
4) Hjellvik V, et al : Body mass index as predictor for asthma : a cohort study of 118, 723 males and females. Eur Respir J 35 : 1235-1242, 2010.
5) Beuther DA, et al : Overweight, obesity, and incident asthma : a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med 175 : 661-666, 2007.
6) Mosen DM, et al : The relationship between obesity and asthma severity and control in adults. J Allergy Clin Immunol 122 : 507-511.e6, 2008.
7) To M, et al : Obesity-associated severe asthma in an adult Japanese population. Respir Investig 56 : 440-447, 2018.
9) Yano C, et al : Overweight improves long-term survival in Japanese patients with asthma. Allergol Int 70 : 201-207, 2021.
10) Spelta F, et al : Body weight and mortality in COPD : focus on the obesity paradox. Eat Weight Disord 23 : 15-22, 2018.
12) da Silva PL, et al : The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment. Respir Care 57 : 572-582, 2012.
13) Elliot JG, et al : Fatty airways : implications for obstructive disease. Eur Respir J 54 : 1900857, 2019.
14) To M, et al : Obesity related systemic oxidative stress : an important factor of poor asthma control. Allergol Int 67 : 147-149, 2018.
15) Barnes PJ : Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131 : 636-645, 2013.
16) Peters-Golden M, et al : Influence of body mass index on the response to asthma controller agents. Eur Respir J 27 : 495-503, 2006.
17) Farah CS, et al : Obesity is a determinant of asthma control independent of inflammation and lung mechanics. Chest 140 : 659-666, 2011.
P.328 掲載の参考文献
1) スポーツ庁 : 令和2年度「スポーツの実施状況等に関する世論調査」について, 2021. [https://www.mext.go.jp/sports/b_menu/houdou/jsa_00069.html]
3) Parsons JP, et al : An official American Thoracic Society clinical practice guideline : exercise-induced bronchoconstriction. Am J Respir Crit Care Med 187 : 1016-1027, 2013.
4) Weiler JM, et al : Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction : a practice parameter. Ann Allergy Asthma Immunol 105 : S1-47, 2010.
5) Bonini M, Palange P : Exercise-induced bronchoconstriction : new evidence in pathogenesis, diagnosis and treatment. Asthma Res Pract 1 : 2, 2015.
6) Anderson SD : 'Indirect' challenges from science to clinical practice. Eur Clin Respir J 3 : 31096, 2016.
7) Weiler JM, et al : American Academy of Allergy, Asthma & Immunology Work Group report : exercise-induced asthma. J Allergy Clin Immunol 119 : 1349-1358, 2007.
8) Fitch KD : An overview of asthma and airway hyper-responsiveness in Olympic athletes. Br J Sports Med 46 : 413-416, 2012.
10) Fitch KD, et al : Asthma and the elite athlete : summary of the International Olympic Committee's consensus conference, Lausanne, Switzerland, January 22-24, 2008. J Allergy Clin Immunol 122 : 254-260, 260.e1-7, 2008.
11) 「喘息予防・管理ガイドライン 2018」作成委員 : 喘息予防・管理ガイドライン 2018 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2018.
12) 日本アンチ・ドーピング機構 : Global DRO (禁止表国際基準にもとづいた検索サイト). [https://www.globaldro.com/JP/search]
13) Lang JE : The impact of exercise on asthma. Curr Opin Allergy Clin Immunol 19 : 118-125, 2019.
P.334 掲載の参考文献
1) Tashiro H, Shore SA : The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 64 : 283-291, 2021.
2) Murk W, et al : Prenatal or early-life exposure to antibiotics and risk of childhood asthma : a systematic review. Pediatrics 127 : 1125-1138, 2011.
3) Cho Y, et al : The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol 59 : 346-354, 2018.
4) Cho Y, et al : Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. Am J Respir Cell Mol Biol 60 : 198-208, 2019.
5) Tashiro H, Shore SA : Obesity and severe asthma. Allergol Int 68 : 135-142, 2019.
6) Tashiro H, et al : Biomarkers for Overweight in Adult-Onset Asthma. J Asthma Allergy 13 : 409-414, 2020.
7) Tashiro H, et al : Saturated Fatty Acid Increases Lung Macrophages and Augments House Dust Mite-Induced Airway Inflammation in Mice Fed with High-Fat Diet. Inflammation 40 : 1072-1086, 2017.
8) Tashiro H, et al : Microbiota Contribute to Obesity-related Increases in the Pulmonary Response to Ozone. Am J Respir Cell Mol Biol 61 : 702-712, 2019.
9) Brown TA, et al : Early life microbiome perturbation alters pulmonary responses to ozone in male mice. Physiol Rep 8 : e14290, 2020.
10) Trompette A, et al : Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20 : 159-166, 2014.
11) Tashiro H, et al : Sex Differences in the Impact of Dietary Fiber on Pulmonary Responses to Ozone. Am J Respir Cell Mol Biol 62 : 503-512, 2020.
12) Osgood RS, et al : Androgens augment pulmonary responses to ozone in mice. Physiol Rep 7 : e14214, 2019.
14) Sadamatsu H, et al : The non-antibiotic macrolide EM900 attenuates HDM and poly (I : C) -induced airway inflammation with inhibition of macrophages in a mouse model. Inflamm Res 69 : 139-151, 2020.
15) Sadamatsu H, et al : The Nonantibiotic Macrolide EM900 Attenuates House Dust Mite-Induced Airway Inflammation in a Mouse Model of Obesity-Associated Asthma. Int Arch Allergy Immunol 181 : 665-674, 2020.

VI COPD の治療と管理

P.339 掲載の参考文献
1) 厚生労働省 : 令和元年国民健康・栄養調査報告, 2020.
2) 厚生労働省告示 第四百三十号「国民の健康の増進の総合的な推進を図るための基本的な方針」, 平成24年7月10日.
3) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
4) 禁煙治療のための標準手順書 [第8.1版] (日本循環器学会, ほか編), 2021.
5) 厚生労働省 : 平成28年度診療報酬改定の結果検証に係る特別調査 (平成29年度調査) ニコチン依存症管理料による禁煙治療の効果等に関する調査報告書, 2017.
6) Masaki K, et al : A randomized controlled trial of a smoking cessation smartphone application with a carbon monoxide checker. NPJ Digit Med 3 : 35, 2020.
7) Toolkit for delivering the 5A's and 5R's brief tobacco interventions in primary care, World Health Organization, Geneva, 2014.
8) Treating Tobacco Use and Dependence : 2008 Update, U.S. Department of Health and Human Services, Rockville, 2008.
9) 国立大学法人千葉大学総合安全衛生管理機構 2020年度年報. 2021.
10) 遠藤里佳, ほか : 千葉大病院における禁煙支援外来の特徴. 日本呼吸ケア・リハビリテーション学会誌 28 (Suppl) : 194s, 2018.
11) 日本禁煙学会 : 禁煙治療に保険が使える医療機関情報最新版. [http://www.nosmoke55.jp/nicotine/clinic.html] (2022年4月閲覧)
P.346 掲載の参考文献
1) O'Donnell DE, et al : Advances in the Evaluation of Respiratory Pathophysiology during Exercise in Chronic Lung Diseases. Front Physiol 8 : 82, 2017.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease : a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med 93 : 391-398, 1980.
3) Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet 1 : 681-686, 1981.
3) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2020 Report, GOLD, 2020. [https://goldcopd.org/]
4) 日本呼吸ケア・リハビリテーション学会, ほか : 呼吸リハビリテーションに関するステートメント. 日本呼吸ケア・リハビリテーション学会誌 27 : 95-114, 2018.
5) Long-Term Oxygen Treatment Trial Research Group ; Albert RK, et al : A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation. N Engl J Med 375 : 1617-1627, 2016.
6) McCarthy B, et al : Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev (2) : CD003793, 2015.
6) Bradley JM, O'Neill B : Short-term ambulatory oxygen for chronic obstructive pulmonary disease. Cochrane Database Syst Rev (4) : CD004356, 2005.
7) Lacasse Y, et al : This Cochrane Review is closed : deciding what constitutes enough research and where next for pulmonary rehabilitation in COPD. Cochrane Database Syst Rev (11) : ED000107, 2015.
7) Somfay A, et al : Dose-response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients. Eur Respir J 18 : 77-84, 2001.
8) Moore RP, et al : A randomised trial of domiciliary, ambulatory oxygen in patients with COPD and dyspnoea but without resting hypoxaemia. Thorax 66 : 32-37, 2011.
8) Puhan MA, et al : Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 12 : CD005305, 2016.
9) Nonoyama ML, et al : Effect of oxygen on health quality of life in patients with chronic obstructive pulmonary disease with transient exertional hypoxemia. Am J Respir Crit Care Med 176 : 343-349, 2007.
9) Wageck B, et al : Characteristics of Pulmonary Rehabilitation Programs Following an Exacerbation of Chronic Obstructive Pulmonary Disease : A SYSTEMATIC REVIEW. J Cardiopulm Rehabil Prev 41 : 78-87, 2021.
10) Fletcher EC, et al : Nocturnal oxyhemoglobin desaturation in COPD patients with arterial oxygen tensions above 60 mm Hg. Chest 92 : 604-608, 1987.
10) Lindenauer PK, et al : Association Between Initiation of Pulmonary Rehabilitation After Hospitalization for COPD and 1-Year Survival Among Medicare Beneficiaries. JAMA 323 : 1813-1823, 2020.
11) 在宅呼吸ケア白書COPD (慢性閉塞性肺疾患) 患者アンケート調査疾患別解析 (日本呼吸器学会肺生理専門委員会在宅呼吸ケア白書COPD疾患別解析ワーキンググループ編), 日本呼吸器学会, 2013.
12) Fletcher EC, et al : A double-blind trial of nocturnal supplemental oxygen for sleep desaturation in patients with chronic obstructive pulmonary disease and a daytime PaO2 above 60 mm Hg. Am Rev Respir Dis 145 : 1070-1076, 1992.
13) Holland AE, et al : Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 18 : e12-e29, 2021.
14) Lacasse Y, et al : Randomized Trial of Nocturnal Oxygen in Chronic Obstructive Pulmonary Disease. N Engl J Med 383 : 1129-1138, 2020.
14) Cox NS, et al : Telerehabilitation for chronic respiratory disease. Cochrane Database Syst Rev 1 : CD013040, 2021.
15) Hansen H, et al : Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD : a randomised multicentre trial. Thorax 75 : 413-421, 2020.
15) Struik FM, et al : Nocturnal noninvasive positive pressure ventilation in stable COPD : a systematic review and individual patient data meta-analysis. Respir Med 108 : 329-337, 2014.
16) Celli BR, et al : Standards for the diagnosis and treatment of patients with COPD : a summary of the ATS/ERS position paper. Eur Respir J 23 : 932-946, 2004.
17) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第4版] (日本呼吸器学会COPDガイドライン第4版作成委員会編), 日本呼吸器学会, 2013.
19) NPPV (非侵襲的陽圧換気療法) ガイドライン [改訂第2版] (日本呼吸器学会NPPVガイドライン作成委員会編), 南江堂, 2015.
20) Struik FM, et al : Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2013 (6) : CD002878, 2013.
22) Murphy PB, et al : Effect of Home Noninvasive Ventilation With Oxygen Therapy vs Oxygen Therapy Alone on Hospital Readmission or Death After an Acute COPD Exacerbation : A Randomized Clinical Trial. JAMA 317 : 2177-2186, 2017.
23) Macrea M, et al : Long-Term Noninvasive Ventilation in Chronic Stable Hypercapnic Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 202 : e74-e87, 2020.
24) Ergan B, et al : European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD. Eur Respir J 54 : 1901003, 2019.
25) 立川良, ほか : 慢性期COPD に対する非侵襲的陽圧換気 (NPPV) 療法の実態調査. 日本呼吸ケア・リハビリテーション学会誌 25 : 389-394, 2015.
P.354 掲載の参考文献
1) 在宅呼吸ケア白書 2010 (日本呼吸器学会肺生理専門委員会在宅呼吸ケア白書ワーキンググループ編), 日本呼吸器学会, 2010.
P.361 掲載の参考文献
1) 吉川雅則, 木村弘 : COPD : 診断と治療の進歩. 合併症 (全身併存症). 栄養障害. 日本内科学会雑誌 101 : 1562-1570, 2012.
3) Chen YW, et al : Prevalence and Risk Factors for Osteoporosis in Individuals With COPD : A Systematic Review and Meta-analysis. Chest 156 : 1092-1110, 2019.
