心不全栄養バイブル

出版社: 中外医学社
著者:
発行日: 2022-07-15
分野: 臨床医学:内科  >  循環器一般
ISBN: 9784498136762
電子書籍版: 2022-07-15 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

7,260 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

7,260 円(税込)

商品紹介

循環器科医師・薬剤師・栄養士・リハビリスタッフなど多職種に役立つ実践的知識!
心不全ステージごとの注意点や併存疾患を考慮した対応がよくわかるベストマニュアル.薬物療法やリハビリなど普段の治療効果に差がつく,これからの時代に欠かせない知識をまとめた本邦初の心不全患者の栄養パーフェクトガイド.

目次

  • 第1章 心不全の栄養総論
     1 なぜ,心不全の栄養なのか
     2 心疾患と肥満 一次予防に関する内容
     3 心不全だから低栄養なのか? 低栄養だから心不全なのか? 心不全の低栄養について

    第2章 心不全の病態と栄養
     1 なぜ減塩が必要なのか? 心不全と食塩について
     2 なぜ,減塩が難しいのか? 心不全と味覚について
     3 なぜ,低栄養をきたすのか? 心不全と食欲低下
     4 なぜ,低栄養をきたすのか? 心不全と口腔トラブル・嚥下障害
     5 なぜ,低栄養をきたすのか? 心不全と消化吸収障害
     6 なぜ,心不全で悪液質になるのか?心臓悪液質と低栄養について
     7 なぜ心不全で低栄養,サルコペニア,フレイルになるのか?

    第3章 心不全の栄養評価
     1 血液検査で心不全の栄養評価は可能か
     2 急性心不全の栄養評価方法 特徴と注意点
     3 慢性心不全の栄養評価 特徴と注意点
     4 心不全の骨格筋量評価 特徴と注意点

    第4章 急性心不全における栄養管理
     1 CCUにおける心不全の栄養管理 オーバービュー
     2 CCUにおける経腸栄養(アクセス,介入タイミング,投与量,リスクマネジメント)
     3 CCUにおける静脈栄養(アクセス,介入タイミング,投与量,リスクマネジメント)
     4 CCUにおけるせん妄予防の重要性
     5 心原性ショックの患者に対する経腸栄養
     6 心臓血管外科術後の栄養管理

    第5章 AHAステージ別に考える心不全の栄養管理
     1 心不全のステージ分類とは? ステージ分類の考え方
     2 ステージA,B;ステージの進行を防ぐ栄養管理とは?
     3 ステージC,D;再入院を防ぐ栄養管理とは?

    第6章 心不全と合併疾患における栄養管理のポイント
     1 高血圧合併心不全の栄養管理
     2 糖尿病合併心不全の栄養管理
     3 慢性腎臓病合併心不全の栄養管理
     4 がん合併心不全の栄養管理
     5 SHD(構造的心疾患)を有する心不全の栄養管理
     6 骨粗鬆症合併心不全の栄養管理
     7 便秘合併心不全の栄養管理心不全患者の排便コントロール
     8 心臓悪液質の栄養管理と治療介入

    第7章 心不全治療と栄養素の関係
     1 心不全と微量栄養素・ビタミン
     2 心不全とカルニチン
     3 心不全と中鎖脂肪酸
     4 心不全とアミノ酸

    第8章 シナリオ別に考える心不全の栄養指導・管理のポイント
     1 急性心不全の退院前栄養指導のポイント
     2 慢性心不全における外来での栄養食事指導のポイント
     3 心臓リハビリテーションにおける心不全の栄養管理のポイント
     4 在宅医療における心不全の栄養管理のポイント
     5 心臓移植待機(植込型VAD)中の栄養管理のポイント
     6 心臓移植後の栄養管理のポイント
     7 心不全患者の人生の最終段階(終末期)における緩和ケアと栄養管理のポイント

    第9章 心不全の栄養を多職種で介入する
     1 心不全の栄養に医師はどのように関わるか?
     2 心不全の栄養に看護師はどのように関わるか?
     3 心不全の栄養に管理栄養士はどのように関わるか?
     4 心不全の栄養に薬剤師はどのように関わるのか?
     5 心不全の栄養に理学療法士はどのように関わるか?
     6 心不全の栄養に臨床心理士はどのように関わるのか?
     7 心不全の栄養に医療ソーシャルワーカーはどのように関わるか?

    第10章 心不全の栄養に関するContraversy
     1 慢性心不全に水分制限は必要vs不要
     2 急性心不全の急性期にエネルギー制限は必要vs不要
     3 高齢心不全患者に減塩は必要vs不要 
     4 経腸栄養投与中のリハビリテーションは行うvs控えるべき

    第11章 心不全の栄養・フレイルに関する最新のトピックス・エビデンス
     1 心不全と腸内細菌
     2 心不全と代謝性疾患
     3 FRAGILE-HF研究

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1章 心不全の栄養総論

P.5 掲載の参考文献
1) Beard JR, Officer A, Cassels A. World report on ageing and health. Geneva : World Health Organization ; 2015.
2) 中村丁次. 中村丁次がひも解くジャパン・ニュートリション. 東京 : 第一出版 ; 2020. p.34-65.
3) Maruyama K, Iso H, Date C, et al. Dietary patterns and risk of cardiovascular deaths among middle-aged Japanese : JACC Study. Nutr Metab Cardiovasc Dis. 2013 ; 23 : 519-27.
4) Nanri A, Mizoue T, Shimizu T, et al. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women : The Japan public health center-based prospective study. PLoS One. 2017 ; 12 : e0174848.
5) Nagao N, Iso H, Yamaguchi K, et al. Meat consumption in relation to mortality from cardiovascular disease among Japanese men and women. Euro J Clin Nutri. 2012 ; 66 : 687-93.
6) Anker SD, Ponikowski P, Varney S, et al. Wasting as indepen dent risk factor for mortality in chronic heart failure. Lancet. 1997 ; 349 : 1050-3.
7) WRITING COMMITTEE MEMBERS ; Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure : a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013 ; 128 : e240-327.
8) Takiguchi M, Yoshihisa A, Miura S, et al. Impact of body mass index on mortality in heart failure patients. Eur J Clin Invest. 2014 ; 44 : 1197-205.
9) Keys A, Brozek J, Henschel A, et al. The Biology of Human Starvation (2 volumes). Minnesota : University of Minnesota Press ; 1950.
10) Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009 ; 325 : 201-4.
11) Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2009 ; 489 : 318-21.
12) Mattison JA, Colman RJ, Beasley TM, et al. Caloric restriction improves health and survival of rhesus monkeys. Nature Commun. 2017 ; 8 : 14063.
13) Neumann CG, Lawlor GJ Jr, Stiehm ER, et al. Immunologic responses in malnourished children. Am J Clin Nutr. 1975 ; 28 : 89-104.
P.10 掲載の参考文献
2) Aune D, Sen A, Nora T, et al. Body mass index, abdominal fatness, and heart failure incidence and mortality : a systematic review and dose-response meta-analysis of prospective studies. Circulation. 2016 ; 133 : 639-49.
3) Pandey A, LaMonte M, Klein L, et al. Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol. 2017 ; 69 : 1129-42.
4) 下川宏明. 慢性心不全におけるメタボリック症候群の意義に関する研究 : 平成20年度総括研究報告書 : 厚生労働科学研究費補助金. 循環器疾患等生活習慣病総合研究事業. 2009.
5) Hubert HB, Feinleib M, McNamara PM, et al. Obesity as an independent risk factor for cardiovascular disease : a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983 ; 67 : 968-77.
6) Chei CL, Iso H, Yamagishi K, et al. Body mass index and weight change since 20 years of age and risk of coronary heart disease among Japanese : the Japan Public Health Center-Based Study). Int J Obes (Lond). 2008 ; 32 : 144-51.
7) Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol. 1990 ; 132 : 612-28.
8) Ninomiya T, Kubo M, Doi Y, et al. Impact of metabolic syndrome on the development of cardiovascular disease in a general Japanese population : the Hisayama study. Stroke. 2007 ; 38 : 2063-9.
9) Ohnishi H, Saitoh S, Takagi S, et al. Incidence of insulin resistance in obese subjects in a rural Japanese population : the Tanno and Sobetsu study. Diabetes Obes Metab. 2005 ; 7 : 83-7.
10) Takeuchi H, Saitoh S, Takagi S, et al. Metabolic syndrome and cardiac disease in Japanese men : applicability of the concept of metabolic syndrome defined by the National Cholesterol Education Program-Adult Treatment Panel III to Japanese men--the Tanno and Sobetsu Study). Hypertens Res. 2005 ; 28 : 203-8.
11) 伊藤由希子, 川渕孝一, 津下一代. 「生活習慣病予防活動・疾病管理による健康指標に及ぼす影響と医療費適正化効果に関する研究 保健指導が医療費に及ぼす影響 生活習慣病予防事業による医療費におよぼす効果の検討」に関する研究. 平成23年度 総括・分担研究報告書 (厚生労働科学研究費補助金 (循環器疾患・糖尿病等生活習慣病対策総合研究事業)). 2012.
12) Packer M, Lam CSP, Lund LH, et al. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction : a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail. 2020 ; 22 : 1551-67.
P.16 掲載の参考文献
1) Wawrzenczyk A, Anaszewicz M, Wawrzenczyk A, et al. Clinical significance of nutritional status in patients with chronic heart failure-a systematic review. Heart Fail Rev. 2019 ; 24 : 671-700.
2) Hirose S, Matsue Y, Kamiya K, et al. Prevalence and prognostic implications of malnutrition as defined by GLIM criteria in elderly patients with heart failure. Clin Nutr. 2021 ; 40 : 4334-40.
3) Kinugasa Y, Kato M, Sugihara S, et al. Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ J. 2013 ; 77 : 705-11.
4) Afilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol. 2014 ; 63 : 747-62.
5) Anker SD, Negassa A, Coats AJ, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors : an observational study. Lancet. 2003 ; 361 : 1077-83.
6) Clark AL, Coats AJS, Krum H, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure : results from the COPERNICUS trial. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 549-56.
7) Kinugasa Y, Yamamoto K. The challenge of frailty and sarcopenia in heart failure with preserved ejection fraction. Heart. 2017 ; 103 : 184-9.
8) Kinugasa Y, Nakayama N, Sugihara S, et al. Polypharmacy and taste disorders in heart failure patients. Eur J Prev Cardiol. 2020 ; 27 : 110-1.
9) Kinugasa Y, Sugihara S, Yamada K, et al. Carnitine insufficiency is associated with adverse outcomes in patients with heart failure with preserved ejection fraction. J Aging Res Clin Practice. 2016 ; 5 : 187-93.
10) Liu LC, Voors AA, van Veldhuisen DJ, et al. Vitamin D status and outcomes in heart failure patients. Eur J Heart Fail. 2011 ; 13 : 619-25.
11) Lennie TA, Andreae C, Rayens MK, et al. Micronutrient deficiency independently predicts time to event in patients with heart failure. J Am Heart Assoc. 2018 ; 7 : e007251.
12) Kinugasa Y, Sota T, Ishiga N, et al. l-Carnitine supplementation in heart failure patients with preserved ejection fraction ; a pilot study. Geriatr Gerontol Int. 2020 ; 20 : 1244-5.
13) Zittermann A, Ernst JB, Prokop S, et al. Effect of vitamin D on all-cause mortality in heart failure (EVITA) : a 3-year randomized clinical trial with 4000 IU vitamin D daily. Eur Heart J. 2017 ; 38 : 2279-86.
14) Bonilla-Palomas JL, Gamez-Lopez AL, Castillo-Dominguez JC, et al. Nutritional intervention in malnourished hospitalized patients with heart failure. Arch Med Res. 2016 ; 47 : 535-40.
15) Habaybeh D, de Moraes MB, Slee A, et al. Nutritional interventions for heart failure patients who are malnourished or at risk of malnutrition or cachexia : a systematic review and meta-analysis. Heart Fail Rev. 2021 ; 26 : 1103-18.
16) Bilgen F, Chen P, Poggi A, et al. Insufficient calorie intake worsens post-discharge quality of life and increases readmission burden in heart failure. JACC Heart Fail. 2020 ; 8 : 756-64.
17) Pierpont ME, Breningstall GN, Stanley CA, et al. Familial carnitine transporter defect : A treatable cause of cardiomyopathy in children. Am Heart J. 2000 ; 139 : S96-106.
18) Kitzman DW, Brubaker P, Morgan T, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction : a randomized clinical trial. JAMA. 2016 ; 315 : 36-46.