4) Maltais F, et al : An official American Thoracic Society/European Respiratory Society statement : update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189 : e15-62, 2014.
6) Hwang JA, et al : Clinical Implications of Sarcopenia on Decreased Bone Density in Men With COPD. Chest 151 : 1018-1027, 2017.
7) Keranis E, et al : Impact of dietary shift to higher-antioxidant foods in COPD : a randomised trial. Eur Respir J 36 : 774-780, 2010.
8) Weekes CE, et al : Dietary counselling and food fortification in stable COPD : a randomised trial. Thorax 64 : 326-331, 2009.
P.367 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) Ofir D, et al : Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177 : 622-629, 2008.
3) O'Donnell DE, et al : Evaluation of acute bronchodilator reversibility in patients with symptoms of GOLD stage I COPD. Thorax 64 : 216-223, 2009.
4) Sukisaki T, et al : Single dose of inhaled procaterol has a prolonged effect on exercise performance of patients with COPD. Physiother Theory Pract 24 : 255-263, 2008.
5) O'Donnell DE, et al : Sensory-mechanical relationships during high-intensity, constant-work-rate exercise in COPD. J Appl Physiol (1985) 101 : 1025-1035, 2006.
6) O'Donnell DE, et al : Spirometric correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160 : 542-549, 1999.
7) Fujimoto K, et al : Effects of bronchodilators on dynamic hyperinflation following hyperventilation in patients with COPD. Respirology 12 : 93-99, 2007.
8) Kitaguchi Y, et al : Additive efficacy of short-acting bronchodilators on dynamic hyperinflation and exercise tolerance in stable COPD patients treated with long-acting bronchodilators. Respir Med 107 : 394-400, 2013.
9) 佐藤英夫, ほか : 慢性閉塞性肺疾患の日常生活動作の息切れとQOL に対するプロカテロールの効果. 日本呼吸器学会雑誌 47 : 772-780, 2009.
10) 辻村康彦, ほか : 短時間作用性β2刺激薬によるアシストユースがCOPD患者の身体活動量に及ぼす影響. 日本呼吸ケア・リハビリテーション学会誌 27 : 48-53, 2017.
11) Tsujimura Y, et al : Effect of pulmonary rehabilitation with assistive use of short-acting β2 agonist in COPD patients using long-acting bronchodilators. Physiother Theory Pract 37 : 719-728, 2021.
12) Connors AF, et al : Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments). Am J Respir Crit Care Med 154 : 959-967, 1996.
15) Putcha N, Wise RA : Medication Regimens for Managing COPD Exacerbations. Respir Care 63 : 773-782, 2018.
P.373 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
3) Koarai A, Ichinose M : Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 67 : 460-466, 2018.
4) Brown SM, et al : A role for M2 and M3 muscarinic receptors in the contraction of rat and human small airways. Eur J Pharmacol 702 : 109-115, 2013.
5) Kistemaker LEM, Gosens R : Acetylcholine beyond bronchoconstriction : roles in inflammation and remodeling. Trends Pharmacol Sci 36 : 164-171, 2015.
6) Donohue JF, et al : A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest 122 : 47-55, 2002.
7) Kerwin E, et al : Efficacy and safety of NVA237 versus placebo and tiotropium in patients with COPD : the GLOW2 study. Eur Respir J 40 : 1106-1114, 2012.
8) Beier J, et al : Efficacy and safety of aclidinium bromide compared with placebo and tiotropium in patients with moderate-to-severe chronic obstructive pulmonary disease : results from a 6-week, randomized, controlled Phase IIIb study. COPD 10 : 511-522, 2013.
9) Feldman G, et al : A randomized, blinded study to evaluate the efficacy and safety of umeclidinium 62.5 μg compared with tiotropium 18 μg in patients with COPD. Int J Chron Obstruct Pulmon Dis 11 : 719-730, 2016.
10) Suzuki Y, et al : Treatment efficacy of LAMA versus placebo for stable chronic obstructive pulmonary disease : A systematic review and meta-analysis. Respir Investig 60 : 108-118, 2022.
12) Decramer M, et al : Effect of tiotropium on outcomes in patients with moderate chronic obstructive pulmonary disease (UPLIFT) : a prespecified subgroup analysis of a randomised controlled trial. Lancet 374 : 1171-1178, 2009.
13) Koarai A, et al : Treatment with LABA versus LAMA for stable COPD : a systematic review and meta-analysis. BMC Pulm Med 20 : 111, 2020.
14) Singh S, et al : Mortality associated with tiotropium mist inhaler in patients with chronic obstructive pulmonary disease : systematic review and meta-analysis of randomised controlled trials. BMJ 342 : d3215, 2011.
15) Wise RA, et al : Tiotropium Respimat inhaler and the risk of death in COPD. N Engl J Med 369 : 1491-1501, 2013.
P.379 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) 伊藤理 : 気道平滑筋の収縮機序と喘息およびCOPD治療における気管支拡張薬の役割. 現代医学 68 : 111-116, 2021.
3) 久米裕昭 : 喘息の病態最新のトピックス喘息と気道平滑筋. 日本胸部臨床 66 : S51-S60, 2007.
4) 藤本圭作 : β2刺激薬-LABA・β2貼付薬など-. 日本胸部臨床 63 : 134-143, 2004.
5) 牧野栄一 : ホクナリンテープの開発. ファルマシア 37 : 406-408, 2001.
6) 秋山真親, 山内広平 : 最近のCOPDに対する大規模薬剤介入試験. 綜合臨牀 60 : 525-529, 2011.
7) 内田章文, ほか : 新しい治療薬の位置付けと使い方. 日本呼吸器学会誌 3 : 358-365, 2014.
8) 末吉元, ほか : COPDの新治療 : 長時間作用性β2刺激薬インダカテロール. 新薬と臨床 60 : 16-29, 2011.
9) Koarai A, et al : Treatment with LABA versus LAMA for stable COPD : a systematic review and meta-analysis. BMC Pulm Med 20 : 111, 2020.
P.385 掲載の参考文献
1) 桑平一郎 : 安定期の管理薬物療法ICS (吸入ステロイド薬). 呼吸器疾患診断治療アプローチ 5. COPD (三嶋理晃総編集, 金子猛専門編集), p185-194, 中山書店, 2019.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p72, p85, p105, 日本呼吸器学会, 2018.
3) Tashkin DP, Strange C : Inhaled corticosteroids for chronic obstructive pulmonary disease : what is their role in therapy? Int J Chron Obstruct Pulmon Dis 13 : 2587-2601, 2018.
4) Barnes PJ : Inhaled corticosteroids in COPD : a controversy. Respiration 80 : 89-95, 2010.
5) Barnes PJ : Inhaled Corticosteroids. Pharmaceuticals (Basel) 3 : 514-540, 2010.
6) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, GOLD, 2021.
7) Suissa S, et al : Triple inhaler versus dual bronchodilator therapy in COPD : Real-world effectiveness on mortality. COPD 19 : 1-9, 2022.
8) Martinez FJ, et al : Reduced All-Cause Mortality in the ETHOS Trial of Budesonide/Glycopyrrolate/Formoterol for Chronic Obstructive Pulmonary Disease. A Randomized, Double-Blind, Multicenter, Parallel-Group Study. Am J Respir Crit Care Med 203 : 553-564, 2021.
9) Bourbeau J, et al : Benefit/Risk Profile of Single-Inhaler Triple Therapy in COPD. Int J Chron Obstruct Pulmon Dis 16 : 499-517, 2021.
10) Chalmers JD, et al : Withdrawal of inhaled corticosteroids in COPD : a European Respiratory Society guideline. Eur Respir J 55 : 2000351, 2020.
12) Muro S, et al : Efficacy of budesonide/glycopyrronium/formoterol metered dose inhaler in patients with COPD : post-hoc analysis from the KRONOS study excluding patients with airway reversibility and high eosinophil counts. Respir Res 22 : 187, 2021.
13) Agusti A, et al : Inhaled corticosteroids in COPD : friend or foe? Eur Respir J 52 : 1801219, 2018.
14) Izquierdo JL, et al : The dose of inhaled corticosteroids in patients with COPD : when less is better. Int J Chron Obstruct Pulmon Dis 13 : 3539-3547, 2018.
15) 西川正憲 : 教育・指導, 病診連携吸入療法管理・支援 (指導). 呼吸器疾患診断治療アプローチ 5. COPD (三嶋理晃総編集, 金子猛専門編集), p328-334, 中山書店, 2019.
P.390 掲載の参考文献
1) Cazzola M, et al : Pharmacological characterisation of the interaction between glycopyrronium bromide and indacaterol fumarate in human isolated bronchi, small airways and bronchial epithelial cells. Respir Res 17 : 70, 2016.
2) Bateman ED, et al : Dual bronchodilation with QVA149 versus single bronchodilator therapy : the SHINE study. Eur Respir J 42 : 1484-1494, 2013.
3) Mahler DA, et al : Dual bronchodilation with QVA149 reduces patient-reported dyspnoea in COPD : the BLAZE study. Eur Respir J 43 : 1599-1609, 2014.
5) Donohue JF, et al : Efficacy and safety of once-daily umeclidinium/vilanterol 62.5/25 mcg in COPD. Respir Med 107 : 1538-1546, 2013.
6) Beeh KM, et al : The 24-h lung-function profile of once-daily tiotropium and olodaterol fixed-dose combination in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 32 : 53-59, 2015.
7) Buhl R, et al : Tiotropium and olodaterol fixed-dose combination versus mono-components in COPD (GOLD 2-4). Eur Respir J 45 : 969-979, 2015.
8) Calverley PMA, et al : Tiotropium and olodaterol in the prevention of chronic obstructive pulmonary disease exacerbations (DYNAGITO) : a double-blind, randomised, parallel-group, active-controlled trial. Lancet Respir Med 6 : 337-344, 2018.
9) Lipworth BJ, et al : Improved lung function and patient-reported outcomes with co-suspension delivery technology glycopyrrolate/formoterol fumarate metered dose inhaler in COPD : a randomized Phase III study conducted in Asia, Europe, and the USA. Int J Chron Obstruct Pulmon Dis 13 : 2969-2984, 2018.
10) Feldman GJ, et al : Comparative Efficacy of Once-Daily Umeclidinium/Vilanterol and Tiotropium/Olodaterol Therapy in Symptomatic Chronic Obstructive Pulmonary Disease : A Randomized Study. Adv Ther 34 : 2518-2533, 2017.
11) Kerwin E, et al : Dual Bronchodilation with Indacaterol Maleate/Glycopyrronium Bromide Compared with Umeclidinium Bromide/Vilanterol in Patients with Moderate-to-Severe COPD : Results from Two Randomized, Controlled, Cross-over Studies. Lung 195 : 739-747, 2017.
12) Maltais F, et al : A Randomized, Double-Blind, Double-Dummy Study of Glycopyrrolate/Formoterol Fumarate Metered Dose Inhaler Relative to Umeclidinium/Vilanterol Dry Powder Inhaler in COPD. Adv Ther 36 : 2434-2449, 2019.
13) Rogliani P, et al : Efficacy and cardiovascular safety profile of dual bronchodilation therapy in chronic obstructive pulmonary disease : A bidimensional comparative analysis across fixed-dose combinations. Pulm Pharmacol Ther 59 : 101841, 2019.
14) Muraki M, et al : A randomized controlled trial of long-acting muscarinic antagonist and long-acting β2 agonist fixed-dose combinations in patients with chronic obstructive pulmonary disease. BMC Pulm Med 21 : 26, 2021.
P.398 掲載の参考文献
1) Global Initiative for Chronic Obstructive Lung Disease (GOLD) : Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, 2022 Report, GOLD, 2022.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
3) Ferguson GT, et al : Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with cosuspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS) : a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med 6 : 747-758, 2018.
4) Lipson DA, et al : Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med 378 : 1671-1680, 2018.
5) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
6) Chapman KR, et al : Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET) : A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med 198 : 329-339, 2018.
8) Sato M, et al : Impact of mild exacerbation on COPD symptoms in a Japanese cohort. Int J Chron Obstruct Pulmon Dis 11 : 1269-1278, 2016.
9) Suzuki M, et al : Clinical features and determinants of COPD exacerbation in the Hokkaido COPD cohort study. Eur Respir J 43 : 1289-1297, 2014.
10) Tamada T, et al : Biomarker-based detection of asthma-COPD overlap syndrome in COPD populations. Int J Chron Obstruct Pulmon Dis 10 : 2169-2176, 2015.
12) Suissa S, et al : Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 68 : 1029-1036, 2013.
13) 喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き 2018 (日本呼吸器学会喘息とCOPDのオーバーラップ (Asthma and COPD Overlap : ACO) 診断と治療の手引き作成委員会編), 日本呼吸器学会, 2017.
14) Tamada T, et al : Coexisting COPD in elderly asthma with fixed airflow limitation : Assessment by DLco% predicted and HRCT. J Asthma 54 : 606-615, 2017.
15) Zider AD, et al : Reduced COPD Exacerbation Risk Correlates With Improved FEV1 : A Meta-Regression Analysis. Chest 152 : 494-501, 2017.
P.404 掲載の参考文献
1) Pappas G, et al : Insights into infectious disease in the era of Hippocrates. Int J Infect Dis 12 : 347-350, 2008.
2) Reichert TA, et al : The Japanese Experience with Vaccinating Schoolchildren against Influenza. N Engl J Med 344 : 889-896, 2001.
4) Kopsaftis Z, et al : Influenza vaccine for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 6 : CD002733, 2018.
5) Bekkat-Berkani R, et al : Seasonal influenza vaccination in patients with COPD : a systematic literature review. BMC Pulm Med 17 : 79, 2017.
7) Sando E, et al : Impact of the pediatric 13-valent pneumococcal conjugate vaccine on serotype distribution and clinical characteristics of pneumococcal pneumonia in adults : The Japan Pneumococcal Vaccine Effectiveness Study (J-PAVE). Vaccine 37 : 2687-2693, 2019.
9) Suzuki M, et al : Serotype-specific effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumococcal pneumonia in adults aged 65 years or older : a multicentre, prospective, test-negative design study. Lancet Infect Dis 17 : 313-321, 2017.
10) Lawrence H, et al : Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults : A case-control test-negative design study. PLoS Med 17 : e1003326, 2020.
12) Walters JAE, et al : Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 1 : CD001390, 2017.
13) Schembri S, et al : Influenza but not pneumococcal vaccination protects against all-cause mortality in patients with COPD. Thorax 64 : 567-572, 2009.
14) Ignatova GL, et al : Comparative effectiveness of pneumococcal vaccination with PPV23 and PCV13 in COPD patients over a 5-year follow-up cohort study. Sci Rep 11 : 15948, 2021.
15) Furumoto A, et al : Additive effect of pneumococcal vaccine and influenza vaccine on acute exacerbation in patients with chronic lung disease. Vaccine 26 : 4284-4289, 2008.
P.410 掲載の参考文献
1) Polack FP, et al : Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 383 : 2603-2615, 2020.
2) Baden LR, et al : Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384 : 403-416, 2021.
3) Voysey M, et al : Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2 : an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397 : 99-111, 2021.
4) Dagan N, et al : BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med 384 : 1412-1423, 2021.
5) Uwamino Y, et al : Young age, female sex, and presence of systemic adverse reactions are associated with high post-vaccination antibody titer after two doses of BNT162b2 mRNA SARS-CoV-2 vaccination : An observational study of 646 Japanese healthcare workers and university staff. Vaccine 40 : 1019-1025, 2022.
7) Chemaitelly H, et al : Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N Engl J Med 385 : e83, 2021.
8) Goldberg Y, et al : Waning Immunity after the BNT162b2 Vaccine in Israel. N Engl J Med 385 : e85, 2021.
9) 国立感染症研究所 : 新型コロナワクチンの有効性を検討した症例対照研究の暫定報告 (第三報), 2022年2月15日. [https://www.niid.go.jp/niid/ja/2019-ncov/2484-idsc/10966-covid19-71.html]
10) Uwamino Y, et al : The effect of the E484K mutation of SARS-CoV-2 on the neutralizing activity of antibodies from BNT162b2 vaccinated individuals. Vaccine 40 : 1928-1931, 2022.
11) Accorsi EK, et al : Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 327 : 639-651, 2022.
12) Debes AK, et al : Association of Vaccine Type and Prior SARS-CoV-2 Infection With Symptoms and Antibody Measurements Following Vaccination Among Health Care Workers. JAMA Intern Med 181 : 1660-1662, 2021.
13) Tani N, et al : Relation of fever intensity and antipyretic use with specific antibody response after two doses of the BNT162b2 mRNA vaccine. Vaccine 40 : 2062-2067, 2022.
14) Gerayeli FV, et al : COPD and the risk of poor outcomes in COVID-19 : A systematic review and metaanalysis. EClinicalMedicine 33 : 100789, 2021.
15) Puebla Neira DA, et al : Outcomes of Patients with COPD Hospitalized for Coronavirus Disease 2019. Chronic Obstr Pulm Dis 8 : 517-527, 2021.

VII 喘息の治療と管理

P.419 掲載の参考文献
1) Takaku Y, et al : Changes in airway inflammation and hyperresponsiveness after inhaled corticosteroid cessation in allergic asthma. Int Arch Allergy Immunol 152 (Suppl 1) : 41-46, 2010.
2) アレルゲン免疫療法の手引き (「アレルゲン免疫療法の手引き 」作成委員会編), 日本アレルギー学会, 2022.
3) Nagata M, et al : Effect of rush immunotherapy in house-dust-mite (HDM) -sensitive adult bronchial asthma : changes in in vivo and in vitro responses to HDM. Intern Med 32 : 702-709, 1993.
4) Shamji MH, et al : Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol 148 : 1061-1071, 2021.
5) Nakagome K, Nagata M : Role of allergen immunotherapy in asthma treatment and asthma development. Allergies 1 : 33-45, 2021.
6) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
7) Abramson MJ, et al : Is allergen immunotherapy effective in asthma? A meta-analysis of randomized controlled trials. Am J Respir Crit Care Med 151 : 969-974, 1995.
8) Fritzsching B, et al : Long-term real-world effectiveness of allergy immunotherapy in patients with allergic rhinitis and asthma : Results from the REACT study, a retrospective cohort study. Lancet Reg Health Eur 13 : 100275, 2022.
9) Uchida T, et al : Clinical evaluation of rush immunotherapy using house dust mite allergen in Japanese asthmatics. Asia Pac Allergy 11 : e32, 2021.
10) Virchow JC, et al : Efficacy of a House Dust Mite Sublingual Allergen Immunotherapy Tablet in Adults With Allergic Asthma : A Randomized Clinical Trial. JAMA 315 : 1715-1725, 2016.
11) Baba SM, et al : Effectiveness of Sublingual Immunotherapy in the Treatment of HDM-Induced Nasobronchial Allergies : A 3-Year Randomized Case-Control Study From Kashmir. Front Immunol 12 : 723814, 2021.
12) Stelmach I, et al : Comparison of the long-term efficacy of 3- and 5-year house dust mite allergen immunotherapy. Ann Allergy Asthma Immunol 109 : 274-278, 2012.
13) Garcia-Robaina JC, et al : Successful management of mite-allergic asthma with modified extracts of Dermatophagoides pteronyssinus and Dermatophagoides farinae in a double-blind, placebo-controlled study. J Allergy Clin Immunol 118 : 1026-1032, 2006.
14) Kikkawa S, et al : Sublingual Immunotherapy for Japanese Cedar Pollinosis Attenuates Asthma Exacerbation. Allergy Asthma Immunol Res 11 : 438-440, 2019.
P.426 掲載の参考文献
1) Zhang L, et al : Inhaled corticosteroids in children with persistent asthma : effects on growth. Evid Based Child Health 9 : 829-930, 2014.
2) Sullivan PW, et al : Oral corticosteroid exposure and adverse effects in asthmatic patients. J Allergy Clin Immunol 141 : 110-116.e7, 2018.
3) Price DB, et al : Adverse outcomes from initiation of systemic corticosteroids for asthma : long-term observational study. J Asthma Allergy 11 : 193-204, 2018.
4) Matsunaga K, et al : Association of low-dosage systemic corticosteroid use with disease burden in asthma. NPJ Prim Care Respir Med 30 : 35, 2020.
5) Ito K, et al : The impact of budesonide inhalation suspension for asthma hospitalization : In terms of length of stay, recovery time from symptoms, and hospitalization costs. Allergol Int 69 : 571-577, 2020.
6) Szefler SJ, et al : Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 109 : 410-418, 2002.
7) Chalmers GW, et al : Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 57 : 226-230, 2002.
8) Nelson HS, et al : Enhanced synergy between fluticasone propionate and salmeterol inhaled from a single inhaler versus separate inhalers. J Allergy Clin Immunol 112 : 29-36, 2003.
9) Patel M, et al ; SMART Study Group : Efficacy and safety of maintenance and reliever combination budesonide-formoterol inhaler in patients with asthma at risk of severe exacerbations : a randomised controlled trial. Lancet Respir Med 1 : 32-42, 2013.
10) Woodcock A, et al : Effectiveness of fluticasone furoate plus vilanterol on asthma control in clinical practice : an open-label, parallel group, randomised controlled trial. Lancet 390 : 2247-2255, 2017.
11) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
12) Kerstjens HA, et al : Tiotropium improves lung function in patients with severe uncontrolled asthma : a randomized controlled trial. J Allergy Clin Immunol 128 : 308-314, 2011.
15) 日本喘息学会 : 喘息診療実践ガイドライン 2021 (相良博典, 東田有智監), 協和企画, 2021.
P.431 掲載の参考文献
1) Eickelberg O, et al : Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem 274 : 1005-1010, 1999.
2) Nelson HS, et al : The Salmeterol Multicenter Asthma Research Trial : a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 129 : 15-26, 2006.
3) Jaeschke R, et al : The safety of long-acting beta-agonists among patients with asthma using inhaled corticosteroids : systematic review and metaanalysis. Am J Respir Crit Care Med 178 : 1009-1016, 2008.
4) Tamura G, et al : Effect of transdermal tulobuterol added to inhaled corticosteroids in asthma patients. Allergol Int 54 : 615-620, 2005.
5) Nelson HS, et al : Enhanced synergy between fluticasone propionate and salmeterol inhaled from a single inhaler versus separate inhalers. J Allergy Clin Immunol 112 : 29-36, 2003.
6) Barnes PJ : Scientific rationale for inhaled combination therapy with long-acting β2-agonists and corticosteroids. Eur Respir J 19 : 182-191, 2002.
7) Patel M, et al : Efficacy and safety of maintenance and reliever combination budesonide-formoterol inhaler in patients with asthma at risk of severe exacerbations : a randomised controlled trial. Lancet Respir Med 1 : 32-42, 2013.
8) Woodcock A, et al : Effectiveness of fluticasone furoate plus vilanterol on asthma control in clinical practice : an open-label, parallel group, randomised controlled trial. Lancet 390 : 2247-2255, 2017.
9) Reddel HK, et al : Effect of different asthma treatments on risk of cold-related exacerbations. Eur Respir J 38 : 584-593, 2011.
10) Hardy J, et al : Budesonide-formoterol reliever therapy versus maintenance budesonide plus terbutaline reliever therapy in adults with mild to moderate asthma (PRACTICAL) : a 52-week, open-label, multicentre, superiority, randomised controlled trial. Lancet 394 : 919-928, 2019.
11) Kerstjens HA, et al : Tiotropium or salmeterol as add-on therapy to inhaled corticosteroids for patients with moderate symptomatic asthma : two replicate, double-blind, placebo-controlled, parallel-group, active-comparator, randomised trials. Lancet Respir Med 3 : 367-376, 2015.
13) Yoshida M, et al : Effects of tiotropium on lung function in severe asthmatics with or without emphysematous changes. Pulm Pharmacol Ther 26 : 159-166, 2013.
14) Tamaoki J, et al : Leukotriene antagonist prevents exacerbation of asthma during reduction of high-dose inhaled corticosteroid. The Tokyo Joshi-Idai Asthma Research Group. Am J Respir Crit Care Med 155 : 1235-1240, 1997.
15) Chauhan BF, Ducharme FM : Addition to inhaled corticosteroids of long-acting beta2-agonists versus anti-leukotrienes for chronic asthma. Cochrane Database Syst Rev (1) : CD003137, 2014.
P.438 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
2) Global Initiative for Asthma : Global Strategy for Asthma Management and Preven, GINA, 2021.
3) 日本喘息学会 : 喘息診療実践ガイドライン 2021 (相良博典, 東田有智監), 協和企画, 2021.
4) Ejiofor S, Turner AM : Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med 7 : 17-34, 2013.
5) Haddad EB, et al : Synergy between tumor necrosis factor alpha and interleukin 1β in inducing transcriptional down-regulation of muscarinic M2 receptor gene expression. Involvement of protein kinase A and ceramide pathways. J Biol Chem 271 : 32586-32592, 1996.