第2章 心不全の病態と栄養

P.24 掲載の参考文献
1) 厚生労働省HP. 日本人の食事摂取基準 (2020年版). https://www.mhlw.go.jp/content/10904750/000586553.pdf [2021年10月閲覧]
2) 厚生労働省HP. 令和元年 国民健康・栄養調査報告. https://www.mhlw.go.jp/content/000710991.pdf [2021年10月閲覧]
3) Dzau VJ, Antman EM, Black HR, et al. The cardiovascular disease continuum validated : clinical evidence of improved patient outcomes. Part II : clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation. 2006 ; 114 : 2871-91.
4) GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019 ; 393 : 1958-72.
5) Intersalt : an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ. 1988 ; 297 : 319-28.
6) Mente A, O'Donnell MJ, Rangarajan S, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014 ; 371 : 601-11.
7) Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001 ; 344 : 3-10.
8) Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017 ; 4 (4) : CD004022.
9) Aburto NJ, Ziolkovska A, Hooper L, et al. Effect of lower sodium intake on health : systematic review and meta-analyses. BMJ. 2013 ; 346 : f1326.
10) 日本高血圧学会高血圧治療ガイドライン作成委員会, 編. 高血圧治療ガイドライン 2019. 2019.
11) Mente A, O'Donnell M, Rangarajan S, et al ; PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension : a pooled analysis of data from four studies. Lancet. 2016 ; 388 : 465-75.
12) He FJ, Tan M, Ma Y, et al. Salt reduction to prevent hypertension and cardiovascular disease : JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 ; 75 : 632-47.
13) He FJ, Ma Y, Campbell NRC, et al. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension. 2019 ; 74 : 572-80.
14) He FJ, Pombo-Rodrigues S, Macgregor GA. Salt reduction in England from 2003 to 2011 : its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open. 2014 ; 4 : e004549.
15) Schrier M, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999 ; 341 : 577-85.
16) Gupta D, Georgiopoulou VV, Kalogeropoulos AP, et al. Dietary sodium intake in heart failure. Circulation. 2012 ; 126 : 479-85.
17) Doukky R, Avery E, Mangla A, et al. Impact of dietary sodium restriction on heart failure outcomes. JACC Heart Fail. 2016 ; 4 : 24-35.
18) Mahtani KR, Heneghan C, Onakyoya I, et al. Reduced salt intake for heart failure : a systematic review. JAMA Intern Med. 2018 ; 178 : 1693-700.
19) Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure : A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013 ; 62 : e147-239.
20) McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
21) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 日本循環器学会/日本心不全学会合同ガイドライン 2021年 JCS/JHFSガイドライン フォーカスアップデート版急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf [2021年10月閲覧]
22) Nakajima T, Murata M, Nitta S, et al. Sodium restriction counseling reduces cardiac events in patients with heart failure. Circulation J. 2021 ; 85 : 1555-62.
P.33 掲載の参考文献
1) 大竹文雄, 平井啓. 医療現場の行動経済学 : すれ違う医者と患者. 東京 : 東洋経済新報社 ; 2018.
2) Kelly JJ Jr. Multifocal motor neuropathy. Neurology. 1992 ; 42 : 2230-1.
3) Sanematsu K, Kusakabe Y, Shigemura N, et al. Molecular mechanisms for sweet-suppressing effect of gymnemic acids. J Biol Chem. 2014 ; 289 : 25711-20.
4) Mizuta E. Impact of taste sensitivity on lifestyle-related diseases. Yakugaku Zasshi. 2015 ; 135 : 789-92.
5) 伊藤貞嘉, 佐々木敏. 日本人の食事摂取基準 2020年版. 東京 : 第一出版 ; 2018.
6) Hayabuchi H, Morita R, Ohta M, et al. Validation of preferred salt concentration in soup based on a randomized blinded experiment in multiple regions in Japan-influence of umami (L-glutamate) on saltiness and palatability of low-salt solutions. Hypertens Res. 2020 ; 43 : 525-33.
7) Pepino MY, Finkbeiner S, Beauchamp GK, et al. Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity. 2010 ; 18 : 959-65.
8) Mizuta E, Kinugasa Y, Kato M, et al. Umami taste disorder is a novel predictor of obesity. Hypertens Res. 2021 ; 44 : 595-7.
9) Bannai M, Torii K. Digestive physiology of the pig symposium : detection of dietary glutamate via gut-brain axis. J Anim Sci. 2013 ; 91 : 1974-81.
10) 日本高血圧学会高血圧治療ガイドライン作成委員会. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版 ; 2019.
11) Anderson CAM, Appel LJ, Okuda N, et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years : the INTERMAP study. J Am Diet Assoc. 2010 ; 110 : 736-45.
12) He FJ, Brinsden HC, MacGregor GA. Salt reduction in the United Kingdom : a successful experiment in public health. J Hum Hypertens. 2014 ; 28 : 345-52.
13) He FJ, Pombo-Rodrigues S, MacGregor GA. Salt reduction in England from 2003 to 2011 : its relationship to blood pressure, stroke and ischeamic heart disease mortality. BMJ Open. 2014 ; 4 : e004549.
14) Satoh-Kuriwada S, Shoji N, Kawai M, et al. Hyposalivation strongly influences hypogeusia in the elderly. J Health Sci. 2009 ; 55 : 689-98.
15) Sakaguchi A, Nin T, Oka H, et al. Clinical analysis of 1059 patients with taste disorders. Nihon Jibiinkoka Gakkai Kaiho. 2013 ; 116 : 77-82.
16) Kinugasa Y, Nakayama N, Sugihara S, et al. Polypharmacy and taste disorders in heart failure patients. Eur J Prev Cardiol. 2020 ; 27 : 110-1.
17) Somekawa S, Mine T, Ono K, et al. Relationship between sensory perception and frailty in a community-dwelling elderly population. J Nutr Health Aging. 2017 ; 21 : 710-4.
18) Satoh-Kuriwada S, Kawai M, Iikubo M, et al. Development of an umami taste sensitivity test and its clinical use. PLoS One. 2014 ; 9 : e95177.
19) Taylor RS, Ashton KE, Moxham T, et al. Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2011 ; 7 : CD009217.
20) Taylor RS, Ashton KE, Moxham T, et al. Reduced dietary salt for the prevention of cardiovascular disease : a meta-analysis of randomized controlled trials (Cochrane Review). Am J Hypertens. 2011 ; 8 : 843-53.
21) He F, MacGregor GA. Salt reduction lowers cardiovascular risk : meta-analysis of outcome trials. Lancet. 2011 ; 378 : 380-2.
22) Morris MJ, Na ES, Johnson AK. Mineralocorticoid receptor antagonism prevents hedonic deficits induced by a chronic sodium appetite. Behav Neurosci. 2010 ; 124 : 211-24.
P.42 掲載の参考文献
1) Cederholm T, Jensen GL, Correia M, et al. GLIM criteria for the diagnosis of malnutrition-a consensus report from the global clinical nutrition community. Clin Nutr (Edinburgh, Scotland). 2019 ; 38 : 1-9.
2) Evans WJ, Morley JE, Argiles J, et al. Cachexia : a new definition. Clin Nutr (Edinburgh, Scotland). 2008 ; 27 : 793-9.
3) Doehner W, Anker SD. Cardiac cachexia in early literature : a review of research prior to medline. Int J Cardiol. 2002 ; 85 : 7-14.
4) Feng Q, Lambert ML, Callow ID, et al. Venous neuropeptide Y receptor responsiveness in patients with chronic heart failure. Clin pharmacol ther. 2000 ; 67 : 292-8.
5) Wolf I, Sadetzki S, Kanety H, et al. Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. Cancer. 2006 ; 106 : 966-73.
6) Hamauchi S, Furuse J, Takano T, et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in advanced gastrointestinal cancer patients with cancer cachexia. Cancer. 2019 ; 125 : 4294-302.
7) Katakami N, Uchino J, Yokoyama T, et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia : results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer. 2018 ; 124 : 606-16.
8) Shiraishi Y, Kohsaka S, Sato N, et al. 9-year trend in the management of acute heart failure in Japan : a report from the national consortium of acute heart failure registries. J Am Heart Assoc. 2018 ; 7 : e008687.
9) Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020 ; 41 : 407-77.
10) Tsutsui H, Isobe M, Ito H, et al. JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure-Digest Version-. Circ J. 2019 ; 83 : 2084-184.
11) Saitoh M, Rodrigues dos Santos M, von Haehling S. Muscle wasting in heart failure. Wiener Klinische Wochenschrift. 2016 ; 128 (Suppl 7) : 455-65.
12) Cox NJ, Ibrahim K, Sayer AA, et al. Assessment and treatment of the anorexia of aging : a systematic review. Nutrients. 2019 ; 11 : 144.
P.50 掲載の参考文献
1) Raphael C. Oral health and aging. Am J Public Health. 2017 ; 107 (Suppl 1) : S44-5.
2) Watanabe Y, Hirano H, Arai H, et al. Relationship between frailty and oral function in community-dwelling elderly adults. J Am Geriatr Soc. 2017 ; 65 : 66-76.
3) Iinuma T, Arai Y, Fukumoto M, et al. Maximum occlusal force and physical performance in the oldest old : The Tokyo oldest old survey on total health. J Am Geriatr Soc. 2012 ; 60 : 68-76.
4) Murakami M, Hirano H, Watanabe Y, et al. Relationship between chewing ability and sarcopenia in Japanese community dwelling older adults. Geriatr Gerontol Int. 2015 ; 15 : 1007-12.
5) Iinuma T, Arai Y, Takayama M, et al. Association between maximum occlusal force and 3-year all-cause mortality in community-dwelling elderly people. BMC Oral Health. 2016 ; 16 : 82.
6) Tsuga K, Yoshikawa M, Oue H, et al. Maximal voluntary tongue pressure is decreased in Japanese frail elderly persons. Gerodontology. 2012 ; 29 : e1078-85.
7) Yoshida M, Kikutani T, Tsuga K, et al. Decreased tongue pressure reflects symptom of dysphagia. Dysphagia. 2006 ; 21 : 61-5.
9) Shiraishi A, Yoshimura Y, Wakabayashi H, et al. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients : implications for oral sarcopenia. Clin Nutr. 2018 ; 37 : 204-7.
10) Mori T, Fujishima I, Wakabayashi H, et al. Development, reliability, and validity of a diagnostic algorithm for sarcopenic dysphagia. JCSM Clinical Reports. 2017 ; 2 : 1-10.
11) Matsuo H, Yoshimura Y, Fujita S, et al. Dysphagia is associated with poor physical function in patients with acute heart failure : a prospective cohort study. Aging Clin Exp Res. 2020 ; 32 : 1093-9.
12) Matsuo H, Yoshimura Y, Ishizaki N, et al. Dysphagia is associated with functional decline during acute-care hospitalization of older patients. Geriatr Gerontol Int. 2017 ; 17 : 1610-6.
13) Fujishima I, Fujiu-Kurachi M, Arai H, et al. Sarcopenia and dysphagia : position paper by four professional organizations. Geriatr Gerontol Int. 2019 ; 19 : 91-7.
14) Yoshimura Y, Wakabayashi H, Bise T, et al. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018 ; 37 : 2022-8.
15) Chee B, Park B, Bartold PM. Periodontitis and type II diabetes : a two-way relationship. Int J Evid Based Healthc. 2013 ; 11 : 317-29.
16) Preshaw PM, Bissett SM. Periodontitis and diabetes. Br Dent J. 2019 ; 227 : 577-84.
17) Jepsen S, Suvan J, Deschner J. The association of periodontal diseases with metabolic syndrome and obesity. Periodontology. 2000 ; 83 : 125-53.
18) Batty GD, Jung KJ, Mok Y, et al. Oral health and later coronary heart disease : cohort study of one million people. Eur J Prev Cardiol. 2018 ; 25 : 598-605.
19) Dave S, Van Dyke T. The link between periodontal disease and cardiovascular disease is probably inflammation. Oral Dis. 2008 ; 14 : 95-101.
20) Akar H, Akar GC, Carrero JJ, et al. Systemic consequences of poor oral health in chronic kidney disease patients. Clin J Am Soc Nephrol. 2011 ; 6 : 218-26.
21) Tonetti MS, D'Aiuto F, Nibali L, et al. Treatment of periodontitis and endothelial function. N Engl J Med. 2007 ; 356 : 911-20.
22) Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an Interna tional Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. J Am Med Dir Assoc. 2016 ; 17 : 675-7.
23) Sjogren P. Hospitalisation associated with a deterioration in oral health. Evid Based Dent. 2011 ; 12 : 48.
24) Terezakis E, Needleman I, Kumar N, et al. The impact of hospitalization on oral health : a systematic review. J Clin Periodontol. 2011 ; 38 : 628-36.
25) Abele-Horn M, Dauber A, Bauernfeind A, et al. Decrease in nosocomial pneumonia in ventilated patients by selective oropharyngeal decontamination (SOD). Intensive Care Med. 1997 ; 23 : 187-95.
26) Grap MJ, Munro CL, Ashtiani B, et al. Oral care interventions in critical care : frequency and documentation. Am J Crit Care. 2003 ; 12 : 113-9 ; discussion 119.
27) Wardh I, Hallberg LR, Berggren U, et al. Oral health care-A low priority in nursing staff. Scand J Caring Sci. 2000 ; 14 : 137-42.
28) Ajwani S, Jayanti S, Burkolter N, et al. Integrated oral health care for stroke patients-a scoping review. J Clin Nurs. 2017 ; 26 : 891-901.
29) Azarpazhooh A, Leake JL. Systematic review of the association between respiratory diseases and oral health. J Periodontol. 2006 ; 77 : 1465-82.
30) Sjogren P, Nilsson E, Forsell M, et al. A systematic review of the preventive effect of oral hygiene on pneumonia and respiratory tract infection in elderly people in hospitals and nursing homes : effect estimates and methodological quality of randomized controlled trials. J Am Geriatr Soc. 2008 ; 56 : 2124-30.
31) Ab Malik N, Yatim SM, Hussein N, et al. Oral hygiene practices and knowledge among stroke-care nurses : a multicentre cross-sectional study. J Clin Nurs. 2018 ; 27 : 1913-9.
32) Murray J, Scholten I. An oral hygiene protocol improves oral health for patients in inpatient stroke rehabilitation. Gerodontology. 2018 ; 35 : 18-24.
33) Gondo T, Fujita K, Nagafuchi M, et al. The effect of preventive oral care on postoperative infections after head and neck cancer surgery. Auris Nasus Larynx. 2020 ; 47 : 643-9.
34) Shiraishi A, Yoshimura Y, Wakabayashi H, et al. Impaired oral health status on admission is associated with poor clinical outcomes in post-acute inpatients : a prospective cohort study. Clin Nutr. 2019 ; 38 : 2677-83.
35) Shiraishi A, Yoshimura Y, Wakabayashi H, et al. Poor oral status is associated with rehabilitation outcome in older people. Geriatr Gerontol Int. 2017 ; 17 : 598-604.
36) Andersson P, Hallberg IR, Lorefalt B, et al. Oral health problems in elderly rehabilitation patients. Int J Dent Hyg. 2004 ; 2 : 70-7.
37) Hanne K, Ingelise T, Linda C, et al. Oral status and the need for oral health care among patients hospitalised with acute medical conditions. J Clin Nurs. 2012 ; 21 : 2851-9.
38) Yoshimura Y, Wakabayashi H, Bise T, et al. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019 ; 61 : 111-8.
39) Morita K, Tsuka H, Kato K, et al. Factors related to masticatory performance in healthy elderly individuals. J Prosthodont Res. 2018 ; 62 : 432-5.
40) Welmer AK, Rizzuto D, Parker MG, et al. Impact of tooth loss on walking speed decline over time in older adults : a population-based cohort study. Aging Clin Exp Res. 2017 ; 29 : 793-800.
41) Sawa Y, Kayashita J, Nikawa H. Occlusal support is associated with nutritional improvement and recovery of physical function in patients recovering from hip fracture. Gerodontology. 2020 ; 37 : 59-65.
42) Wakabayashi H, Matsushima M, Ichikawa H, et al. Occlusal support, dysphagia, malnutrition, and activities of daily living in aged individuals needing long-term care : a path analysis. J Nutr Health Aging. 2018 ; 22 : 53-8.
43) Baldini A, Beraldi A, Nota A, et al. Gnathological postural treatment in a professional basketball player : a case report and an overview of the role of dental occlusion on performance. Ann Stomatol (Roma). 2012 ; 3 : 51-8.
44) Furuta M, Komiya-Nonaka M, Akifusa S, et al. Interrelationship of oral health status, swallowing function, nutritional status, and cognitive ability with activities of daily living in Japanese elderly people receiving home care services due to physical disabilities. Community Dent Oral Epidemiol. 2013 ; 41 : 173-81.
45) Kiesswetter E, Hengeveld LM, Keijser BJ, et al. Oral health determinants of incident malnutrition in community-dwelling older adults. J Dent. 2019 ; 85 : 73-80.
46) Kiesswetter E, Keijser BJF, Volkert D, et al. Association of oral health with body weight : a prospective study in community-dwelling older adults. Eur J Clin Nutr. 2020 ; 74 : 961-9.
47) Kim HJ, Lee J-Y, Lee E-S, et al. Improvements in oral functions of elderly after simple oral exercise. Clin Interv Aging. 2019 ; 14 : 915-24.
48) Persic S, Celebic A. Influence of different prosthodontic rehabilitation options on oral health-related quality of life, orofacial esthetics and chewing function based on patient-reported outcomes. Qual Life Res. 2015 ; 24 : 919-26.
49) Kikutani T, Enomoto R, Tamura F, et al. Effects of oral functional training for nutritional improvement in Japanese older people requiring long-term care. Gerodontology. 2006 ; 23 : 93-8.
50) Sakayori T, Maki Y, Hirata S, et al. Evaluation of a Japanese "Prevention of Long-term Care" project for the improvement in oral function in the high-risk elderly. Geriatr Gerontol Int. 2013 ; 13 : 451-7.
51) Cho EP, Hwang S-J, Clovis JB, et al. Enhancing the quality of life in elderly women through a programme to improve the condition of salivary hypofunction. Gerodontology. 2012 ; 29 : e972-80.
52) Hakuta C, Mori C, Ueno M, et al. Evaluation of an oral function promotion programme for the independent elderly in Japan. Gerodontology. 2009 ; 26 : 250-8.
53) Barnett T, Hoang H, Stuart J, et al. Non-dental primary care providers' views on challenges in providing oral health services and strategies to improve oral health in Australian rural and remote communities : a qualitative study. BMJ Open. 2015 ; 5 : e009341.
54) Shimpi N, Schroeder D, Kilsdonk J, et al. Medical providers' oral health knowledgeability, attitudes, and practice behaviors : an opportunity for interprofessional collaboration. J Evid Based Dent Pract. 2016 ; 16 : 19-29.
55) Sippli K, Rieger MA, Huettig F, et al. GPs' and dentists' experiences and expectations of interprofessional collaboration : findings from a qualitative study in Germany. BMC Health Serv Res. 2017 ; 17 : 179.
56) Shiraishi A, Yoshimura Y, Wakabayashi H, et al. Hospital dental hygienist intervention improves activities of daily living, home discharge and mortality in post-acute rehabilitation. Geriatr Gerontol Int. 2019 ; 19 : 189-96.
57) Shiraishi A, Wakabayashi H, Yoshimura Y. Oral management in rehabilitation medicine : oral frailty, oral sarcopenia, and hospital-associated oral problems. J Nutr Health Aging. 2020 ; 24 : 1094-9.
P.60 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. https://www.j-circ.or.jp/old/guideline/pdf/JCS2017_tsutsui_h.pdf
2) Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007 ; 50 : 1561-9.
3) Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016 ; 4 : 220-7.
4) Sandek A, Swidsinski A, Schroedl W, et al. Intestinal blood flow in patients with chronic heart failure : a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014 ; 64 : 1092-102.
5) Befkowitz D, Croll MN, Likoff W. Malabsorption as a complication of congestive heart failure. Am J Cardiol. 1963 ; 11 : 43-7.
6) Sandek A, Bjarnason I, Volk HD, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012 ; 157 : 80-5.
7) King D, Smith ML, Lye M. Gastro-intestinal protein loss in elderly patients with cardiac cachexia. Age Ageing. 1996 ; 25 : 221-3.
8) Mertens L, Hagler DJ, Sauer U, et al. Protein-losing enteropathy after the Fontan operation : an international multicenter study. PLE study group. J Thorac Cardiovasc Surg. 1998 ; 115 : 1063-73.
9) 市橋光. Fontan術後蛋白漏出性胃腸症の原因と治療. 日小循環器会誌. 2013 ; 29 : 251-3.
10) Anker SD, Egerer KR, Volk HD, et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol. 1997 ; 79 : 1426-30.
11) Katsimichas T, Ohtani T, Motooka D, et al. Non-ischemic heart failure with reduced ejection fraction is associated with altered intestinal microbiota. Circ J. 2018 ; 82 : 1640-50.
12) Song Y, Liu Y, Qi B, et al. Association of small intestinal bacterial overgrowth with heart failure and its prediction for short-term outcomes. J Am Heart Assoc. 2021 ; 10 : e015292.
13) King D, Smith ML, Chapman TJ, et al. Fat malabsorption in elderly patients with cardiac cachexia. Age Ageing. 1996 ; 25 : 144-9.
14) Taniguchi T, Ohtani T, Kioka H, et al. Liver stiffness reflecting right-sided filling pressure can predict adverse outcomes in patients with heart failure. JACC Cardiovasc Imaging. 2019 ; 12 : 955-64.
P.69 掲載の参考文献
2) 2013 ACCF/AHA Guideline for the Management of Heart Failure : A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guideline.
3) Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997 ; 349 : 1050-3.
4) Okoshi MP, Capalbo RV, Romeiro FG, et al. Cardiac cachexia : perspectives for prevention and treatment. Arq Bras Cardiol. 2017 ; 108 : 74-80.
5) Chojkier M. Inhibition of albumin synthesis in chronic diseases : molecular mechanisms. J Clin Gastroenterol. 2005 ; 39 : S143-6.
6) Langhans W, Hrupka B. Interleukins and tumor necrosis factor as inhibitors of food intake. Neuropeptides. 1999 ; 33 : 415-24.
8) Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007 ; 50 : 1561-9.
9) Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure : a prospective cohort study. Lancet. 1999 ; 353 : 1838-42.
10) Deaton C, Mamas MA, Rutter MK, et al. Glucose and insulin abnormalities in patients with heart failure. Eur J Cardiovasc Nurs. 2011 ; 10 : 75-87.
11) Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure : relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997 ; 30 : 527-32.
12) Doehner W, Rauchhaus M, Ponikowski P, et al. Impaired insulin sensitivity as an in-dependent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005 ; 46 : 1019-26.
13) Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997 ; 96 : 526-34.
14) Pasini E, Aquilani R, Dioguardi FS, et al. Hypercatabolic syndrome : molecular basis and effects of nutritional supplements with amino acids. Am J Cardiol. 2008 ; 101 : 11E-15E.
15) Anker SD, Volterrani M, Pflaum CD, et al. Acquired growth hormone resistance in patients with chronic heart failure : implications for therapy with growth hormone. J Am Coll Cardiol. 2001 ; 38 : 443-52.
16) Anker SD, Swan JW, Volterrani M, et al. The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J. 1997 ; 18 : 259-69.
17) Tsuji S, Koyama S, Taniguchi R, et al. Nutritional status of outpatients with chronic stable heart failure based on serum amino acid concentration. J Cardiol. 2018 ; 72 : 458-65.
18) Ryden M, Arner P. Fat loss in cachexia is there a role for adipocyte lipolysis? Clin Nutr. 2007 ; 26 : 1-6.
19) Lavie CJ, Osman AF, Milani RV, et al. Body composition and prognosis in chronic systolic heart failure : the obesity paradox. Am J Cardiol. 2003 ; 91 : 891-4.
21) Toma M, McAlister FA, Coglianese EE, et al. Testosterone supplementation in heart failure : a meta-analysis. Circ Heart Fail. 2012 ; 5 : 315-21.
22) von Haehling S, Anker SD. Treatment of cachexia : an overview of recent developments. J Am Med Dir Assoc. 2014 ; 15 : 866-72.
23) Anker SD, Negassa A, Coats AJ, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors : an observational study. Lancet. 2003 ; 361 : 1077-83.
24) Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers : a pilot study. Int J Cardiol. 2006 ; 106 : 319-22.
25) Clark AL, Coats AJS, Krum H, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure : results from the COPERNICUS trial. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 549-56.
26) Rauchhaus M, Coats AJ, Anker SD. Theendotoxin-lipoprotein hypothesis. Lancet. 2000 ; 356 : 930-3.
27) Aquilani R, Viglio S, Iadarola P, et al. Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am J Cardiol. 2008 ; 101 : 104E-10E.
28) Rozentryt P, von Haehling S, Lainscak M, et al. The effects of a high-caloric protein-rich oral nutritional supplement in patients with chronic heart failure and cachexia on quality of life, body composition, and inflammation markers : a randomized, double-blind pilot study. J Cachexia Sarcopenia Muscle. 2010 ; 1 : 35-42.
29) Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia : molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2010 ; 1 : 9-21.
30) Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women : a randomized controlled trial. J Am Geriatr Soc. 2012 ; 60 : 16-23.
31) Nakayama H, Koyama S, Kuragaichi T, et al. Prognostic value of rising serum albumin during hospitalization in patients with acute heart failure. Am J Cardiol. 2016 ; 117 : 1305-9.
32) Bonilla-Palomas JL, Gamez-Lopez AL, Castillo-Dominguez JC, et al. Nutritional intervention in malnourished hospitalized patients with heart failure. Arch Med Res. 2016 ; 47 : 535-40.
P.77 掲載の参考文献
1) Cederholm T, Jensen GL, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition-a consensus report from the global clinical nutrition community. Clin Nutr. 2019 ; 38 : 1-9.
2) Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia : 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 ; 21 : 300-307.e2.