6) Rousell J, et al : Regulation of m2 muscarinic receptor gene expression by platelet-derived growth factor : involvement of extracellular signal-regulated protein kinases in the down-regulation process. Mol Pharmacol 52 : 966-973, 1997.
7) Peters SP, et al : Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med 363 : 1715-1726, 2010.
9) Calzetta L, et al : Pharmacological interaction between LABAs and LAMAs in the airways : optimizing synergy. Eur J Pharmacol 761 : 168-173, 2015.
10) Okayama Y, et al : Impact of airflow obstruction on long-term mortality in patients with asthma in Japan. Allergol Int 68 : 462-469, 2019.
13) Kim LHY, et al : Triple vs Dual Inhaler Therapy and Asthma Outcomes in Moderate to Severe Asthma : A Systematic Review and Meta-analysis. JAMA 325 : 2466-2479, 2021.
14) Rogliani P, et al : Triple therapy in uncontrolled asthma : a network meta-analysis of phase III studies. Eur Respir J 58 : 2004233, 2021.
15) Agusti A, et al : Single inhaler triple therapy (SITT) in asthma : Systematic review and practice implications. Allergy 77 : 1105-1113, 2022.
P.443 掲載の参考文献
1) Brusselle GG, et al : Biologic Therapies for Severe Asthma. N Engl J Med 386 : 157-171, 2022.
2) Humbert M, et al : Omalizumab in asthma : an update on recent developments. J Allergy Clin Immunol Pract 2 : 525-536.e1, 2014.
4) Hanania NA, et al : Exploring the effects of omalizumab in allergic asthma : an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187 : 804-811, 2013.
5) Ohta K, et al : Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent asthma. Respirology 14 : 1156-1165, 2009.
6) Alhossan A, et al : "Real-life" Effectiveness Studies of Omalizumab in Adult Patients with Severe Allergic Asthma : Meta-analysis. J Allergy Clin Immunol Pract 5 : 1362-1370.e2, 2017.
7) Sanderson CJ : Eosinophil differentiation factor (interleukin-5). Immunol Ser 49 : 231-256, 1990.
8) Humbles AA, et al : A critical role for eosinophils in allergic airways remodeling. Science 305 : 1776-1779, 2004.
9) Jatakanon A, et al : Changes in sputum eosinophils predict loss of asthma control. Am J Respir Crit Care Med 161 : 64-72, 2000.
10) Gnanakumaran G, et al : Technology evaluation : mepolizumab, GlaxoSmithKline. Curr Opin Mol Ther 5 : 321-325, 2003.
16) Chupp GL, et al : Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA) : a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med 5 : 390-400, 2017.
17) FitzGerald JM, et al : Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA) : a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388 : 2128-2141, 2016.
18) Bleecker ER, et al : Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO) : a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388 : 2115-2127, 2016.
20) Gandhi NA, et al : Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol 13 : 425-437, 2017.
22) Rabe KF, et al : Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med 378 : 2475-2485, 2018.
23) Kabata H, et al : Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol 13 : 626-636, 2020.
25) Menzies-Gow A, et al : Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med 384 : 1800-1809, 2021.
26) Wechsler ME, et al : Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE) : a randomised, placebo-controlled, phase 3 study. Lancet Respir Med, 2022. (DOI : 10.1016/S2213-2600 (21) 00537-3)
27) Wechsler ME, et al : Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N Engl J Med 385 : 1656-1668, 2021.
P.451 掲載の参考文献
1) Ishizaka K, et al : Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity wth gamma-E-globulin antibody. J Immunol 97 : 840-853, 1966.
2) Schulman ES : Development of a monoclonal anti-immunoglobulin E antibody (omalizumab) for the treatment of allergic respiratory disorders. Am J Respir Crit Care Med 164 : S6-11, 2001.
3) Presta L, et al : The binding site on human immunoglobulin E for its high affinity receptor. J Biol Chem 269 : 26368-26373, 1994.
4) Chan MA, et al : Omalizumab may decrease IgE synthesis by targeting membrane IgE+ human B cells. Clin Transl Allergy 3 : 29, 2013.
5) Normansell R, et al : Omalizumab for asthma in adults and children. Cochrane Database Syst Rev (1) : CD003559, 2014.
6) Asano K, et al : Real-life safety and efficacy of omalizumab in Japanese patients with severe allergic asthma who were subjected to dosing table revision or expansion : A post-marketing surveillance. Pulm Pharmacol Ther 64 : 101950, 2020.
7) Casale TB, et al : Omalizumab Effectiveness by Biomarker Status in Patients with Asthma : Evidence From PROSPERO, A Prospective Real-World Study. J Allergy Clin Immunol Pract 7 : 156-164.e1, 2019.
8) Hanania NA, et al : Exploring the effects of omalizumab in allergic asthma : an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187 : 804-811, 2013.
9) Lommatzsch M, et al : Against all odds : anti-IgE for intrinsic asthma? Thorax 69 : 94-96, 2014.
10) Teach SJ, et al : Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 136 : 1476-1485, 2015.
11) Ledford D, et al : A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. J Allergy Clin Immunol 140 : 162-169.e2, 2017.
12) Vennera MDC, et al : Duration of the efficacy of omalizumab after treatment discontinuation in 'real life' severe asthma. Thorax 73 : 782-784, 2018.
13) Wark P, et al : Omalizumab Is an Effective Intervention in Severe Asthma with Fungal Sensitization. J Allergy Clin Immunol Pract 8 : 3428-3433.e1, 2020.
14) Namazy JA, et al : Pregnancy outcomes in the omalizumab pregnancy registry and a disease-matched comparator cohort. J Allergy Clin Immunol 145 : 528-536.e1, 2020.
15) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
P.456 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
3) Pavord ID, et al : From DREAM to REALITI-A and beyond : Mepolizumab for the treatment of eosinophil-driven diseases. Allergy 77 : 778-797, 2022.
7) Chupp GL, et al : Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA) : a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med 5 : 390-400, 2017.
8) Khatri S, et al : Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J Allergy Clin Immunol 143 : 1742-1751.e7, 2019.
10) Wechsler ME, et al : Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N Engl J Med 376 : 1921-1932, 2017.
11) Sato H, et al : Efficacy of Mepolizumab Extended Interval Dosing for 2 Asthmatic Patients With Chronic Eosinophilic Pneumonia. J Investig Allergol Clin Immunol 31 : 459-460, 2021.
12) Onitsuka C, et al : Mepolizumab improved airway hyperresponsiveness in a patient with allergic bronchopulmonary aspergillosis. Asian Pac J Allergy Immunol, 2021. (DOI : 10.12932/AP-030521-1125)
13) Harvey ES, et al : Mepolizumab effectiveness and identification of super-responders in severe asthma. Eur Respir J 55 : 1902420, 2020.
14) Kavanagh JE, et al : Real-World Effectiveness and the Characteristics of a "Super-Responder" to Mepolizumab in Severe Eosinophilic Asthma. Chest 158 : 491-500, 2020.
15) Chapman KR, et al : The clinical benefit of mepolizumab replacing omalizumab in uncontrolled severe eosinophilic asthma. Allergy 74 : 1716-1726, 2019.
P.460 掲載の参考文献
1) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
2) Gauvreau GM, et al : Thymic stromal lymphopoietin : its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 24 : 777-792, 2020.
3) Wechsler ME, et al : Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N Engl J Med 376 : 1921-1932, 2017.
5) Bourdin A, et al : Matching-adjusted indirect comparison of benralizumab versus interleukin-5 inhibitors for the treatment of severe asthma : a systematic review. Eur Respir J 52 : 1801393, 2018.
6) FitzGerald JM, et al : Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA) : a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388 : 2128-2141, 2016.
7) Mishra AK, et al : Disseminated herpes zoster following treatment with benralizumab. Clin Respir J 13 : 189-191, 2019.
8) Busse WW, et al : Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma : 1-year results from the BORA phase 3 extension trial. Lancet Respir Med 7 : 46-59, 2019.
9) Izumo T, et al : Effectiveness and safety of benralizumab for severe asthma in clinical practice (J-BEST) : a prospective study. Ann Transl Med 8 : 438, 2020.
10) Izumo T, et al : Rapid effects of benralizumab on severe asthma during surgery for residual tumor after advanced lung squamous cell carcinoma treatment with pembrolizumab. Respir Med Case Rep 26 : 292-295, 2019.
P.466 掲載の参考文献
1) Hammad H, Lambrecht BN : The basic immunology of asthma. Cell 184 : 1469-1485, 2021.
2) Heaney LG, et al : Eosinophilic and Noneosinophilic Asthma : An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest 160 : 814-830, 2021.
3) Global Initiative for Asthma : Global Strategy for Asthma Management and Prevention, Updated 2021. [https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdf] (2022年1月閲覧)
4) Hart TK, et al : Preclinical efficacy and safety of pascolizumab (SB 240683) : a humanized anti+interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 130 : 93-100, 2002.
5) Wenzel S, et al : Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients : results of two phase 2a studies. Lancet 370 : 1422-1431, 2007.
6) Hanania NA, et al : Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II) : replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med 4 : 781-796, 2016.
7) Panettieri RA Jr, et al : Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2) : two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir Med 6 : 511-525, 2018.
8) Wenzel S, et al : Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist : a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388 : 31-44, 2016.
10) Rabe KF, et al : Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N Engl J Med 378 : 2475-2485, 2018.
11) Agache I, et al : Efficacy and safety of treatment with dupilumab for severe asthma : A systematic review of the EAACI guidelines-Recommendations on the use of biologicals in severe asthma. Allergy 75 : 1058-1068, 2020.
12) Tohda Y, et al : Dupilumab efficacy and safety in Japanese patients with uncontrolled, moderate-to-severe asthma in the phase 3 LIBERTY ASTHMA QUEST study. Allergol Int 69 : 578-587, 2020.
13) Wechsler ME, et al : Long-term safety and efficacy of dupilumab in patients with moderate-to-severe asthma (TRAVERSE) : an open-label extension study. Lancet Respir Med 10 : 11-25, 2022.
14) Bacharier LB, et al : Dupilumab in Children with Uncontrolled Moderate-to-Severe Asthma. N Engl J Med 385 : 2230-2240, 2021.
15) Boguniewicz M, et al : Dupilumab Improves Asthma and Sinonasal Outcomes in Adults with Moderate to Severe Atopic Dermatitis. J Allergy Clin Immunol Pract 9 : 1212-1223.e6, 2021.
16) Laidlaw TM, et al : Dupilumab improves upper and lower airway disease control in chronic rhinosinusitis with nasal polyps and asthma. Ann Allergy Asthma Immunol 126 : 584-592.e1, 2021.
P.472 掲載の参考文献
1) O'Shea JJ, et al : Cytokine signaling in 2002 : new surprises in the Jak/Stat pathway. Cell 109 (Suppl) : S121-131, 2002.
2) Mitchell PD, et al : Biologics and the lung : TSLP and other epithelial cell-derived cytokines in asthma. Pharmacol Ther 169 : 104-112, 2017.
3) Bartemes KR, et al : Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol 134 : 671-678.e4, 2014.
4) Markovic I, Savvides SN : Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 11 : 1557, 2020.
5) Li Y, et al : Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo : A Potential Biomarker of Severe Refractory Disease. J Immunol 200 : 2253-2262, 2018.
6) Gauvreau GM, et al : Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370 : 2102-2110, 2014.
8) Menzies-Gow A, et al : Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med 384 : 1800-1809, 2021.
9) Diver S, et al : Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperrespon-siveness in patients with moderate-to-severe uncontrolled asthma (CASCADE) : a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 9 : 1299-1312, 2021.
10) Chen Q, et al : Affinity improvement of the fully human anti-TSLP recombinant antibody. Mol Med Rep 21 : 759-767, 2020.
11) Gauvreau GM, et al : Efficacy and Safety of an Inhaled Anti-TSLP Antibody Fragment in Adults with Mild Atopic Asthma. Am J Respir Crit Care Med 201 : A4207, 2020.
P.478 掲載の参考文献
1) Douwes J, et al : Asthma nervosa : old concept, new insights. Eur Respir J 37 : 986-990, 2011.
2) 江花昭一 : 呼吸器心身症の種類と心身相関の考え方 : 本邦における最近の知見. 心身医学 53 : 113-119, 2013.
3) Trueba AF, Ritz T : Stress, asthma, and respiratory infections : pathways involving airway immunology and microbial endocrinology. Brain Behav Immun 29 : 11-27, 2013.
4) Chen W, et al : ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med 187 : 584-588, 2013.
5) Zazara DE, et al : A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. J Allergy Clin Immunol 145 : 1641-1654, 2020.
6) Chen W, et al : Neural Regulation of Interactions Between Group 2 Innate Lymphoid Cells and Pulmonary Immune Cells. Front Immunol 11 : 576929, 2020.
7) 丸岡秀一郎 : ストレス・不安・抑うつ. プライマリケアにおける喘息と合併症の管理 (權寧博編), p104-114, 日本医事新報社, 2020.
8) Sastre J, et al : Anxiety, Depression, and Asthma Control : Changes After Standardized Treatment. J Allergy Clin Immunol Pract 6 : 1953-1959, 2018.
9) 「喘息予防・管理ガイドライン 2021」作成委員 : 喘息予防・管理ガイドライン 2021 (日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
10) Tay TR, Hew M : Comorbid "treatable traits" in difficult asthma : Current evidence and clinical evaluation. Allergy 73 : 1369-1382, 2018.
11) 丸岡秀一郎 : 喘息診療における心身医学的診断. 喘息診療への心身医学的アプローチ. アレルギーの臨床 41 (臨時増刊号) : 13-16, 2021.
12) 難治性喘息診断と治療の手引き 2019 (日本呼吸器学会難治性喘息診断と治療の手引き2019作成委員会編), 日本呼吸器学会, 2018.

VIII COPD 病態 up - to - date

P.485 掲載の参考文献
1) Greene CM, et al : α1-Antitrypsin deficiency. Nat Rev Dis Primers 2 : 16051, 2016.
2) Seyama K, et al : A nationwide epidemiological survey of alpha1 -antitrypsin deficiency in Japan. Respir Investig 54 : 201-206, 2016.
3) Seyama K, et al : Siiyama (serine 53 (TCC) to phenylalanine 53 (TTC)). A new alpha 1-antitrypsin-deficient variant with mutation on a predicted conserved residue of the serpin backbone. J Biol Chem 266 : 12627-12632, 1991.
4) American Thoracic Society, European Respiratory Society : American Thoracic Society/European Respiratory Society statement : standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med 168 : 818-900, 2003.
5) α1-アンチトリプシン欠乏症診療の手引き 2021 [第2版] , 厚生労働科学研究費補助金 (難治性疾患政策研究事業) /難治性呼吸器疾患・肺高血圧症に関する調査研究班, 2021.
6) Zamora M : Surgery for patients with Alpha 1 Antitrypsin Deficiency : A review. Am J Surg 218 : 639-647, 2019.
7) Parr DG, et al : Exploring the optimum approach to the use of CT densitometry in a randomised placebo-controlled study of augmentation therapy in alpha 1-antitrypsin deficiency. Respir Res 10 : 75, 2009.
8) Stockley RA, et al : Therapeutic efficacy of α-1 antitrypsin augmentation therapy on the loss of lung tissue : an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respir Res 11 : 136, 2010.
9) Survival and FEV1 decline in individuals with severe deficiency of α1-antitrypsin. The Alpha-1-Antitrypsin Deficiency Registry Study Group. Am J Respir Crit Care Med 158 : 49-59, 1998.
10) Seyama K, et al : Safety and pharmacokinetics of Alpha-1 MP (ProlastinR-C) in Japanese patients with alpha1-antitrypsin (AAT) deficiency. Respir Investig 57 : 89-96, 2019.
11) Nakanishi T, et al : The undiagnosed disease burden associated with alpha-1 antitrypsin deficiency genotypes. Eur Respir J 56 : 2001441, 2020.
12) Chapman KR, et al : Augmentation therapy for α1 antitrypsin deficiency : a meta-analysis. COPD 6 : 177-184, 2009.
13) Schouten IGM, et al : Long-term effect of α1-antitrypsin augmentation therapy on the decline of FEV1 in deficient patients : an analysis of the AIR database. ERJ Open Res 7 : 00194-2021, 2021.
14) Schouten IGM, et al : The Course of AαVal541 as a Proteinase 3 Specific Neo-Epitope after Alpha-1-Antitrypsin Augmentation in Severe Deficient Patients. Int J Mol Sci 22 : 8031, 2021.
15) Greulich T, et al : Protocol for the EARCO Registry : a pan-European observational study in patients with α1-antitrypsin deficiency. ERJ Open Res 6 : 00181-2019, 2020.
P.491 掲載の参考文献
1) Beghe B, et al : COPD, Pulmonary Fibrosis and ILAs in Aging Smokers : The Paradox of Striking Different Responses to the Major Risk Factors. Int J Mol Sci 22 : 9292, 2021.
3) Richeldi L, et al : Idiopathic pulmonary fibrosis. Lancet 389 : 1941-1952, 2017.
4) Salama R, et al : Cellular senescence and its effector programs. Genes Dev 28 : 99-114, 2014.
5) Kuwano K, et al : Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 54 : 397-406, 2016.
6) Rajendrasozhan S, et al : SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177 : 861-870, 2008.
7) Takasaka N, et al : Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 192 : 958-968, 2014.
8) Minagawa S, et al : Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 300 : L391-401, 2011.
9) Romero Y, et al : mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 15 : 1103-1112, 2016.
10) Duckworth A, et al : Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease : a mendelian randomisation study. Lancet Respir Med 9 : 285-294, 2021.
11) Tsakiri KD, et al : Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci U S A 104 : 7552-7557, 2007.
12) Alder JK, et al : Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 105 : 13051-13056, 2008.
13) Hawkins GA, Mora AL : FAM13A, A Fatty Acid Oxidation Switch in Mitochondria. Friend or Foe in Chronic Obstructive Pulmonary Disease Pathogenesis? Am J Respir Cell Mol Biol 56 : 689-691, 2017.
14) Silverman EK : Genetics of COPD. Annu Rev Physiol 82 : 413-431, 2020.
P.495 掲載の参考文献
1) Mojzsis SJ, et al : Evidence for life on Earth before 3, 800 million years ago. Nature 384 : 55-59, 1996.
2) NIH Human Microbiome Portfolio Analysis Team : A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 7 : 31, 2019.
3) Dickson RP, et al : Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio 8 : e02287-16, 2017.
4) Cookson WOCM, et al : New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 16 : 111-120, 2018.
5) Charlson ES, et al : Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184 : 957-963, 2011.
6) Bassis CM, et al : Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 6 : e00037, 2015.
7) Segal LN, et al : Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 1 : 16031, 2016.
8) Dickson RP, et al : Towards an ecology of the lung : new conceptual models of pulmonary microbiology and pneumonia pathogenesis. Lancet Respir Med 2 : 238-246, 2014.
9) Weiss E, et al : Treatment of severe hospital-acquired and ventilator-associated pneumonia : a systematic review of inclusion and judgment criteria used in randomized controlled trials. Crit Care 21 : 162, 2017.
10) Sze MA, et al : The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185 : 1073-1080, 2012.
11) Huang YJ, et al : Understanding the role of the microbiome in chronic obstructive pulmonary disease : principles, challenges, and future directions. Transl Res 179 : 71-83, 2017.
12) Sze MA, et al : Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 192 : 438-445, 2015.
13) Naito K, et al : Bacteriological incidence in pneumonia patients with pulmonary emphysema : a bacterial floral analysis using the 16S ribosomal RNA gene in bronchoalveolar lavage fluid. Int J Chron Obstruct Pulmon Dis 12 : 2111-2120, 2017.
14) Papi A, et al : Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 173 : 1114-1121, 2006.
15) Molyneaux PL, et al : Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188 : 1224-1231, 2013.
P.500 掲載の参考文献
2) Yamaya M, et al : Malnutrition, Airflow Limitation and Severe Emphysema are Risks for Exacerbation of Chronic Obstructive Pulmonary Disease in Japanese Subjects : A Retrospective Single-Center Study. Int J Chron Obstruct Pulmon Dis 15 : 857-868, 2020.
3) Suzuki Y, et al : Treatment efficacy of LAMA versus placebo for stable chronic obstructive pulmonary disease : A systematic review and meta-analysis. Respir Investig 60 : 108-118, 2022.
4) Maia IS, et al : Long-acting muscarinic antagonists vs. long-acting β2 agonists in COPD exacerbations : a systematic review and meta-analysis. J Bras Pneumol 43 : 302-312, 2017.
5) Mammen MJ, et al : Dual LABA/LAMA Therapy versus LABA or LAMA Monotherapy for Chronic Obstructive Pulmonary Disease. A Systematic Review and Meta-analysis in Support of the American Thoracic Society Clinical Practice Guideline. Ann Am Thorac Soc 17 : 1133-1143, 2020.
6) Agusti A, et al : Inhaled corticosteroids in COPD : friend or foe? Eur Respir J 52 : 1801219, 2018.
7) Peng J, et al : High Blood Eosinophil and YKL-40 Levels, as Well as Low CXCL9 Levels, are Associated with Increased Readmission in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 16 : 795-806, 2021.
8) Radicioni G, et al : Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease : an analysis of the SPIROMICS cohort. Lancet Respir Med 9 : 1241-1254, 2021.
9) Huang H, et al : Interleukin-6 is a Strong Predictor of the Frequency of COPD Exacerbation Within 1 Year. Int J Chron Obstruct Pulmon Dis 16 : 2945-2951, 2021.
10) Shibata Y, et al : Elevated serum iron is a potent biomarker for spirometric resistance to cigarette smoke among Japanese males : the Takahata study. PLoS One 8 : e74020, 2013.
11) Sato K, et al : Effect of Iron Deficiency on a Murine Model of Smoke-induced Emphysema. Am J Respir Cell Mol Biol 62 : 588-597, 2020.
12) Sato K, et al : Association between low mean corpuscular hemoglobin and prognosis in patients with exacerbation of chronic obstructive pulmonary disease. Respir Investig 59 : 498-504, 2021.
13) Balasubramanian A, et al : Haemoglobin as a biomarker for clinical outcomes in chronic obstructive pulmonary disease. ERJ Open Res 7 : 00068-2021, 2021.
14) Marvisi M, et al : Red cell distribution width : A new parameter for predicting the risk of exacerbation in COPD patients. Int J Clin Pract 75 : e14468, 2021.
P.505 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), p133, 日本呼吸器学会, 2018.
2) Sapey E, et al : Building toolkits for COPD exacerbations : lessons from the past and present. Thorax 74 : 898-905, 2019.
3) Mallia P, et al : Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186 : 1117-1124, 2012.
4) Mayhew D, et al : Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 73 : 422-430, 2018.
6) Matsumoto K, Inoue H : Viral infections in asthma and COPD. Respir Investig 52 : 92-100, 2014.
7) Sullivan PW, et al : Oral corticosteroid exposure and adverse effects in asthmatic patients. J Allergy Clin Immunol 141 : 110-116.e7, 2018.
8) Bafadhel M, et al : Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease : a randomized placebo-controlled trial. Am J Respir Crit Care Med 186 : 48-55, 2012.
9) Busse WW, et al : Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 364 : 1005-1015, 2011.
10) Heymann PW, et al : Understanding the asthmatic response to an experimental rhinovirus infection : Exploring the effects of blocking IgE. J Allergy Clin Immunol 146 : 545-554, 2020.
11) Pavord ID, et al : Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N Engl J Med 377 : 1613-1629, 2017.
12) Rabe KF, et al : Safety and efficacy of itepekimab in patients with moderate-to-severe COPD : a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med 9 : 1288-1298, 2021.
13) Yamaya M, et al : Macrolide effects on the prevention of COPD exacerbations. Eur Respir J 40 : 485-494, 2012.
14) Bafadhel M, et al : Acute exacerbations of chronic obstructive pulmonary disease : identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med 184 : 662-671, 2011.
15) Ghebre MA, et al : Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J Allergy Clin Immunol 141 : 2027-2036.e12, 2018.
P.512 掲載の参考文献
1) Moons KG, et al : Prognosis and prognostic research : what, why, and how? BMJ 338 : b375, 2009.
2) Adolfsson J, Steineck G : Prognostic and treatment-predictive factors-is there a difference? Prostate Cancer Prostatic Dis 3 : 265-268, 2000.
3) Bellou V, et al : Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease : systematic review and critical appraisal. BMJ 367 : l5358, 2019.
4) Agusti A, et al : Treatable traits : toward precision medicine of chronic airway diseases. Eur Respir J 47 : 410-419, 2016.