第3章 心不全の栄養評価

P.84 掲載の参考文献
1) 中屋豊. 栄養評価における血清アルブミン値の考え方-低栄養の指標としてのアルブミン? 臨栄. 2008 ; 112 : 453-9.
2) Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999 ; 340 : 448-54.
3) White JV, Guenter P, Jensen G, et al. Academy Malnutrition Work Group. Consensus statement : Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition : characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). JPEN J Parenter Enteral Nutr. 2012 ; 36 : 275-83.
4) Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition-An ESPEN Consensus Statement. Clin Nutr. 2015 ; 34 : 335-40.
5) Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure : an overview. Heart. 2004 ; 90 : 464-70.
6) Dick SA, Epelman S. Chronic heart failure and inflammation : what do we really know? Circ Res. 2016 ; 119 : 159-76.
7) Fiordelisi A, Iaccarino G, Morisco C, et al. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int J Mol Sci. 2019 ; 20 : 1599.
8) Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2014 ; 35 : 426-30.
10) Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997 ; 349 : 1050-3.
11) 鈴木規雄, 木田圭亮, 明石嘉浩. 循環器疾患患者における栄養評価の実際. Heart View. 2017 ; 21 : 575-82.
12) O'Daly BJ, Walsh JC, Quinlan JF, et al. Serum albumin and total lymphocyte count as predictors of outcome in hip fractures. Clin Nutr. 2010 ; 29 : 89-93.
13) Kuzuya M, Kanda S, Koike T, et al. Lack of correlation between total lymphocyte count and nutritional status in the elderly. Clin Nutr. 2005 ; 24 : 427-32.
14) Najera O, Gonzalez C, Cortes E, et al. Effector T lymphocytes in wel1-nourished and malnourished infected children. Clin Exp Immunol. 2007 ; 148 : 501-6.
15) Ignacio de Ulibarri J, Gonzalez-Madrono A, de Villar NG, et al. CONUT : a tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp. 2005 ; 20 : 38-45.
16) Bouillanne O, Morineau G, Dupont C, et al. Geriatric Nutritional Risk Index : a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005 ; 82 : 777-83.
P.90 掲載の参考文献
1) Reidenberg MM. Should administration of coenzyme Q10 be recommended to patients with congestive heart failure? Clin Pharmacol Ther. 2014 ; 96 : 647-9.
2) Montgomery TD, Cohen AE, Garnick J, et al. Nutrition assessment, care, and considerations of ventricular assist device patients. Nutr Clin Prac. 2012 ; 27 : 352-62.
3) Patel Y, Joseph J. Sodium intake and heart failure. Int J Mol Sci. 2020 ; 21 : 9474.
4) Andreae C, Arestedt K, Evangelista L, et al. The relationship between physical activity and appetite in patients with heart failure : a prospective observational study. Eur J Cardiovasc Nurs. 2019 ; 18 : 410-7.
5) Girerd N, Seronde MF, Coiro S, et al. Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail. 2018 ; 6 : 273-85.
6) Sanchez MM, Frances CP, Diaz-Rubio ER. Chronic diarrhea, weight loss and heart failure. Features of the same disease? Rev Esp Enferm Dig. 2017 ; 109 : 606-7.
P.104 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018.
3) 日本循環器学会. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. 2021.
4) 「日本人の食事摂取基準」策定検討会. 「日本人の食事摂取基準」策定検討会報告書. In : 伊藤貞嘉, 佐々木敏, 監修. 日本人の食事摂取基準 (2020年版) 東京 : 第一出版. 2020.
5) 日本肥満学会. 肥満症診療ガイドライン 2016. 東京 : ライフサイエンス出版 ; 2016.
6) Sharma A, Lavie CJ, Borer JS, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. J Am Coll Cardiol. 2015 ; 115 : 1428-34.
7) Zamora E, Diez-Lopez C, Lupon J, et al. Weight loss in obese patients with heart failure. J Am Heart Assoc. 2016 ; 5. e002468.
8) Kamiya K, Masuda T, Matsue Y, et al. Complementary role of arm circumference to body mass index in risk stratification in heart failure. JACC Heart Fail. 2016 ; 4 : 265-73.
9) 厚生労働省. 令和元年 国民健康・栄養調査報告 第2部 身体状況調査の結果. 令和2年12月.
10) Peng W, Zhang C, Wang Z, et al. Prediction of all-cause mortality with hypoalbuminemia in patients with heart failure : a meta-analysis. Biomarkers. 2019 ; 24 : 631-7.
11) Prenner SB, Kumar A, Zhao L, et al. Effect of serum albumin levels in patients with heart failure with preserved ejection fraction (from the TOPCAT Trial). Am J Cardiol. 2020 ; 125 : 575-82.
12) Zhang Z, Pereira SL, Luo M, et al. Evaluation of blood biomarkers associated with risk of malnutrition in older adults : a systematic review and meta-analysis. Nutrients. 2017 ; 9 : 829.
13) Rauchhaus M, Clark AL, Doehner W, et al. The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol. 2003 ; 42 : 1933-40.
14) Detsky AS, McLaughlin JR, Baker JP, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987 ; 11 : 8-13.
15) Vellas B, Villars H, Abellan G, et al. Overview of the MNA--its history and challenges. J Nutr Health Aging. 2006 ; 10 : 456-63.
16) Kaiser MJ, Bauer JM, Ramsch C, et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF) : a practical tool for identification of nutritional status. J Nutr Health Aging. 2009 ; 13 : 782-8.
17) Joaquin C, Alonso N, Lupon J, et al. Mini Nutritional Assessment Short Form is a morbi-mortality predictor in outpatients with heart failure and mid-range left ventricular ejection fraction. Clin Nutr. 2020 ; 39 : 3395-401.
18) Tevik K, Thurmer H, Husby MI, et al. Nutritional risk screening in hospitalized patients with heart failure. Clin Nutr. 2015 ; 34 : 257-64.
19) Bouillanne O, Morineau G, Dupont C, et al. Geriatric Nutritional Risk Index : a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005 ; 82 : 777-83.
20) Dong C-H, Chen S-Y, Zeng H-L, et al. Geriatric nutritional risk index predicts all-cause mortality in patients with heart failure : a systematic review and meta-analysis. Clinics (Sao Paulo). 2021 ; 76 : e2258.
21) Sargento L, Simoes AV, Rodrigues J, et al. Geriatric nutritional risk index as a nutritional and survival risk assessment tool in stable outpatients with systolic heart failure. Nutr Metab Cardiovasc Dis. 2017 ; 27 : 430-7.
22) Nishi I, Seo Y, Hamada-Harimura Y, et al. Nutritional screening based on the controlling nutritional status (CONUT) score at the time of admission is useful for long-term prognostic prediction in patients with heart failure requiring hospitalization. Heart Vessels. 2017 ; 32 : 1337-49.
23) Nochioka K, Sakata Y, Takahashi J, et al. Prognostic impact of nutritional status in asymptomatic patients with cardiac diseases : a report from the CHART-2 Study. Circ J. 2013 ; 77 : 2318-26.
24) Jensen GL, Cederholm T, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition : a consensus report from the Global Clinical Nutrition Community. JPEN J Parenter Enteral Nutr. 2019 ; 43 : 32-40.
25) Hirose S, Matsue Y, Kamiya K, et al. Prevalence and prognostic implications of malnutrition as defined by GLIM criteria in elderly patients with heart failure. Clin Nutr. 2021 ; 40 : 4334-40.
26) 木田圭亮. 低栄養評価ツールGLIM基準を心不全診療に生かす. 医学界新聞. 2020/1/20. https://www.igaku-shoin.co.jp/paper/archive/y2020/PA03355_02
27) 勝又明敏, 兼岡麻子, 小山珠美, 他 ; 日本摂食嚥下リハビリテーション学会 医療検討委員会. 摂食嚥下障害の評価 2019. https://www.jsdr.or.jp/wp-content/uploads/file/doc/assessment2019-announce.pdf
28) 若林秀隆, 栢下淳. 摂食嚥下障害スクリーニング質問紙票eat-10の日本語版作成と信頼性・妥当性の検証. 静脈経腸栄養. 2014 ; 29 : 871-6.
29) 厚生労働省. 人生の最終段階における医療の普及・啓発の在り方に関する検討会. 人生の最終段階における医療に関する意識調査報告書 平成30年3月. https://www.mhlw.go.jp/toukei/list/dl/saisyuiryo_a_h29.pdf
P.112 掲載の参考文献
1) White JV, Guenter P, Jensen G, et al. Consensus statement : Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition : characteristics recommended for the identification and documentation of adult malnutrition (undernutrition). J Parenter Enteral Nutr. 2012 ; 36 : 275-83.
2) Cederholm T, Jensen GL, Correia MITD, et al. GLIM Working Group. GLIM criteria for the diagnosis of malnutrition-a consensus report from the global clinical nutrition community. Clin Nutr. 2019 ; 38 : 1-9.
3) Gibson DJ, Burden ST, Strauss BJ, et al. The role of computed tomography in evaluating body composition and the influence of reduced muscle mass on clinical outcome in abdominal malignancy : a systematic review. Eur J Clin Nutr. 2015 ; 69 : 1079-86.
4) Bichels AV, Cordeiro AC, Avesani CM, et al. Muscle mass assessed by computed tomography at the third lumbar vertebra predicts patient survival in chronic kidney disease. J Ren Nutr. 2021 ; 31 : 342-50.
5) Yao J, Zhou X, Yuan L, et al. Prognostic value of the third lumbar skeletal muscle mass index in patients with liver cirrhosis and ascites. Clin Nutr. 2020 ; 39 : 1908-13.
6) Funamizu T, Nagatomo Y, Saji M, et al. Low muscle mass assessed by psoas muscle area is associated with clinical adverse events in elderly patients with heart failure. PLoS One. 2021 ; 16 : e0247140.
7) Lopez PD, Nepal P, Akinlonu A, et al. Low skeletal muscle mass independently predicts mortality in patients with chronic heart failure after an acute hospitalization. Cardiology. 2019 ; 142 : 28-36.
8) DiBello JR, Miller R, Khandker R, et al. Association between low muscle mass, functional limitations and hospitalisation in heart failure : NHANES 1999-2004. Age Ageing. 2015 ; 44 : 948-54.
9) Yamada Y, Nishizawa M, Uchiyama T, et al. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health. 2017 ; 14 : 809.
10) Andreoli A, Scalzo G, Masala S, et al. Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med. 2009 ; 114 : 286-300.
11) Kelly TL, Berger N, Richardson TL. DXA body composition : theory and practice. Appl Radiat Isot. 1998 ; 49 : 511-3.
12) Pietrobelli A, Wang Z, Formica C, et al. Dual-energy X-ray absorptiometry : fat estimation errors due to variation in soft tissue hydration. Am J Physiol. 1998 ; 274 : E808-16.
13) Alves FD, Souza GC, Biolo A, et al. Comparison of two bioelectrical impedance devices and dual-energy X-ray absorptiometry to evaluate body composition in heart failure. J Hum Nutr Diet. 2014 ; 27 : 632-8.
14) Davenport A. Does peritoneal dialysate affect body composition assessments using multi-frequency bioimpedance in peritoneal dialysis patients? Eur J Clin Nutr. 2013 ; 67 : 223-5.
15) Fan S, Sayed RH, Davenport A. Extracellular volume expansion in peritoneal dialysis patients. Int J Artif Organs. 2012 ; 35 : 338-45.
16) Buchkremer F, Segerer S. Body surface area, creatinine excretion rate, and total body water : reference data for adults in the United States. Kidney Med. 2021 ; 3 : 312-3.
17) Takagi H, Hari Y, Kawai N, et al. Meta-analysis of the prognostic value of psoas-muscle area on mortality in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2018 ; 122 : 1394-400.
18) Matsumura K, Teranaka W, Matsumoto H, et al. Loss of skeletal muscle mass predicts cardiac death in heart failure with a preserved ejection fraction but not heart failure with a reduced ejection fraction. ESC Heart Fail. 2020 ; 7 : 4100-7.
19) Sakurai K, Kubo N, Tamura T, et al. Adverse effects of low preoperative skeletal muscle mass in patients undergoing gastrectomy for gastric cancer. Ann Surg Oncol. 2017 ; 24 : 2712-9.
20) Iritani S, Imai K, Takai K, et al. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol. 2015 ; 50 : 323-32.
22) Joglekar S, Asghar A, Mott SL, et al. Sarcopenia is an independent predictor of complications following pancreatectomy for adenocarcinoma. J Surg Oncol. 2015 ; 111 : 771-5.
23) Teigen LM, Kuchnia AJ, Nagel E, et al. Impact of software selection and ImageJ tutorial corrigendum on skeletal muscle measures at the third lumbar vertebra on computed tomography scans in clinical populations. JPEN J Parenter Enteral Nutr. 2018 ; 42 : 933-41.
24) Ishida Y, Maeda K, Yamanaka Y, et al. Formula for the cross-sectional area of the muscles of the third lumbar vertebra level from the twelfth thoracic vertebra level slice on computed tomography. Geriatrics. 2020 ; 5 : 47.
25) Matsuyama R, Maeda K, Yamanaka Y, et al. Assessing skeletal muscle mass based on the cross-sectional area of muscles at the 12th thoracic vertebra level on computed tomography in patients with oral squamous cell carcinoma. Oral Oncol. 2021 ; 113 : 105126.
26) Narici M, McPhee J, Conte M, et al. Age-related alterations in muscle architecture are a signature of sarcopenia : the ultrasound sarcopenia index. J Cachexia Sarcopenia Muscle. 2021 ; 12 : 973-82.
27) Barotsis N, Galata A, Hadjiconstanti A, et al. The ultrasonographic measurement of muscle thickness in sarcopenia. A prediction study. Eur J Phys Rehabil Med. 2020 ; 56 : 427-37.
29) Ishida Y, Maeda K, Nonogaki T, et al. Impact of edema on length of calf circumference in older adults. Geriatr Gerontol Int. 2019 ; 19 : 993-8.