5) Anthonisen NR : Prognosis in chronic obstructive pulmonary disease : results from multicenter clinical trials. Am Rev Respir Dis 140 : S95-99, 1989.
6) Oga T, et al : Analysis of the factors related to mortality in chronic obstructive pulmonary disease : role of exercise capacity and health status. Am J Respir Crit Care Med 167 : 544-549, 2003.
7) Vestbo J, et al : Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med 365 : 1184-1192, 2011.
8) Casanova C, et al : Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171 : 591-597, 2005.
11) Landbo C, et al : Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160 : 1856-1861, 1999.
12) Schols AM, et al : Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157 : 1791-1797, 1998.
14) Pinto-Plata VM, et al : The 6-min walk distance : change over time and value as a predictor of survival in severe COPD. Eur Respir J 23 : 28-33, 2004.
15) Vanfleteren LE, et al : Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187 : 728-735, 2013.
18) Mullerova H, et al : Cardiovascular comorbidity in COPD : systematic literature review. Chest 144 : 1163-1178, 2013.
19) Agusti A, et al : Persistent systemic inflammation is associated with poor clinical outcomes in COPD : a novel phenotype. PLoS One 7 : e37483, 2012.
21) Molimard M, et al : Chronic obstructive pulmonary disease exacerbation and inhaler device handling : real-life assessment of 2935 patients. Eur Respir J 49 : 1601794, 2017.
23) Puhan MA, et al : Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease : the updated BODE index and the ADO index. Lancet 374 : 704-711, 2009.
24) Almagro P, et al : Short- and medium-term prognosis in patients hospitalized for COPD exacerbation : The CODEX index. Chest 145 : 972-980, 2014.
25) Celli B, et al : Markers of disease activity in COPD : an 8-year mortality study in the ECLIPSE cohort. Eur Respir J 57 : 2001339, 2021.
P.518 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン [第4版] (日本呼吸器学会COPDガイドライン第4版作成委員会編), 日本呼吸器学会, 2013.
4) Rabe KF, Watz H : Chronic obstructive pulmonary disease. Lancet 389 : 1931-1940, 2017.
6) Lipson DA, et al : Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med 378 : 1671-1680, 2018.
7) Ferguson GT, et al : Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with cosuspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS) : a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med 6 : 747-758, 2018.
8) Rabe KF, et al : Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 383 : 35-48, 2020.
9) Global Initiative for Chronic Obstructive Lung Disease (GOLD). [http://goldcopd.org]
13) Nici L, et al : Pharmacologic Management of Chronic Obstructive Pulmonary Disease. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 201 : e56-e69, 2020.
P.524 掲載の参考文献
1) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 2018 [第5版] (日本呼吸器学会COPDガイドライン第5版作成委員会編), 日本呼吸器学会, 2018.
2) Onishi K, et al : Prevalence of airflow limitation in outpatients with cardiovascular diseases in Japan. Int J Chron Obstruct Pulmon Dis 9 : 563-568, 2014.
6) Barr RG, et al : Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med 362 : 217-227, 2010.
7) 斎藤能彦, ほか ; 日本心不全学会予防委員会 : 血中BNPやNT-proBNP値を用いた心不全診療の留意点について, 日本心不全学会, 2013.
8) Smith BM, et al : Pulmonary hyperinflation and left ventricular mass : the Multi-Ethnic Study of Atherosclerosis COPD Study. Circulation 127 : 1503-1511, 1511e1-6, 2013.
9) Shah SJ, et al : Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction : A Multiorgan Roadmap. Circulation 134 : 73-90, 2016.
10) Simons SO, et al : Chronic obstructive pulmonary disease and atrial fibrillation : an interdisciplinary perspective. Eur Heart J 42 : 532-540, 2021.
12) Sergi G, et al : Pre-frailty and risk of cardiovascular disease in elderly men and women : the Pro.V.A. study. J Am Coll Cardiol 65 : 976-983, 2015.
13) Hamaguchi S, et al : Mode of death in patients with heart failure and reduced vs. preserved ejection fraction : report from the registry of hospitalized heart failure patients. Circ J 76 : 1662-1669, 2012.
P.532 掲載の参考文献
1) Hawkins NM, et al : Heart failure and chronic obstructive pulmonary disease : diagnostic pitfalls and epidemiology. Eur J Heart Fail 11 : 130-139, 2009.
2) Minasian AG, et al : Serial pulmonary function tests to diagnose COPD in chronic heart failure. Transl Respir Med 2 : 12, 2014.
3) Guder G, et al : Chronic obstructive pulmonary disease in heart failure : accurate diagnosis and treatment. Eur J Heart Fail 16 : 1273-1282, 2014.
5) Lechat P, et al : Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 103 : 1428-1433, 2001.
8) Castagno D, et al : Association of heart rate and outcomes in a broad spectrum of patients with chronic heart failure : results from the CHARM (Candesartan in Heart Failure : Assessment of Reduction in Mortality and morbidity) program. J Am Coll Cardiol 59 : 1785-1795, 2012.
9) Jensen MT, et al : Resting heart rate is a predictor of mortality in COPD. Eur Respir J 42 : 341-349, 2013.
10) Chhabra SK, De S : Cardiovascular autonomic neuropathy in chronic obstructive pulmonary disease. Respir Med 99 : 126-133, 2005.
12) Dobre D, et al : Heart rate : a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties. Eur J Heart Fail 16 : 76-85, 2014.
13) Cullington D, et al : Heart rate achieved or beta-blocker dose in patients with chronic heart failure : which is the better target? Eur J Heart Fail 14 : 737-747, 2012.
14) Alajaji W, et al : Digoxin therapy for cor pulmonale : A systematic review. Int J Cardiol 223 : 320-324, 2016.
15) Singh SN, et al : Pulmonary effect of amiodarone in patients with heart failure. The Congestive Heart Failure-Survival Trial of Antiarrhythmic Therapy (CHF-STAT) Investigators (Veterans Affairs Cooperative Study No. 320). J Am Coll Cardiol 30 : 514-517, 1997.
P.537 掲載の参考文献
1) Smith MC, Wrobel JP : Epidemiology and clinical impact of major comorbidities in patients with COPD. Int J Chron Obstruct Pulmon Dis 9 : 871-888, 2014.
2) Eroglu SA, et al : Influence of comorbidities in long-term survival of chronic obstructive pulmonary disease patients. J Thorac Dis 11 : 1379-1386, 2019.
6) Yoshimura N, et al : Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int 28 : 189-199, 2017.
8) 大林浩幸, ほか : 慢性閉塞性肺疾患早期診断のための, プライマリケア領域におけるスパイロキャラバンの成果. 日本呼吸器学会雑誌 3 : 372-379, 2014.
9) 山内広世, ほか : 骨粗鬆症検診の現況について. Osteoporosis Jpn 15 : 649-655, 2007.
10) Graat-Verboom L, et al : Current status of research on osteoporosis in COPD : a systematic review. Eur Respir J 34 : 209-218, 2009.
11) Chen YW, et al : Prevalence and Risk Factors for Osteoporosis in Individuals With COPD : A Systematic Review and Meta-analysis. Chest 156 : 1092-1110, 2019.
12) 大林浩幸 : COPD病期と, 骨粗鬆症およびサルコペニアとの関連性の検討. Precision Medicine 4 : 1172-1176, 2021.
13) Adas-Okuma MG, et al : COPD as an independent risk factor for osteoporosis and fractures. Osteoporos Int 31 : 687-697, 2020.
14) Wallin M, et al : Low-Level Cadmium Exposure Is Associated With Decreased Bone Mineral Density and Increased Risk of Incident Fractures in Elderly Men : The MrOS Sweden Study. J Bone Miner Res 31 : 732-741, 2016.
15) Janson C, et al : Osteoporosis and fracture risk associated with inhaled corticosteroid use among Swedish COPD patients : the ARCTIC study. Eur Respir J 57 : 2000515, 2021.
16) Price DB, et al : Inhaled corticosteroids in COPD and onset of type 2 diabetes and osteoporosis : matched cohort study. NPJ Prim Care Respir Med 29 : 38, 2019.

IX 喘息病態 up - to - date

P.545 掲載の参考文献
1) Duvall MG, Levy BD : DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol 785 : 144-155, 2016.
2) Gronert K, et al : Selectivity of recombinant human leukotriene D4, leukotriene B4, and lipoxin A4 receptors with aspirin-triggered 15-epi-LXA4 and regulation of vascular and inflammatory responses. Am J Pathol 158 : 3-9, 2001.
3) Levy BD, et al : Diminished lipoxin biosynthesis in severe asthma. Am J Respir Crit Care Med 172 : 824-830, 2005.
4) Planaguma A, et al : Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med 178 : 574-582, 2008.
5) Sanak M, et al : Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 16 : 44-49, 2000.
6) Halim TY, et al : Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36 : 451-463, 2012.
7) Licona-Limon P, et al : TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14 : 536-542, 2013.
8) Barnig C, et al : Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med 5 : 174ra26, 2013.
9) Duvall MG, et al : Natural killer cell-mediated inflammation resolution is disabled in severe asthma. Sci Immunol 2 : eaam5446, 2017.
10) Serhan CN, Chiang N : Endogenous pro-resolving and anti-inflammatory lipid mediators : a new pharmacologic genus. Br J Pharmacol 153 (Suppl 1) : S200-215, 2008.
11) Haworth O, et al : Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 9 : 873-879, 2008.
12) Seki H, et al : The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol 184 : 836-843, 2010.
13) Sato M, et al : Resolvin E3 attenuates allergic airway inflammation via the interleukin-23-interleukin-17A pathway. FASEB J 33 : 12750-12759, 2019.
14) Mochimaru T, et al : 12-OH-17, 18-Epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs. Allergy 73 : 369-378, 2018.
15) Levy BD, et al : Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J Immunol 178 : 496-502, 2007.
16) Miyata J, et al : Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma. J Allergy Clin Immunol 131 : 353-360.e1-2, 2013.
17) Rogerio AP, et al : Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J Immunol 189 : 1983-1991, 2012.
18) Krishnamoorthy N, et al : Cutting edge : maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol 194 : 863-867, 2015.
19) Jouvene CC, et al : Biosynthetic metabolomes of cysteinyl-containing immunoresolvents. FASEB J 33 : 13794-13807, 2019.
20) Godson C : Balancing the Effect of Leukotrienes in Asthma. N Engl J Med 382 : 1472-1475, 2020.
21) Levy BD, et al : Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes. J Allergy Clin Immunol 145 : 335-344, 2020.
22) Miyata J, et al : 12/15-Lipoxygenase Regulates IL-33-Induced Eosinophilic Airway Inflammation in Mice. Front Immunol 12 : 687192, 2021.
P.551 掲載の参考文献
1) 喘息予防・管理ガイドライン 2021 (「喘息予防・管理ガイドライン 2021」作成委員作, 日本アレルギー学会喘息ガイドライン専門部会監), 協和企画, 2021.
2) Kimura H, et al : Sinus Computed Tomographic Findings in Adult Smokers and Nonsmokers with Asthma. Analysis of Clinical Indices and Biomarkers. Ann Am Thorac Soc 14 : 332-341, 2017.
3) Proceedings of the ATS workshop on refractory asthma : current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med 162 : 2341-2351, 2000.
4) Reddel HK, et al : An official American Thoracic Society/European Respiratory Society statement : asthma control and exacerbations : standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 180 : 59-99, 2009.
5) Kimura H, et al : Prospective predictors of exacerbation status in severe asthma over a 3-year follow-up. Clin Exp Allergy 48 : 1137-1146, 2018.
6) Kimura H, et al : Determination of the cutoff values of Th2 markers for the prediction of future exacerbation in severe asthma : An analysis from the Hokkaido Severe Asthma Cohort Study. Allergol Int 70 : 68-73, 2021.
7) Colak Y, et al : Combined value of exhaled nitric oxide and blood eosinophils in chronic airway disease : the Copenhagen General Population Study. Eur Respir J 52 : 1800616, 2018.
8) Price DB, et al : Association of elevated fractional exhaled nitric oxide concentration and blood eosinophil count with severe asthma exacerbations. Clin Transl Allergy 9 : 41, 2019.
P.557 掲載の参考文献
1) 岡野光博 : 好酸球性副鼻腔炎. 鼻アレルギーフロンティア 10 : 142-147, 2010.
2) 上條篤, 永田真 : アレルギーと好酸球性炎症. JOHNS 36 : 295-299, 2020.
3) 鼻アレルギー診療ガイドライン-通年性鼻炎と花粉症-2020年版 [改訂第9版] (日本耳鼻咽喉科免疫アレルギー学会, 鼻アレルギー診療ガイドライン作成委員会編), p16-17, ライフ・サイエンス, 2020.