第4章 急性心不全における栄養管理

P.117 掲載の参考文献
1) Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 ; 38 : 48-79.
2) Ceriello A. Acute hyperglycaemia : a 'new' risk factor during myocardial infarction. Euro Heart J. 2005 ; 26 : 328-31.
P.123 掲載の参考文献
1) 一般社団法人日本集中治療医学会日本版重症患者の栄養管理ガイドライン作成委員会. 日本版重症患者の栄養療法ガイドライン 総論 2016 & 病態別 2017 (J-CCNTG) ダイジェスト版. 東京 : 真興交易 (株) 医書出版部 ; 2018.
2) 日本心不全学会ガイドライン委員会, 編. 心不全患者における栄養評価・管理に関するステートメント. 2018.
P.131 掲載の参考文献
1) Yamamoto K, Tsuchihashi-Makaya M, Kinugasa Y, et al. Japanese Heart Failure Society 2018 Scientific Statement on Nutritional Assessment and Management in Heart Failure Patients. Circ J. 2020 ; 84 : 1408-44.
3) Marschall J, Mermel LA, Fakih M, et al. Strategies to prevent central line-associated bloodstream infections in acute care hospitals : 2014 update. Infect Control Hosp Epidemiol. 2014 ; 35 : 753-71.
4) Timsit JF, Baleine J, Bernard L, et al. Expert consensus-based clinical practice guidelines management of intravascular catheters in the intensive care unit. Ann Intensive Care. 2020 ; 10 : 118.
5) 日本集中治療医学会重症患者の栄養管理ガイドライン作成委員会. 日本版重症患者の栄養療法ガイドライン. 日集中医会誌. 2016 ; 23 : 185-281.
7) Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients : an observational study. Clin Nutr. 2006 ; 25 : 37-44.
8) Fetterplace K, Deane AM, Tierney A, et al. Targeted full energy and protein delivery in critically ill patients : a pilot randomized controlled trial (FEED Trial). JPEN J Parenter Enteral Nutr. 2018 ; 42 : 1252-62.
9) ワーキンググループJIPAD. JIPAD Annual Report 2019. 2021. https://www.jipad.org/images/include/report/report2019/final_report03.pdf
10) Nakamura K, Nakano H, Naraba H, et al. High protein versus medium protein delivery under equal total energy delivery in critical care : a randomized controlled trial. Clin Nutr. 2021 ; 40 : 796-803.
11) Alberda C, Gramlich L, Jones N, et al. The relationship between nutritional intake and clinical outcomes in critically ill patients : results of an international multicenter observational study. Intensive Care Med. 2009 ; 35 : 1728-37.
12) McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.). JPEN J Parenter Enteral Nutr. 2016 ; 40 : 159-211.
13) Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 ; 38 : 48-79.
16) 海塚安郎. 重症病態の栄養管理における静脈栄養の実際. 日静脈経腸栄会誌. 2018 ; 33 : 853-62.
17) Reintam Blaser A, Starkopf J, Alhazzani W, et al. Early enteral nutrition in critically ill patients : ESICM clinical practice guidelines. Intensive Care Med. 2017 ; 43 : 380-98.
18) Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 ; 38 : 48-79.
19) Harvey SE, Parrott F, Harrison DA, et al. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014 ; 371 : 1673-84.
20) Reignier J, Boisrame-Helms J, Brisard L, et al. Enteral versus parenteral early nutrition in ventilated adults with shock : a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018 ; 391 : 133-43.
21) Elke G, van Zanten AR, Lemieux M., et al. Enteral versus parenteral nutrition in critically ill patients : an updated systematic review and meta-analysis of randomized controlled trials. Crit Care. 2016 ; 20 : 117.
22) 日本静脈経腸栄養学会. 静脈経腸栄養ガイドライン : 静脈・経腸栄養を適正に実施するためのガイドライン. 第3版. 東京 : 照林社 ; 2013. p. viii, 49, 427.
23) Heidegger CP, Berger MM, Graf S, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients : a randomised controlled clinical trial. Lancet. 2013 ; 381 : 385-93.
24) Berger MM, Pantet O, Jacquelin-Ravel N, et al. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients : The SPN2 randomized tracer study. Clin Nutr. 2019 ; 38 : 2408-16.
25) Friedli N, Stanga Z, Culkin A, et al. Management and prevention of refeeding syndrome in medical inpatients : an evidence-based and consensus-supported algorithm. Nutrition. 2018 ; 47 : 13-20.
26) Coskun R, Gundogan K, Baldane S, et al. Refeeding hypophosphatemia : a potentially fatal danger in the intensive care unit. Turk J Med Sci. 2014 ; 44 : 369-74.
27) Doig GS, Simpson F, Heighes PT, et al. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults : a randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir Med. 2015 ; 3 : 943-52.
28) da Silva JSV, Seres DS, Sabino K, et al. ASPEN Consensus Recommendations for Refeeding Syndrome. Nutr Clin Pract. 2020 ; 35 : 178-95.
29) Care National Collaborating Centre for Acute. Nutrition support for adults : oral nutrition support, enteral tube feeding and parenteral nutrition. 2006. www.rcseng.ac.uk
30) Yoshida M, Izawa J, Wakatake H, et al. Mortality associated with new risk classification of developing refeeding syndrome in critically ill patients : a cohort study. Clin Nutr. 2021 ; 40 : 1207-13.
31) 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020. 日集中医誌. 2020 ; advpub.
32) 筒井裕之. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018 [cited 2021年5月5日]. https://www.j-circ.or.jp/old/guideline/pdf/JCS2017_tsutsui_h.pdf
33) Freund Y, Cachanado M, Delannoy Q, et al. Effect of an emergency department care bundle on 30-day hospital discharge and survival among elderly patients with acute heart failure : the ELISABETH randomized clinical trial. JAMA. 2020 ; 324 : 1948-56.
P.144 掲載の参考文献
1) 日本精神神経学会, 日本語版用語監修, 高橋三郎, 大野裕, 監訳. DSM-5 精神疾患の診断・統計マニュアル. 東京 : 医学書院 ; 2014.
2) Meagher D, Moran M, Raju B, et al. A new databased motor subtype schema for delirium. J Neuropsychiatry Clin Neurosci. 2008 ; 20 : 185-93.
3) Marcantonio ER. Delirium in hospitalized older adults. N Engl J Med. 2017 ; 377 : 1456-66.
4) Maldonado JR. Neuropathogenesis of delirium : review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013 ; 21 : 1190-222.
5) 和田健. せん妄の病態と治療. 精神医. 2018 ; 60 : 223-32.
6) Tahara Y, Shibata S. Chrono-biology, chrono-pharmacology, and chrono-nutrition. J Pharmacol Sci. 2014 ; 124 : 320-35.
7) Kagawa Y. From clock genes to telomeres in the regulation of the healthspan. Nutr Rev. 2012 ; 70 : 459-71.
8) 古賀雄二, 村田洋章, 山勢博彰. 日本語版CAM-ICUフローシートの妥当性と信頼性の検証. 山口医. 2014 ; 63 : 93-101.
9) Wilson JE, Mart MF, Cunningham C, et al. Delirium. Nat Rev Dis Primers. 2020 ; 6 : 90.
10) 日本集中治療医学会J-PADガイドライン作成委員会. 日本版・集中治療室における成人重症患者に対する痛み・不穏・せん妄管理のための臨床ガイドライン. 日集中医誌. 2014 ; 21 : 539-79.
11) Pendlebury S, Lovett N, Smith S, et al. Observational, longitudinal study of delirium in consecutive unselected acute medical admissions : age-specific rates and associated factors, mortality and re-admission. BMJ Open. 2015 ; 5 : e007808.
13) Bourdel-Marchasson I, Vincent S, Germain C, et al. Delirium symptoms and low dietary intake in older inpatients are independent predictors of institutionalization : a 1-year prospective population-based study. J Gerontol A Biol Sci Med Sci. 2004 ; 59 : 350-4.
14) Ampadu J, Morley JE. Heart failure and cognitive dysfunction. Int J Cardiol. 2015 ; 178 : 12-23.
15) Honda S, Nagai T, Sugano Y, et al. Prevalence, determinants, and prognostic significance of delirium in patients with acute heart failure. Int J Cardiol. 2016 : 222 : 521-7.
16) Hayashi A, Kobayashi S, Matsui K, et al. The accuracy of delirium assessment by cardiologists treating heart failure inpatients : a single center retrospective survey. Biopsychosoc Med. 2020 ; 14 : 15.
P.151 掲載の参考文献
1) 菊池学, 長尾建, 植松瀬勝男. 心原性ショックの治療のすすめかた. 心臓. 2002 ; 34 : 521-31.
2) 河内正治. 症状・疾患に対する栄養療法ショック. In : 東口高志, 編. NST完全ガイド・改訂版 経腸栄養・静脈栄養の基礎と実践. 第2版. 東京 : 照林社 ; 2010. p.250-4.
3) Singh G, Chaudry KL, Chuldler LC. Sepsis produces early depression of gut absorptive capacity : restration with diltiazem treatment. Am J Physiol. 1992 ; 263 : 19-23.
4) 日本消化器病学会関連研究会慢性便秘の診断・治療研究会. 慢性便秘症診療ガイドライン 2017. 東京 : 南江堂 ; 2019. p.3-5.
5) 医療情報研究所. 病気がみえる消化器. 第5版. 東京 : メディックメディア ; 2016. p.16-21.
6) Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun. 1979 ; 23 : 403-11.
7) Ziegier TR. L-glutamin-enriched parenteral nutrition in catabolic patients. Clin Nutr. 1993 ; 12 : 65-6.
8) 日本集中治療医学会. 日本版重症患者の栄養療法ガイドライン 総論 2016 & 病態別 2017 J-CCNTG ダイジェスト版. 東京 : 真興交易医書出版部 ; 2018. p.38-9.
9) Heyland DK. Critical care nutrition. Canadian Clinical Practice Guideline [. serial on the Internet] 2015 Jun [cited on march 2013] http://www.criticalcarenutrition.com/docs/cpgs2012/2.0.pdf
10) Doig GS, Heighes PT, Simpson F, et al. Early enteral nutrition reduces mortality in trauma patients requiring intensive care : a meta-analysis of randomised controlled trials. Injury. 2011 ; 42 : 50-6.
11) Hietbrink F, Besselink MG, Renooij W, et al. Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock. 2009 ; 32 : 374-8.
12) Ziegler TR, Smith RJ, O'Dwyer ST, et al. Increased intestinal permeability associated with infection in burn patients. Arch Surg. 1988 ; 123 : 1313-9.
13) Mancl EE, Muzevich KM. Tolerability and safety of enteral nutrition in critically ill patients receiving intravenous vasopressor therapy. JPEN J Parenter Enteral Nutr. 2013 ; 37 : 641-51.
14) Rai SS, O'Connor SN, Lange K, et al. Enteral nutrition for patients in septic shock : a retrospective cohort study. Crit Care Resusc. 2010 ; 12 : 177-81.
15) Berger MM, Revelly JP, Cayeux MC, et al. Enteral nutrition in critically ill patients with severe hemodynamic failure after cardiopulmonary bypass. Clin Nutr. 2005 ; 24 : 124-32.
16) Berger MM, Berger-Gryllaki M, Wiesel PH, et al. Intestinal absorption in patients after cardiac surgery. Crit Care Med. 2000 ; 28 : 2217-23.
17) Ohbe H, Jo T, Yamana H, et al. Early enteral nutrition for cardiogenic or obstructive shock requiring venoarterial extracorporeal membrane oxygenation : a nationwide inpatient database study. Intensive Care Med. 2018 ; 44 : 1258-65.
18) 日本集中治療医学会. 日本版重症患者の栄養療法ガイドライン総論 2016 & 病態別 2017 J-CCNTG ダイジェスト版. 東京 : 真興交易医書出版部 ; 2018. p.42-3.
19) McClave SA, Martindale RG, Vanek VW, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.). JPEN J Parenter Enteral Nutr. 2009 ; 33 : 277-316.
20) 日本静脈経腸栄養学会. 静脈経腸栄養ハンドブック. 東京. 南江堂 ; 2013. p.228-35.
21) Montejo JC, Grau T, Acosta J, et al. Multicenter prospective randomized single-blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med. 2002 ; 30 : 796-800.
22) Meert KL, Daphtary KM, Metheny NA. Gastric versus small-bowel feeding in critically ill children receiving mechanical ventilation : a randomized controlled trial. Chest. 2004 ; 126 : 872-8.
23) Shang E, Geiger N, Sturm W, et al. Pump-assisted versus gravity-controlled enteral nutrition in long-term percutaneous endoscopic gastrostomy patients : a prospective controlled trial. J Parenter Enter Nutr. 2003 ; 27 : 216-9.
24) Steevens EC, Lipscomb AF, Poole GV, et al. Comparison of continuous vs intermittent nasogastric enteral feeding in trauma patients : perceptions and practice. Nutr Clin Pract. 2002 ; 17 : 118-22.
25) Lee JSW, Auyeung TW. A comparison of two feeding methods in the alleviation of diarrhoea in older tube-fed patients : a randomised controlled trial. Age Ageing. 2003 ; 32 : 388-93.
26) Mowatt-Larssen CA, Browen RO, Wojtysiak SL, et al. Comparison of tolerance and nutritional outcome between a peptide and a standard enteral formula in critically ill, hypoalbuminemic patients. JPEN J Parenter Enteral Nutr. 1992 ; 16 : 20-4.
27) Meredith JW, Ditesheim JA, Zaloga GP. Visceral protein levels in trauma patients are greater with peptide diet than with intact protein diet. J Trauma. 1990 ; 30 : 825-9.
28) Brinson RR, Kolts BE. Diarrhea associated with severe hypoalbuminemia : a comparison of a peptide-based chemically defined diet and standard enteral alimentation. Crit Care Med. 1988 ; 16 : 130-6.
29) Schultz AA, Ashby-Hughes B, Taylor R, et al. Effects of pectin on diarrhea in critically ill tube-fed patients receiving antibiotics. Am J Crit Care. 2000 ; 9 : 403-11.
30) Spapen H, Diltoer M, Van Malderen C, et al. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition : a prospective, doubleblind, randomized, and controlled trial. Clin Nutr. 2001 ; 20 : 301-5.
31) 日本集中治療医学会. 日本版重症患者の栄養療法ガイドライン 総論 2016 & 病態別 2017 J-CCNTG ダイジェスト版. 東京 : 真興交易医書出版部 ; 2018. p.82-3.
32) Scaife CL, Saffle JR, Morris SE. Intestinal obstruction secondary to enteral feedings in burn trauma patients. J Trauma. 1999 ; 47 : 859-63.
33) McIvor AC, Meguid MM, Curtas S, et al. Intestinal obstruction from cecal bezoar ; a complication of fibercontaining tube feedings. Nutrition. 1990 ; 6 : 115-7.
34) Petrof EO, Dhaliwal R, Manzanares W, et al. Probiotics in the critically ill : a systematic review of the randomized trial evidence. Crit Care Med. 2012 ; 40 : 3290-302.
P.160 掲載の参考文献
1) Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery ; Shimizu H, Okada M, Toh Y, et al. Thoracic and cardiovascular surgeries in Japan during 2018 : Annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2021 ; 69 : 179-212.
2) Stoppe C, Goetzenich A, Whitman G, et al. Role of nutrition support in adult cardiac surgery : a consensus statement from an International Multidisciplinary Expert Group on Nutrition in Cardiac Surgery. Crit Care. 2017 ; 21 : 131.
3) Lopez-Delgado JC, Munoz-Del Rio G, Flordelis-Lasierra JL, et al. Nutrition in adult cardiac surgery : preoperative evaluation, management in the postoperative period, and clinical implications for outcomes. J Cardiothorac Vasc Anesth. 2019 ; 33 : 3143-62.
4) Rahman A, Agarwala R, Martin C, et al. Nutrition therapy in critically ill patients following cardiac surgery : defining and improving practice. JPEN J Parenter Enteral Nutr. 2017 ; 41 : 1188-94.
5) Weimann A, Braga M, Carli F, et al. ESPEN guideline : clinical nutrition in surgery. Clin Nutr. 2017 ; 36 : 623-50.
6) McClave SA, Taylor BE, Martindale RG, et al ; Society of Critical Care Medicine ; American Society for Parenteral and Enteral Nutrition. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.). JPEN J Parenter Enteral Nutr. 2016 ; 40 : 159-211.
7) 立石渉, 村田誠, 安達仁. 心臓血管外科における運動療法. 外科と代謝・栄. 2018 ; 52 : 275-81.
8) Hill A, Nesterova E, Lomivorotov V, et al. Current evidence about nutrition support in cardiac surgery patients-what do we know? Nutrients. 2018 ; 10 : 597.
9) Gregory AJ, Grant MC, Manning MW, et al. Enhanced recovery after cardiac surgery (ERAS cardiac) recommendations : an important first step-but there is much work to be done. J Cardiothorac Vasc Anesth. 2020 ; 34 : 39-47.