4) 松原篤, ほか : 鼻アレルギーの全国疫学調査 2019 (1998年, 2008年との比較) : 速報-耳鼻咽喉科医およびその家族を対象として. 日本耳鼻咽喉科学会会報 123 : 485-490, 2020.
5) 上野香奈, ほか : 気管支喘息増悪要因としてのスギ花粉症の調査結果. アレルギー 51 : 565-570, 2002.
6) 成田慎一郎, ほか : 鼻アレルギーにおける鼻腔洗浄液中の好酸球動態の検討ECPおよびEG2について. 日本耳鼻咽喉科学会会報 97 : 1062-1069, 1994.
8) Chakir J, et al : Lower airways remodeling in nonasthmatic subjects with allergic rhinitis. Lab Invest 75 : 735-744, 1996.
9) Braunstahl GJ, et al : Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol 107 : 469-476, 2001.
11) 松本久子 : 好酸球性副鼻腔炎に伴う喘息の管理. アレルギーの臨床 40 : 710-713, 2020.
12) 岡野光博 : 好酸球性副鼻腔炎の病態と発症機序. アレルギー科 17 : 163-170, 2004.
13) Kariya S, et al : Pulmonary function in never-smoker patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 5 : 990-995, 2015.
16) 岩永哲, ほか : 成人発症型喘息患者における好酸球性中耳炎有病率調査. Otology Japan 15 : 215-218, 2005.
17) Miura T, et al : The expression of thymic stromal lymphopoietin in patients and animal models with eosinophilic otitis media. Acta Otolaryngol 138 : 447-451, 2018.
18) Matsubara A, et al : An experimental study of inner ear injury in an animal model of eosinophilic otitis media. Acta Otolaryngol 134 : 227-232, 2014.
19) 飯野ゆき子 : 好酸球性中耳炎-四半世紀の軌跡. 耳鼻咽喉科・頭頸部外科 93 : 842-855, 2021.
P.561 掲載の参考文献
1) Bumbacea D, et al : Parameters associated with persistent airflow obstruction in chronic severe asthma. Eur Respir J 24 : 122-128, 2004.
2) Wong DT, et al : Eosinophils from patients with blood eosinophilia express transforming growth factor beta 1. Blood 78 : 2702-2707, 1991.
3) Humbles AA, et al : A critical role for eosinophils in allergic airways remodeling. Science 305 : 1776-1779, 2004.
4) Flood-Page P, et al : Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112 : 1029-1036, 2003.
5) Chachi L, et al : Computational modelling prediction and clinical validation of impact of benralizumab on airway smooth muscle mass in asthma. Eur Respir J 54 : 1900930, 2019.
6) Shoda T, et al : Cell type-dependent effects of corticosteroid on periostin production by primary human tissue cells. Allergy 68 : 1467-1470, 2013.
7) Kanemitsu Y, et al : Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol 132 : 305-312.e3, 2013.
8) Noguchi T, et al : Periostin upregulates the effector functions of eosinophils. J Allergy Clin Immunol 138 : 1449-1452.e5, 2016.
9) Nakagome K, et al : Elevated Periostin Concentrations in the Bronchoalveolar Lavage Fluid of Patients with Eosinophilic Pneumonia. Int Arch Allergy Immunol 178 : 264-271, 2019.
10) Morimoto Y, et al : Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity 49 : 134-150.e6, 2018.
11) Nakagome K, et al : IL-5-induced hypereosinophilia suppresses the antigen-induced immune response via a TGF-beta-dependent mechanism. J Immunol 179 : 284-294, 2007.
12) Yasukawa A, et al : Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells. PLoS One 8 : e64281, 2013.
13) Mathur SK, et al : Interaction between allergy and innate immunity : model for eosinophil regulation of epithelial cell interferon expression. Ann Allergy Asthma Immunol 111 : 25-31, 2013.
14) Travis MA, Sheppard D : TGF-β activation and function in immunity. Annu Rev Immunol 32 : 51-82, 2014.
15) Nakamura K, et al : Cell contact-dependent immunosuppression by Cd4+Cd25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J Exp Med 194 : 629-644, 2001.
P.569 掲載の参考文献
1) Miyabe Y, et al : Eosinophil-mediated inflammation in the absence of eosinophilia. Asia Pac Allergy 11 : e30, 2021.
2) Nair P, et al : Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy 68 : 1177-1184, 2013.
4) Ueki S, et al : Allergic Bronchopulmonary Aspergillosis-A Luminal Hypereosinophilic Disease With Extracellular Trap Cell Death. Front Immunol 9 : 2346, 2018.
5) Choi Y, et al : Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med 50 : 1-8, 2018.
6) Ehrens A, et al : Microfilariae Trigger Eosinophil Extracellular DNA Traps in a Dectin-1-Dependent Manner. Cell Rep 34 : 108621, 2021.
7) Fukuchi M, et al : How to detect eosinophil ETosis (EETosis) and extracellular traps. Allergol Int 70 : 19-29, 2021.
8) Hashimoto T, et al : Increased Circulating Cell-Free DNA in Eosinophilic Granulomatosis With Polyangiitis : Implications for Eosinophil Extracellular Traps and Immunothrombosis. Front Immunol 12 : 801897, 2022.
9) Fukuchi M, et al : Eosinophil ETosis-Mediated Release of Galectin-10 in Eosinophilic Granulomatosis With Polyangiitis. Arthritis Rheumatol 73 : 1683-1693, 2021.
11) Persson EK, et al : Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364 : eaaw4295, 2019.
12) Rodriguez-Alcazar JF, et al : Charcot-Leyden Crystals Activate the NLRP3 Inflammasome and Cause IL-1β Inflammation in Human Macrophages. J Immunol 202 : 550-558, 2019.
13) Ueki S, et al : Charcot-Leyden Crystals in Eosinophilic Inflammation : Active Cytolysis Leads to Crystal Formation. Curr Allergy Asthma Rep 19 : 35, 2019.
14) Barroso MV, et al : Structural and Signaling Events Driving Aspergillus fumigatus-Induced Human Eosinophil Extracellular Trap Release. Front Microbiol 12 : 633696, 2021.
15) Wechsler ME, et al : Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N Engl J Med 376 : 1921-1932, 2017.
P.574 掲載の参考文献
1) Morita H : Immunological memory and allergic diseases. Allergol Int 70 : 161-162, 2021.
2) Orimo K, et al : Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 76 : 3332-3348, 2021.
3) Laidlaw BJ, Ellebedy AH : The germinal centre B cell response to SARS-CoV-2. Nat Rev Immunol 22 : 7-18, 2022.
4) Haniuda K, Kitamura D : Multi-faceted regulation of IgE production and humoral memory formation. Allergol Int 70 : 163-168, 2021.
5) Mukai K, et al : Differences in the Importance of Mast Cells, Basophils, IgE, and IgG versus That of CD4+ T Cells and ILC2 Cells in Primary and Secondary Immunity to Strongyloides venezuelensis. Infect Immun 85 : e00053-17, 2017.
6) Haniuda K, et al : Autonomous membrane IgE signaling prevents IgE-memory formation. Nat Immunol 17 : 1109-1117, 2016.
7) Yuan R, et al : The Roles of Tissue-Resident Memory T Cells in Lung Diseases. Front Immunol 12 : 710375, 2021.
8) Horiuchi S, et al : Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv 7 : eabj1249, 2021.
9) Hirahara K, et al : Pathogenic helper T cells. Allergol Int 70 : 169-173, 2021.
10) Ordovas-Montanes J, et al : Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560 : 649-654, 2018.
11) Naik S, et al : Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550 : 475-480, 2017.
12) Martinez-Gonzalez I, et al : Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation. Immunity 45 : 198-208, 2016.
13) Yasuda K, et al : Nematode-Infected Mice Acquire Resistance to Subsequent Infection With Unrelated Nematode by Inducing Highly Responsive Group 2 Innate Lymphoid Cells in the Lung. Front Immunol 9 : 2132, 2018.
14) Lechner A, et al : Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. J Allergy Clin Immunol, 2021. (DOI : 10.1016/j.jaci.2021.11.026)
15) Haimerl P, et al : Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. J Allergy Clin Immunol 147 : 587-599, 2021.
P.579 掲載の参考文献
1) Yodoi J, et al : Low affinity IgE receptors : regulation and functional roles in cell activation. Ciba Found Symp 147 : 133-148 ; discussion 148-152, 1989.
2) Carlsson F, et al : IgE enhances specific antibody and T-cell responses in mice overexpressing CD23. Scand J Immunol 66 : 261-270, 2007.
3) Crotty S : T Follicular Helper Cell Biology : A Decade of Discovery and Diseases. Immunity 50 : 1132-1148, 2019.
4) Lowe PJ, Renard D : Omalizumab decreases IgE production in patients with allergic (IgE-mediated) asthma ; PKPD analysis of a biomarker, total IgE. Br J Clin Pharmacol 72 : 306-320, 2011.
5) Poole JA, et al : Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol 116 : 780-788, 2005.
7) Menzies-Gow A, et al : Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med 384 : 1800-1809, 2021.
P.585 掲載の参考文献
1) Endo Y, et al : Eomesodermin controls interleukin-5 production in memory T helper 2 cells through inhibition of activity of the transcription factor GATA3. Immunity 35 : 733-745, 2011.
2) Nakayama T, et al : Th2 Cells in Health and Disease. Annu Rev Immunol 35 : 53-84, 2017.
3) Endo Y, et al : The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42 : 294-308, 2015.
5) Shinoda K, et al : Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci U S A 113 : E2842-2851, 2016.
6) Islam SA, et al : Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5E+TH2 cells. Nat Immunol 12 : 167-177, 2011.
7) Mitson-Salazar A, et al : Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human TH2 cell subpopulation with enhanced function. J Allergy Clin Immunol 137 : 907-918.e9, 2016.
8) Wambre E, et al : A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med 9 : eaam9171, 2017.
9) Wynn TA : Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol 4 : 583-594, 2004.
10) Wick G, et al : The immunology of fibrosis. Annu Rev Immunol 31 : 107-135, 2013.
11) Morimoto Y, et al : Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity 49 : 134-150.e6, 2018.
12) Ichikawa T, et al : CD103hi Treg cells constrain lung fibrosis induced by CD103lo tissue-resident pathogenic CD4 T cells. Nat Immunol 20 : 1469-1480, 2019.
P.589 掲載の参考文献
1) Moro K, et al : Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17 : 76-86, 2016.
2) Matha L, et al : Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol 12 : 679509, 2021.
3) Nagashima H, et al : Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity 51 : 682-695.e6, 2019.
4) Huang Y, et al : IL-25-responsive, lineage-negative KLRG1hi cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat Immunol 16 : 161-169, 2015.
5) Huang Y, et al : S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359 : 114-119, 2018.
6) Miyamoto C, et al : Runx/Cbfβ complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nat Commun 10 : 447, 2019.
7) Ebihara T, Taniuchi I : Exhausted-like Group 2 Innate Lymphoid Cells in Chronic Allergic Inflammation. Trends Immunol 40 : 1095-1104, 2019.
8) Martinez-Gonzalez I, et al : Allergen-Experienced Group 2 Innate Lymphoid Cells Acquire Memory-like Properties and Enhance Allergic Lung Inflammation. Immunity 45 : 198-208, 2016.
9) Verma M, et al : The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. J Exp Med 218 : e20201354, 2021.
10) Seehus CR, et al : Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat Commun 8 : 1900, 2017.
11) Bando JK, et al : ILC2s are the predominant source of intestinal ILC-derived IL-10. J Exp Med 217 : e20191520, 2020.
12) Morita H, et al : Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol 143 : 2190-2201.e9, 2019.
13) Weinberg SE, et al : Targeting Bacteria within Us to Diminish Infection and Autoimmunity. Immunity 54 : 1-3, 2021.
14) Oliphant CJ, et al : MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41 : 283-295, 2014.
15) Hardman CS, et al : CD1a presentation of endogenous antigens by group 2 innate lymphoid cells. Sci Immunol 2 : eaan5918, 2017.

X COPD・喘息の周辺疾患

P.598 掲載の参考文献
1) Chalmers JD, et al : Bronchiectasis. Nat Rev Dis Primers 4 : 45, 2018.
2) Flume PA, et al : Advances in bronchiectasis : endotyping, genetics, microbiome, and disease heterogeneity. Lancet 392 : 880-890, 2018.
3) 徳田均 : 気管支拡張症revisited-古くからの病気を新しい光の下で見直す. 呼吸臨床1 : e00011, 2017.
4) 武村民子 : 気管支拡張症の病理. 日本胸部臨床 71 (増刊) : 182-187, 2012.
5) Quint JK, et al : Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013 : a population-based cohort study. Eur Respir J 47 : 186-193, 2016.
6) Fuschillo S, et al : Mucosal inflammation in idiopathic bronchiectasis : cellular and molecular mechanisms. Eur Respir J 31 : 396-406, 2008.
7) Martin C, et al : Host-microbe interactions in distal airways : relevance to chronic airway diseases. Eur Respir Rev 24 : 78-91, 2015.
8) Boyton RJ, Altmann DM : Bronchiectasis : Current Concepts in Pathogenesis, Immunology, and Microbiology. Annu Rev Pathol 11 : 523-554, 2016.
9) Naidich DP : Bronchiectasis. In : Imaging of the Airways (ed by Naidich DP, et al), p107-145, Philadelphia, Lippincott WW, 2005.
10) Polverino E, et al : European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 50 : 170062, 2017.
11) Chalmers JD, et al : Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 186 : 657-665, 2012.
12) Henkle E, et al : Pharmacotherapy for Non-Cystic Fibrosis Bronchiectasis : Results From an NTM Info & Research Patient Survey and the Bronchiectasis and NTM Research Registry. Chest 152 : 1120-1127, 2017.
13) 中森祥隆, ほか : びまん性汎細気管支炎におけるステロイド療法の検討. 日本胸部臨床 45 : 469-473, 1986.
14) Richardson H, et al : The microbiome in bronchiectasis. Eur Respir Rev 28 : 190048, 2019.
15) 慢性呼吸器疾患の気道感染症. JAID/JSC感染症治療ガイド 2019 (日本感染症学会・日本化学療法学会JAID/JSC感染症治療ガイドライン作成委員会編), p131-132, 日本感染症学会・日本化学療法学会, 2019.
P.606 掲載の参考文献
1) McCormack FX, et al : Lymphangioleiomyomatosis. In : Murray & Nadel's textbook of respiratory medicine, Vol 2, 7th ed (ed by Broaddis VC, et al), p1343-1362, Elsevier, Philadeiphia, 2022.
2) McCarthy C, et al : Lymphangioleiomyomatosis : pathogenesis, clinical features, diagnosis, and management. Lancet Respir Med 9 : 1313-1327, 2021.
4) 井上義一 : リンパ脈管筋腫症. 呼吸器疾患診療最新ガイドライン (弦間昭彦編), p379-384, 総合医学社, 2014.
5) 林田美江, ほか : 特定疾患治療研究事業対象疾患リンパ脈管筋腫症 (LAM) 認定基準の解説. 日本呼吸器学会雑誌 49 : 67-74, 2011.
6) Gupta N, et al : Lymphangioleiomyomatosis Diagnosis and Management : High-Resolution Chest Computed Tomography, Transbronchial Lung Biopsy, and Pleural Disease Management. An Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guideline. Am J Respir Crit Care Med 196 : 1337-1348, 2017.
7) McCormack FX, et al : Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines : Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med 194 : 748-761, 2016.
9) Hirose M, et al : Serum vascular endothelial growth factor-D as a diagnostic and therapeutic biomarker for lymphangioleiomyomatosis. PLoS One 14 : e0212776, 2019.
10) McCormack FX, et al : Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364 : 1595-1606, 2011.
11) 林田美江, ほか : LAMを有する成人女性においてmTOR阻害薬は第一選択となりますか? 日本呼吸器学会誌 5 : 166-171, 2016.
12) 適正使用ガイド. mTOR阻害剤ラパリムス錠1 mg. ノーベルファーマ株式会社, 2021.
13) El-Chemaly S, et al : Should mammalian target of rapamycin inhibitors be stopped in women with lymphangioleiomyomatosis awaiting lung transplantation? Expert Rev Respir Med 8 : 657-660, 2014.
14) Kurihara M, et al : A Total Pleural Covering for Lymphangioleiomyomatosis Prevents Pneumothorax Recurrence. PLoS One 11 : e0163637, 2016.
15) 林田美江, ほか : リンパ脈管筋腫症lymphangioleiomyomatosis (LAM) の治療と管理の手引き . 日本呼吸器学会雑誌 46 : 428-431, 2008
16) 林田美江, ほか : リンパ脈管筋腫症に伴う気胸の再発予防策として胸腔鏡下全胸膜カバリング術は推奨されますか? 日本呼吸器学会誌 9 : 151-159, 2020.
17) Sakurai T, et al : Reduced risk of recurrent pneumothorax for sirolimus therapy after surgical pleural covering of entire lung in lymphangioleiomyomatosis. Orphanet J Rare Dis 16 : 466, 2021.
18) 林田美江, ほか : 孤発性LAMに伴う腎血管筋脂肪腫においてmTOR阻害薬の投与を考慮しますか? 日本呼吸器学会誌 6 : 225-234, 2017.
19) Baldi BG, et al : COVID-19 in Lymphangioleiomyomatosis : An International Study of Outcomes and Impact of Mechanistic Target of Rapamycin Inhibition. Chest, 2021. (DOI : 10.1016/j.chest.2021.12.640)
P.612 掲載の参考文献
1) Kradin RL, et al : The pathology of pulmonary disorders due to Aspergillus spp. Arch Pathol Lab Med 132 : 606-614, 2008.
2) 深在性真菌症の診断・治療ガイドライン 2014 (深在性真菌症のガイドライン作成委員会編), 協和企画, 2014.
3) Tashiro M, et al : Antifungal susceptibilities of Aspergillus fumigatus clinical isolates obtained in Nagasaki, Japan. Antimicrob Agents Chemother 56 : 584-587, 2012.
4) 田代将人, 泉川公一 : 薬剤耐性アスペルギルスの現状. Medical Mycology Journal 57 : J103-J112, 2016.
5) Denning DW, et al : Chronic pulmonary aspergillosis : rationale and clinical guidelines for diagnosis and management. Eur Respir J 47 : 45-68, 2016.
6) Kohno S, et al : Intravenous micafungin versus voriconazole for chronic pulmonary aspergillosis : a multicenter trial in Japan. J Infect 61 : 410-418, 2010.
8) Buil JB, et al : Trends in Azole Resistance in Aspergillus fumigatus, the Netherlands, 1994-2016. Emerg Infect Dis 25 : 176-178, 2019.
9) Lestrade PP, et al : Voriconazole Resistance and Mortality in Invasive Aspergillosis : A Multicenter Retrospective Cohort Study. Clin Infect Dis 68 : 1463-1471, 2019.
10) Lowes D, et al : Predictors of mortality in chronic pulmonary aspergillosis. Eur Respir J 49 : 1601062, 2017.
11) Fujiuchi S, et al : Evaluation of a Quantitative Serological Assay for Diagnosing Chronic Pulmonary Aspergillosis. J Clin Microbiol 54 : 1496-1499, 2016.
12) Takazono T, Izumikawa K : Recent Advances in Diagnosing Chronic Pulmonary Aspergillosis. Front Microbiol 9 : 1810, 2018.
13) Takazono T, et al : Evaluation of Aspergillus-Specific Lateral-Flow Device Test Using Serum and Bronchoalveolar Lavage Fluid for Diagnosis of Chronic Pulmonary Aspergillosis. J Clin Microbiol 57 : e00095-19, 2019.
P.621 掲載の参考文献
1) アレルギー性気管支肺真菌症の診療の手引き (「アレルギー性気管支肺真菌症」研究班編), 医学書院, 2019.
3) 浅野浩一郎 : アレルギー性気管支肺真菌症の診療の手引き . アレルギー 69 : 164-168, 2020.
4) 谷口正実, ほか : 環境真菌と気道アレルギー (喘息, アレルギー性気管支肺真菌症). アレルギー・免疫 21 : 1536-1545, 2014.
6) 福冨友馬, ほか : 本邦における病院通院成人喘息患者の実態調査 : 国立病院機構ネットワーク共同研究. アレルギー 59 : 37-46, 2010.
8) Oguma T, et al : Allergic bronchopulmonary aspergillosis in Japan : A nationwide survey. Allergol Int 67 : 79-84, 2018.
10) Agarwal R, et al : Allergic bronchopulmonary aspergillosis : lessons from 126 patients attending a chest clinic in north India. Chest 130 : 442-448, 2006.
11) 谷本英則, ほか : アレルギー性気管支肺アスペルギルス症 (ABPA) 40例の臨床的検討. アレルギー 58 : 1213, 2009.
13) Greenberger PA, Patterson R : Allergic bronchopulmonary aspergillosis and the evaluation of the patient with asthma. J Allergy Clin Immunol 81 : 646-650, 1988.
15) Minami T, et al : Regional differences in the prevalence of sensitization to environmental allergens : Analysis on IgE antibody testing conducted at major clinical testing laboratories throughout Japan from 2002 to 2011. Allergol Int 68 : 440-449, 2019.
16) Tanimoto H, et al : Molecular-based allergy diagnosis of allergic bronchopulmonary aspergillosis in Aspergillus fumigatus-sensitized Japanese patients. Clin Exp Allergy 45 : 1790-1800, 2015.
17) Hamada Y, et al : Optimal Aspergillus fumigatus and Asp f 1 serum IgG cut-offs for the diagnosis of allergic bronchopulmonary aspergillosis. Allergol Int 70 : 74-80, 2021.
18) Ueki S, et al : Allergic Bronchopulmonary Aspergillosis-A Luminal Hypereosinophilic Disease With Extracellular Trap Cell Death. Front Immunol 9 : 2346, 2018.
20) Wark PAB, et al : Azoles for allergic bronchopulmonary aspergillosis associated with asthma. Cochrane Database Syst Rev 2004 : CD001108, 2004.
22) Voskamp AL, et al : Clinical efficacy and immunologic effects of omalizumab in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol Pract 3 : 192-199, 2015.
P.627 掲載の参考文献
1) Hinson KFW, et al : Broncho-pulmonary aspergillosis ; a review and a report of eight new cases Thorax 7 : 317-333, 1952.
3) アレルギー性気管支肺真菌症診療の手引き (「アレルギー性気管支肺真菌症」研究班編, 日本アレルギー学会, 日本呼吸器学会監), 医学書院, 2019.
4) Oguma T, et al : Allergic bronchopulmonary aspergillosis in Japan : A nationwide survey. Allergol Int 67 : 79-84, 2018.
6) Asano K, et al : Allergic bronchopulmonary mycosis - pathophysiology, histology, diagnosis, and treatment. Asia Pacific Allergy 8 : e24, 2018.
7) Oguma T, et al : Induction of mucin and MUC5AC expression by the protease activity of Aspergillus fumigatus in airway epithelial cells. J Immunol 187 : 999-1005, 2011.
8) Imtiaj A, et al : Physicochemical Requirement for the Vegetative Growth of Schizophyllum commune Collected from Different Ecological Origins. Mycobiology 36 : 34-39, 2008.
10) 蛇沢晶, ほか : 手術例から見たアレルギー性気管支肺アスペルギルス症・真菌症の病理形態学的研究. 日本呼吸器学会雑誌 36 : 330-337, 1998.
13) Muniz VS, et al : Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol 141 : 571-585, e7, 2018.
15) Chowdhary A, et al : Recognizing filamentous basidiomycetes as agents of human disease : A review. Med Mycol 52 : 782-797, 2014.
P.632 掲載の参考文献
2) アレルギー性気管支肺真菌症の診療の手引き (「アレルギー性気管支肺真菌症」研究班編, 日本アレルギー学会, 日本呼吸器学会監), 医学書院, 2019.
3) Maturu VN, et al : Acute Invasive Pulmonary Aspergillosis Complicating Allergic Bronchopulmonary Aspergillosis : Case Report and Systematic Review. Mycopathologia 180 : 209-215, 2015.
4) Rihs JD, et al : Brain abscess caused by Schizophyllum commune : an emerging basidiomycete pathogen. J Clin Microbiol 34 : 1628-1632, 1996.
5) Zhu A, et al : A case of primary pulmonary Schizophyllum commune empyema treated with video-assisted thoracoscopic decortication. Gen Thorac Cardiovasc Surg 69 : 584-587, 2021.
6) Agarwal R, et al : A randomised trial of prednisolone versus prednisolone and itraconazole in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. Eur Respir J 59 : 2101787, 2021.

最近チェックした商品履歴

Loading...