第5章 AHAステージ別に考える心不全の栄養管理

P.165 掲載の参考文献
1) Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult : a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure) : developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation : endorsed by the Heart Rhythm Society. Circulation. 2005 ; 112 : e154-235.
2) Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure : a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021 ; S1071-9164 (21) 00050-6. doi : 10.1016/j.cardfail.2021.01.022.
3) Criteria Committee, New York Heart Association, Inc. Diseases of the Heart and Blood Vessels. Nomenclature and Criteria for diagnosis. 6th ed. Boston : Little, Brown and Co. ; 1964. p.114.
4) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン 2017年改訂版. 2018. https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf
P.171 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. https://j-circ.or.jp/old/guideline/pdf/JCS2017_tsutsui_h.pdf
2) Takada T, Sakata Y, Nochioka K, et al. Risk of de-novo heart failure and competing risk in asymptomatic patients with structural heart diseases. Int J Cardiol. 2020 ; 307 : 87-93.
3) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント.
4) 厚生労働省. 令和元年国民健康・栄養調査報告. 2020. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html
5) Psaty BM, Lumley T, Furberg CD, et al. Health outcomes associated with various antihypertensive therapies used as first-line agents : a network meta-analysis. JAMA. 2003 ; 289 : 2534-44.
6) O'Donnell M, Mente A, Rangarajan S, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014 ; 371 : 612-23.
7) 日本肥満学会, 編. 肥満症診療ガイドライン 2016. 東京 : ライフサイエンス出版 ; 2016.
9) Cui R, Iso H, Toyoshima H, et al. JACC Study Group. Body mass index and mortality from cardiovascular disease among Japanese men and women : the JACC study. Stroke. 2005 ; 36 : 1377-82.
10) Zelniker AZ, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes : a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019 ; 393 : 31-9.
11) Qin P, Zhang M, Han M, et al. Fried-food consumption and risk of cardiovascular disease and all-cause mortality : a meta-analysis of observational studies. Heart. 2021 ; 107 : 1567-75.
P.177 掲載の参考文献
1) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント.
2) Kuehneman T, Gregory M, de Waal D, et al. Academy of Nutrition and Dietetics Evidence-Based Practice Guideline for the Management of Heart Failure in Adults. J Acad Nutr Diet. 2018 ; 118 : 2331-45.
3) McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
5) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018.
6) Hiraiwa H, Okumura T, Kondo T, et al. Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure. J Cardiol. 2020 ; 75 : 689-96.
7) Hiraiwa H, Okumura T, Kondo T, et al. Prognostic value of leucine/phenylalanine ratio as an amino acid profile of heart failure. Heart Vessels. 2021 ; 36 : 965-77.

第6章 心不全と合併疾患における栄養管理のポイント

P.185 掲載の参考文献
1) 日本高血圧学会高血圧治療ガイドライン作成委員会. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版 ; 2019.
2) Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, et al. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan : report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009 ; 73 : 1442-7.
3) Intersalt Cooperative Research Group. Intersalt : an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988 ; 297 : 319-28.
4) Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons : a randomized controlled trial of nonphar-macologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA. 1998 ; 279 : 839-46.
5) Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N Engl J Med. 2001 ; 344 : 3-10.
6) Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens. 2012 ; 25 : 1-15.
7) Fujiyoshi A, Ohkubo T, Miura K, et al ; Observational Cohorts in Japan (EPOCH-JAPAN) Reserch Group. Bloob pressure categories and long-term risk of cardiovascular disease according to age group in Japanese men and women. Hypertens Res. 2012 ; 35 : 947-53.
8) Asayama K, Satoh M, Murakami Y, et al ; Evidence for Cardiovascular Prevention From Observational Cohorts in Japan (EPOCH-JAPAN) Research Group. Cardiovascular risk with and without antihypertensive drug treatment in the Japanese general population : participant-level meta-analysis. Hypertension. 2014 ; 63 : 1189-97.
9) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. http://www.j-circ.or.jp/cms/w-content/uploads/2017/06/JCS2017_tsutsui_h.pdf
10) Hummel SL, Karmally W, Gillespie BW, et al. Home-delivered meals postdischarge from heart failure hospitalization. Circ Heart Fail. 2018 ; 11 : e004886.
11) Hummel SL, Seymour EM, Brook RD, et al. Low-sodium DASH diet improves diastolic function and ventricular-arteriol coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013 ; 6 : 1165-71.
12) Paterna S, Parrinello G, Cannizzaro S, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol. 2009 ; 103 : 93-102.
13) Paterna S, Gaspare P, Fasullo S, et al. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure : is sodium an old enemy or a new friend. Clin Sci (Lond). 2008 ; 114 : 221-30.
14) Doukky R, Avery E, Mangla A, et al. Impact of dietary sodium restriction on heart failure outcomes. JACC Heart Fail. 2016 ; 4 : 24-35.
15) 厚生労働省. 令和元年国民健康・栄養調査結果の概要. 2020. p.23. https://www.mhlw.go.jp/content/10900000/000687163.pdf
16) 鬼木秀幸, 土橋卓也, 榊美奈子, 他. 高血圧患者における食塩摂取量の時代的推移と減塩指導効果. 血圧. 2013 ; 20 : 626-9.
17) Fujita T, Ando K, Ogata E. Systemic and regional hemodynamics in patients with salt-sensitive hypertension. Hypertension. 1990 ; 16 : 235-44.
18) Okayama A, Okuda N, Miura K, et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan : the NIPPON DATA80 cohort study. BMJ Open. 2016 ; 6 : e011632.
19) Aldahl M, Jensen A-SC, Davidsen L, et al. Associations of serum potassium levels with mortality in chronic heart failure patients. Eur Heart J. 2017 ; 38 : 2890-6.
20) Ueshima H, Mikawa K, Baba S, et al. Effect of reduced alcohol consumption on blood pressure in untreated hypertensive men. Hypertension. 1993 ; 21 : 248-52.
21) Dickinson HO, Mason JM, Nicolson DJ, et al. Lifestyle interventions to reduce raised blood pressure : a systematic review of randomized controlled trials. J Hypertens. 2006 ; 24 : 215-33.
22) Xin X, He J, Frontini MG, et al. Effects of alcohol reduction on blood pressure : a meta-analysis of randomized controlled trials. Hypertension. 2001 ; 38 : 1112-7.
23) Larsson SC, Wallin A, Wolk A. Alcohol consumption and risk of heart failure : meta-analysis of 13 prospective studies. Clin Nutr. 2018 ; 37 : 1247-51.
P.193 掲載の参考文献
1) DeFronzo RA. Lilly lecture 1987. The triumvirate : beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 ; 37 : 667-87.
2) Kim TN, Park MS, Choi KM, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes : the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010 ; 33 : 1497-9.
3) Park SW, Goodpaster BH, Newman AB, et al. Health, aging, and body composition study. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes : the health, aging, and body composition study. Diabetes Care. 2007 ; 30 : 1507-12.
4) Global BMI Mortality Collaboration. Body-mass index and all-cause mortality : individual participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016 ; 388 : 776-86.
5) Tanaka S, Tanaka S, Sone H, et al. Body mass index and mortality among Japanese patients with type 2 diabetes : pooled analysis of the Japan diabetes complications study and the Japanese elderly diabetes intervention trial. J Clin Endocrinol Metab. 2014 ; 99 : E2692-6.
6) 高齢者糖尿病の食事療法. In : 日本糖尿病学会, 日本老年医学会, 編著. 高齢者糖尿病治療ガイド 2021. 東京 : 文光堂 ; 2021. p.43-8.
7) 食事療法. In : 日本糖尿病学会, 編著. 糖尿病治療ガイド 2020-2021. 東京 : 文光堂 ; 2020. p.48-51.
8) 山内敏正, 神谷英紀, 近藤龍也, 他. 糖尿病患者の栄養食事指導-エネルギー・炭水化物・タンパク質摂取量と栄養食事指導-. 糖尿病. 2020 ; 63 : 91-109.
9) 2糖代謝異常者における心不全の予防・治療 1. Lifestyle 介入. In : 日本循環器学会・日本糖尿病学会合同委員会, 監修, 編. 糖代謝異常者における循環器病の診断・予防・治療に関するコンセンサスステートメント. 東京 : 南江堂 ; 2020. p.55-6.
10) Ghosh-Swaby OR, Goodman SG, Udell JA, et al. Glucose-lowering drugs or strategies, atherosclerotic cardiovascular events, and heart failure in people with or at risk of type 2 diabetes : an updated systematic review and meta-analysis of randomised cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2020 ; 8 : 418-35.
11) Connelly KA, Yan AT, Verma S, et al. Cardiovascular implications of hypoglycemia in diabetes mellitus. Circulation. 2015 ; 132 : 2345-50.
12) Bozkurt B, Aguilar D, Yancy C, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure : a scientific statement from the American Heart Association. Circulation. 2016 ; 134 : e535-78.
13) Ueki K, Sasako T, Kadowaki T, et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3) : an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017 ; 5 : 951-64.
14) 日本版敗血症診療ガイドライン 2020 特別委員会. 日本版敗血症診療ガイドライン 2020. 日集中医誌. 2021 ; 28 : S1-411.
15) McMurray JJV, Solomon SD, Langkilde AM, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 ; 381 : 1995-2008.
16) Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020 ; 383 : 1413-24.
17) DeFronzo RA, Davidson JA, Prato SD. The role of the kidneys in glucose homeostasis : a new path towards normalizing glycaemia. Diabetes Obes Metab. 2012 ; 14 : 5-14.
18) Nakamura Y, Nagai Y, Tanaka Y, et al. Better response to the SGLT2 inhibitor dapagliflozin in young adults with type 2 diabetes. Expert Opin Pharmacother. 2015 ; 16 : 2553-9.
20) Ida S, Kaneko R, Murata K, et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr Diabetes Rev. 2021 ; 17 : 293-303.
21) 日本糖尿病学会「SGLT2阻害薬の適正使用に関する委員会」, 編. SGLT2阻害薬の適正使用に関するRecommendation (2020年改訂). 2020. http://www.fa.kyorin.co.jp/jds/uploads/recommendation_SGLT2.pdf (2020年5月閲覧)
22) Bonora BM, Avogaro A, Fadini GP. Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis : an updated review of the literature. Diabetes Obes Metab. 2018 ; 22 : 25-33.
23) Goldenberg RM, Gilbert JD, Zinman B, et al. Sodium-glucose co-transporter inhibitors, their role in type 1 diabetes treatment and a risk mitigation strategy for preventing diabetic ketoacidosis : The STOP DKA Protocol. Diabetes Obes Metab. 2019 ; 21 : 2192-202.
P.201 掲載の参考文献
1) 日本腎臓病学会, 編. 慢性腎臓病に対する食事療法基準 2014年版. 日腎会誌. 2014 ; 56 : 552-99.
2) 日本透析医学会学術委員会ガイドライン作成小委員会栄養問題検討ワーキンググループ. 慢性透析患者の食事療法基準. 透析会誌. 2014 ; 47 : 287-91.
4) Kanda E, Kato A, Masakane I, et al. A new nutritional risk index for predicting mortality in hemodialysis patients : Nationwide cohort study. PLoS One. 2019 ; 14 : e0214524.
5) 日本腎臓病学会. サルコペニア・フレイルを合併した保存期CKDの食事療法の提言. 日腎会誌. 2019 ; 61 : 525-56.
6) Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA. 2011 ; 305 : 1553-9.
7) Maroni BJ, Steinman TI, Mitch WE. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985 ; 27 : 58-65.
8) 日本透析医学会統計調査委員会. わが国の慢性透析療法の現状 (2015年12月31日現在). 透析会誌. 2017 ; 50 : 1-62.
P.207 掲載の参考文献
1) Roeland EJ, Bohlke K, Baracos VE, et al. Management of cancer cachexia : ASCO Guideline. J Clin Oncol. 2020 ; 38 : 2438-53.
2) Arends J, Baracos V, Bertz H, et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr. 2017 ; 36 : 1187-96.
4) 日本循環器学会, 日本心臓リハビリテーション学会, 日本冠疾患学会, 他. 2021年改訂版心血管疾患におけるリハビリテーションに関するガイドライン. 2021.
P.212 掲載の参考文献
1) 日本循環器学会, 日本胸部外科学会, 日本血管外科学会, 他. 2020年改訂版弁膜症治療のガイドライン. 2020.
2) Goldfarb M, Lauck S, Webb JG, et al. Malnutrition and mortality in frail and non-frail older adults undergoing aortic valve replacement. Circulation. 2018 ; 138 : 2202-11.
3) Doi S, Ashikaga K, Kida K, et al. Prognostic value of mini nutritional assessment-short form with aortic valve stenosis following transcatheter aortic valve implantation. ESC Heart Fail. 2020 ; 7 : 4024-31.
4) Waitzberg DL, Saito H, Plank LD, et al. Postsurgical infections are reduced with specialized nutrition support. World J Surg. 2006 ; 30 : 1592-604.
5) Lindman BR, Clavel MA, Mathieu P, et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016 ; 2 : 16006.
6) Iliadis C, Schwabe L, Muller D, et al. Impact of frailty on periprocedural health care utilization in patients undergoing transcatheter edge-to-edge mitral valve repair. Clin Res Cardiol. 2021 ; 110 : 658-66.
7) Feldman T, Foster E, Glower DD, et al. EVEREST II Investigators. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011 ; 364 : 1395-406.
8) Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004 ; 43 : 405-9.
9) Kim YJ, Kwon DA, Kim HK, et al. Determinants of surgical out come in patients with isolated tricuspid regurgitation. Circulation. 2009 ; 120 : 1672-8.
10) Nickenig G, Weber M, Lurz P, et al. Transcatheter edge-to-edge repair for reduction of tricuspid regurgitation : 6-month outcomes of the TRILUMINATE single-arm study. Lancet. 2019 ; 394 : 2002-11.
11) Besler C, Unterhuber M, Rommel KP, et al. Nutritional status in tricuspid regurgitation : implications of transcatheter repair. Eur J Heart Fail. 2020 ; 22 : 1826-36.
12) Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019 ; 380 : 1695-705.
P.218 掲載の参考文献
1) 骨粗鬆症の予防と治療ガイドライン作成委員会. 骨粗鬆症の予防と治療ガイドライン 2015年版. 2015.
2) Chhokar VS, Sun Y, Bhattacharya SK, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005 ; 111 : 871-8.
3) Sugimoto T, Tanigawa T, Onishi K, et al. Serum intact parathyroid hormone levels predict hospitalisation for heart failure. Heart. 2009 ; 95 : 395-8.
4) Isakova T, Anderson CA, Leonard MB, et al. Diuretics, calciuria and secondary hyperparathyroidism in the Chronic Renal Insufficiency Cohort. Nephrol Dial Transplant. 2011 ; 26 : 1258-65.
5) Fuggle NR, Cooper C, Harvey NC, et al. Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs. 2020 ; 80 : 1537-52.
6) Hoorn EJ, Liamis G, Zietse R, et al. Hyponatremia and bone : an emerging relationship. Nat Rev Endocrinol. 2011 ; 8 : 33-9.
7) Sugimoto T, Dohi K, Onishi K, et al. Interrelationship between haemodynamic state and serum intact parathyroid hormone levels in patients with chronic heart failure. Heart. 2013 ; 99 : 111-5.
P.224 掲載の参考文献
1) 日本消化器病学会関連研究会 慢性便秘の診断・治療研究会. 慢性便秘症診療ガイドライン 2017. 東京 : 南江堂 ; 2017.
2) Ishiyama Y, Hoshide S, Mizuno H, et al. Constipation-induced pressor effects as triggers for cardiovascular events. J Clin Hypertens. 2019 ; 21 : 421-5.
3) 赤澤寿美, 梶原円, 十河正典, 他. 高齢者における日常生活動作中の血圧変動-とくに入浴と排便の影響について-. 自律神経. 2000 ; 37 : 431-9.
5) Fukudo S, Hongo M, Kaneko H, et al. Lubiprostone increases spontaneous bowel movement frequency and quality of life in patients with chronic idiopathic constipation. Clin Gastroenterol Hepatol. 2015 ; 13 : 294-301. e5.
P.232 掲載の参考文献
2) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント. 2018.
3) von Haehling S, Ebner N, Dos Santos MR, et al. Muscle wasting and cachexia in heart failure : mechanisms and therapies. Nat Rev Cardiol. 2017 ; 14 : 323-41.
4) Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997 ; 349 : 1050-3.
5) Florea VG, Henein MY, Rauchhaus M, et al. The cardiac component of cardiac cachexia. Am Heart J. 2002 ; 144 : 45-50.
6) Ishida J, Saitoh M, Doehner W, et al. Animal models of cachexia and sarcopenia in chronic illness : cardiac function, body composition changes and therapeutic results. Int J Cardiol. 2017 ; 238 : 12-8.
7) Ajayi AA, Adigun AQ, Ojofeitimi EO, et al. Anthropometric evaluation of cachexia in chronic congestive heart failure : the role of tricuspid regurgitation. Int J Cardiol. 1999 ; 71 : 79-84.
8) Krysztofiak H, Wleklik M, Migaj J, et al. Cardiac cachexia : a well-known but challenging complication of heart failure. Clin Interv Aging. 2020 ; 15 : 2041-51.
10) Vest AR, Chan M, Deswal A, et al. Nutrition, obesity, and cachexia in patients with heart failure : a consensus statement from the Heart Failure Society of America Scientific Statements Committee. J Cardiac Fail. 2019 ; 25 : 380-400.
11) Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure : results from Q-SYMBIO : a randomized double-blind trial. JACC Heart Fail. 2014 ; 2 : 641-9.
12) Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure : the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 ; 37 : 2129-200.
13) Cho J, Choi Y, Sajgalik P, et al. Exercise as a therapeutic strategy for sarcopenia in heart failure : insights into underlying mechanisms. Cells. 2020 ; 9 : 2284.
14) Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women : a randomized controlled trial. J Am Geriatr Soc. 2012 ; 60 : 16-23.
15) 日本循環器学会, 日本リハビリテーション学会, 日本冠疾患学会, 他. 2021年改訂版 心血管疾患におけるリハビリテーションに関するガイドライン. 2021.
16) Anker SD, Negassa A, Coats AJS, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors : an observational study. Lancet. 2003 ; 361 : 1077-83.
17) Clark AL, Coats AJS, Krum H, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure : results from the COPERNICUS trial. J Cachexia Sarcopenia Muscle. 2017 ; 8 : 549-56.
18) Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004 ; 110 : 3674-9.
19) Temel JS, Abernethy AP, Currow DC, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2) : results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016 ; l7 : 519-31.
20) Hamauchi S, Furuse J, Takano T, et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in advanced gastrointestinal cancer patients with cancer cachexia. Cancer. 2019 ; l25 : 4294-302.
21) Ishida J, Konishi M, Saitoh M, et al. Myostatin signaling is up-regulated in female patients with advanced heart failure. Int J Cardiol. 2017 ; 238 : 37-42.
22) Garcia VR, Lopez-Briz E, Sanchis RC, et al. Megestrol acetate for treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev. 2013 ; 2013 (3) : CD004310.
23) Tao J, Liu X, Bai W. Testosterone supplementation in patients with chronic heart failure : a meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2020 ; 11 : 110.

第7章 心不全治療と栄養素の関係

P.240 掲載の参考文献
1) Gotsman I, Shauer A, Zwas DR, et al. Vitamin D deficiency is a predictor of reduced survival in patients with heart failure ; vitamin D supplementation improves outcome. Eur J Heart Fail. 2012 ; 14 : 357-66.
2) Schoenenberger AW, Schoenenberger-Berzins R, der Maur CA, et al. Thiamine supplementation in symptomatic chronic heart failure : a randomized, double-blind, placebo-controlled, cross-over pilot study. Clin Res Cardiol. 2012 ; 101 : 159-64.
3) Alehagen U, Johansson P, Bjornstedt M, et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation : a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol. 2013 ; 167 : 1860-6.
4) Dinicolantonio JJ, Lavie CJ, Niazi AK, et al. Effects of thiamine on cardiac function in patients with systolic heart failure : systematic review and metaanalysis of randomized, double-blind, placebo-controlled trials. Ochsner J. 2013 ; 13 : 495-9.
5) Witte KK, Clark AL. Micronutrients and their supplementation in chronic cardiac failure. An update beyond theoretical perspectives. Heart Fail Rev. 2006 ; 11 : 65-74.
6) McKeag NA, McKinley MC, Harbinson MT, et al. The effect of multiple micronutrient supplementation on left ventricular ejection fraction in patients with chronic stable heart failure : a randomized, placebo-controlled trial. JACC Heart Fail. 2014 ; 2 : 308-17.
7) Heart Failure Society of America. Executive Summary HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail. 2010 ; 16 : 475-539.
8) Holmquist C, Larsson S, Wolk A, et al. Multivitamin supplements are inversely associated with risk of myocardial infarction in men and women-Stockholm Heart Epidemiology Program (SHEEP). J Nutr. 2003 ; 133 : 2650-4.
9) Park SY, Murphy SP, Wilkens LR, et al. Multivitamin use and the risk of mortality and cancer incidence : the multiethnic cohort study. Am J Epidemiol. 2011 ; 173 : 906-14.
10) Zittermann A, Schleithoff SS, Tenderich G, et al. Low vitamin D status : a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003 ; 41 : 105-12.
11) Amin A, Minaee S, Chitsazan M, et al. Can vitamin D supplementation improve the severity of congestive heart failure? Congest Heart Fail. 2013 ; 19 : E22-8.
12) Boxer RS, Kenny AM, Schmotzeret BJ, et al. A randomized controlled trial of high dose vitamin D3 in patients with heart failure. JACC Heart Fail. 2013 ; 1 : 84-90.
13) Witham MD, Crighton LJ, Gillespie ND, et al. The effects of vitamin D supplementation on physical function and quality of life in older patients with heart failure : a randomized controlled trial. Circ Heart Fail. 2010 ; 3 : 195-201.
14) Rangel I, Goncalves A, de Sousa C, et al. Iron deficiency status irrespective of anemia : a predictor of unfavorable outcome in chronic heart failure patients. Cardiol. 2014 ; 128 : 320-6.
15) Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015 ; 36 : 657-68.
16) Yu X, Huang L, Zhao J, et al. The relationship between serum zinc level and heart failure : a meta-analysis. Biomed Res Int. 2018 ; 25 : 2739014.
P.248 掲載の参考文献
1) 日本小児医療保険協議会栄養委員会委員. カルニチン欠乏症の診断・治療指針 2018. 2018.
2) Omori Y, Ohtani T, Sakata Y, et al. L-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease. J Hypertens. 2012 ; 30 : 1834-44.
3) Kinugasa Y, Sugiyama S, Yamada K, et al. Carnitine insufficincy is associated with adverse outcomes in patients with heart failure with preserved ejection fraction. J Aging Res Clin Practice. 2016 ; in press.
4) Yoshihisa A, Watanabe S, Yokokawa T, et al. Associations between acylcarnitine to free carnitine ratio and adverse prognosis in heart failure patients with reduced or preserved ejection fraction. ESC Heart Fail. 2017 ; 4 : 360-4.
5) Song X, Qu H, Yang Z, et al. Efficacy and safety of L-carnitine treatment for chronic heart failure : a meta-analysis of randomized controlled trials. Biomed Res Int. 2017 ; 2017 : 6274854.
6) Naito J, Ohashi H, Ohno M, et al. Long-term levocarnitine ameliorates left ventricular diastolic as well as systolic dysfunction in hemodialysis patients- multi-center study. Circ Rep. 2019 ; 1 : 508-16.
7) Serati AR, Motamedi MR, Emami S, et al. L-carnitine treatment in patients with mild diastolic heart failure is associated with improvement in diastolic function and symptoms. Cardiology. 2010 ; 116 : 178-82.
8) Kinugasa Y, Sota T, Ishiga N, et al. l-Carnitine supplementation in heart failure patients with preserved ejection fraction ; a pilot study. Geriatr Gerontol Int. 2020 ; 20 : 1244-5.
9) Zhang Y, Wang Y, Ke B, et al. TMAO : how gut microbiota contributes to heart failure. Transl Res. 2021 ; 228 : 109-25.
10) Kinugasa Y, Nakamura K, Kamitani H, et al. Trimethylamine N-oxide and outcomes in patients hospitalized with acute heart failure and preserved ejection fraction. ESC Heart Fail. 2021 ; 8 : 2103-10.
P.256 掲載の参考文献
1) Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care. 2016 ; 36 : 2036-41.
2) Herrmann G, Decherd GM. The chemical nature of heart failure. Ann Intern Med. 1939 ; 12 : 1233-44.
3) Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007 ; 356 : 1140-51.
4) Conway MA, Allis J, Ouwerkerk R, et al. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991 ; 338 : 973-6.
5) Osorio JC, Stanley WC, Linke A, et al. Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation. 2002 ; 106 : 606-12.
6) Kalsi KK, Smolenski RT, Pritchard RD, et al. Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. Eur J Clin Invest. 1999 ; 29 : 469-77.
7) Luiken JJFP, Coort SLM, Koonen DPY, et al. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch-Eur J Physiol. 2004 ; 448 : 1-15.
8) Bonen A, Luiken JJ, Arumugam Y, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem. 2000 ; 275 : 14501-8.
9) Sung MM, Byrne NJ, Kim TT, et al. Cardiomyocyte-specific ablation of CD36 accelerates the progression from compensated cardiac hypertrophy to heart failure. Am J Physiol Heart Circ Physiol. 2017 ; 312 : H552-60.
10) Umbarawan Y, Syamsunarno MRAA, Koitabashi N, et al. Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure. Sci Rep. 2018 ; 8 : 12035.
11) Miller WC, Bryce GR, Conlee RK. Adaptations to a high-fat diet that increase exercise endurance in male rats. J Apple Physiol. 1984 ; 56 : 78-83.
12) Iso T, Haruyama H, Sunaga H, et al. Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice. BMC Physiol. 2019 ; 19 : 1.
13) Koonen DPY, Febbraio M, Bonnet S, et al. CD36 expression contributes to age-induced cardiomyopathy in mice. Circulation. 2007 ; 116 : 2139-47.
14) Lionetti V, Linke A, Chandler MP, et al. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res. 2005 ; 66 : 454-61.
15) Lopaschuk GD, Ussher JR, Folmes CDM. Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure. Sci Rep. 2018 ; 8 : 12035.
16) Ussher JR, Folmes CD, Keung W, et al. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PLoS One. 2012 ; 7 : e37703.
17) Hirabayashi K, Kinugawa S, Yokota T, et al. Intramyocellular lipid is increased in the skeletal muscle of patients with dilated cardiomyopathy with lowered exercise capacity. Int J Cardiol. 2014 ; 176 : 1110-2.
18) Harada T, Sunaga H, Sorimachi H, et al. Pathophysiological role of fatty acid-binding protein 4 in Asian patients with heart failure and preserved ejection fraction. ESC Heart Failure. 2020 ; 7 : 4256-66.
19) Iso T, Sunaga H, Matsui H, et al. Serum levels of fatty acid binding protein 4 and fat metabolic markers in relation to catecholamines following exercise. Clin Biochem. 2017 ; 50 : 896-902.
20) Bach AC, Babayan VK. Medium chain triglycerides : an uptake. J Clin Nutr. 1982 ; 36 : 950-62.
21) Metges CC, Wolfram C. Medium- and long-chain triglycerides labeled with 13C : a comparison of oxidation after oral or parenteral administration in humans. J Nutr. 1991 ; 121 : 31-6.
22) Bach AC, Ingenbllk Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control : fact or fancy? J Lipid Res. 1996 ; 37 : 708-26.
23) Tanaka M, Nishigaki Y, Fuku N, et al. Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion. 2007 ; 7 : 399-401.
24) Lemarie F, Beauchamp E, Legrand P, et al. Revisiting the metabolism and physiological functions of caprylic acid (C8 : 0) with special focus on ghrelin octanoylation. Biochimie. 2016 ; 120 : 40-8.
25) Papamandjaris A, MacDougall DE, Jones PJH. Medium chain fatty acid metabolism and energy expenditure : obesity treatment implications. Life Sci. 1998 ; 62 : 1203-15.
26) Senior JR. Summary panel on role of medium chain triglycerides in human disease states and possible future applications. In : Senior JR, ed. Medium Chain Triglycerides. Philadelphia : University Pennsylvania Press ; 1968. p.247-60.
27) Senior JR. Introductory remarks by the chairman. In : Senior JR, ed. Medium Chain Triglycerides. Philadelphia : University Pennsylvania Press ; 1968. p.3-7.
28) Denke MA, Grundy SM. Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am J Clin Nutr. 1992 ; 56 : 895-8.
29) Eyres L, Eyres MF, Chisholm A, et al. Coconut oil consumption and cardiovascular risk factors in humans. Nutr Rev. 2016 ; 74 : 267-80.
30) Iemitsu M, Shimojo N, Maeda S, et al. The benefit of medium-chain triglyceride therapy on the cardiac function of SHRs is associated with a reversal of metabolic and signaling alterations. Am J Physiol Heart Circ Physiol. 2008 ; 295 : H136-44.
31) Rupp H, Schulze W, Vetter R. Dietary medium-chain triglycerides can prevent changes in myosin and SR due to CPT-1 inhibition by etomoxir. Am J Physiol Regul Integr Comp Physiol. 1995 ; 269 : R630-40.
32) Shimojo N, Miyauchi T, Iemitsu M, et al. Effects of medium-chain triglyceride (MCT) application to SHR on cardiac function, hypertrophy and expression of endothelin-1 mRNA and other genes. J Cardiovasc Pharmacol. 2004 ; 44 : S181-5.
33) Li Q, Heaney A, Langenfeld-McCoy N, et al. Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease : a blinded randomized controlled study in 36 dogs. BMC Vet Res. 2019 ; 15 : 425.
34) Hirabayashi T, Tanaka M, Matsumoto T, et al. Preventive effects of medium-chain triglycerides supplementation on the oxidative capacity in skeletal muscle under cachectic condition. Biomed Res. 2020 ; 41 : 179-86.
35) Khaw K-T, Sharp SJ, Finikarides L, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open. 2018 ; 8 : e020167.
36) Teng M, Zhao YJ, Khoo AL, et al. Impact of coconut oil consumption on cardiovascular health : a systematic review and meta-analysis. Nutr Rev. 2020 ; 78 : 249-59.
P.264 掲載の参考文献
1) Shimomura Y, Yamamoto Y, Bajotto G, et al. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2006 ; 136 : 529-32.
2) Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol. 1992 ; 263 : 928-34.
3) Tomoda K, Kubo K, Hino K, et al. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats. J Toxicol Sci. 2014 ; 39 : 331-7.
4) Borgenvik M, Nordin M, Mattsson CM, et al. Alterations in amino acid concentrations in the plasma and muscle in human subjects during 24 h of simulated adventure racing. Eur J Appl Physiol. 2012 ; 112 : 3679-88.
5) O'Connell TM. The complex role of branched chain amino acids in diabetes and cancer. Metabolites. 2013 ; 3 : 931-45.
6) Miyagi Y, Higashiyama M, Gochi A, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One. 2011 ; 6 : e24143.
7) Baracos VE, Mackenzie ML. Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr. 2006 ; 136 (1 Suppl) : 237S-42S.
8) Hakuno D, Hamba Y, Toya T, et al. Plasma amino acid profiling identifies specific amino acid associations with cardiovascular function in patients with systolic heart failure. PLoS One. 2015 ; 10 : e0117325.
9) Aquilani R, La Rovere MT, Corbellini D, et al. Plasma amino acid abnormalities in chronic heart failure. Mechanisms, potential risks and targets in human myocardium metabolism. Nutrients. 2017 ; 9 : 1251.
10) Tsuji S, Koyama S, Taniguchi R, et al. Nutritional status of outpatients with chronic stable heart failure based on serum amino acid concentration. J Cardiol. 2018 ; 72 : 458-65.
11) Tsuji S, Koyama S, Taniguchi R, et al. Association of serum amino acid concentration with loss of skeletal muscle mass after 1 year in cardiac rehabilitation center patients. Circ Rep. 2019 ; 1 : 456-61.
12) Du X, Li Y, Wang Y, et al. Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci. 2018 ; 209 : 167-72.
13) Li R, He H, Fang S, et al. Time series characteristics of serum branched-chain amino acids for early diagnosis of chronic heart failure. J Proteome Res. 2019 ; 18 : 2121-8.
14) Ruiz-Canela M, Toledo E, Clish CB, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 2016 ; 62 : 582-92.
15) Kimura Y, Okumura T, Kazama S, et al. Usefulness of plasma branched-chain amino acid analysis in predicting outcomes of patients with nonischemic dilated cardiomyopathy. Int Heart J. 2020 ; 61 : 739-47.
16) Jager R, Kerksick CM, Campbell BI, et al. International Society of Sports Nutrition Position Stand : protein and exercise. J Int Soc Sports Nutr. 2017 ; 14 : 20.
17) Tanada Y, Shioi T, Kato T, et al. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015 ; 137 : 20-7.
18) Aquilani R, Viglio S, Iadarola P, et al. Oral amino acid supplements improve exercise capacities in elderly patients with chronic heart failure. Am J Cardiol. 2008 ; 101 : 104E-10E.
19) Scognamiglio R, Negut C, Palisi M, et al. Effects of oral amino acid supplements on cardiac function and remodeling in patients with type 2 diabetes with mild-to-moderate left ventricular dysfunction. Am J Cardiol. 2008 ; 101 : 111E-5E.
20) Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women : a randomized controlled trial. J Am Geriatr Soc. 2012 ; 60 : 16-23.
22) Beyranvand MR, Khalafi MK, Roshan VD, et al. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011 ; 57 : 333-7.
23) Aranibar N, Vassallo JD, Rathmacher J, et al. Identification of 1- and 3-methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling. Anal Biochem. 2011 ; 410 : 84-91.

第8章 シナリオ別に考える心不全の栄養指導・管理のポイント

P.273 掲載の参考文献
1) 厚生労働省. 令和元年「国民健康・栄養調査」の結果. 2020. https://www.mhlw.go.jp/stf/newpage_14156.html
2) 日本高血圧学会. 高血圧治療ガイドライン 2019. 2019.
3) 日本動脈硬化学会. 動脈硬化性疾患予防のための脂質異常症診療ガイド 2018年版. 2018
P.279 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018.
2) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント. 2018.
3) Kubota Y, Iso H, Sawada N, et al. JPHC Study Group. Association of breakfast intake with incident stroke and coronary heart disease : The Japan Public Health Center-Based Study. Stroke. 2016 ; 47 : 477-81.
4) Cui R, Iso H, Toyoshima H, et al. Body mass index and mortality from cardiovascular disease among Japanese men and women : the JACC study. Stroke. 2005 ; 36 : 1377-82.
5) Takiguchi M, Yoshihisa A, Miura S, et al. Impact of body mass index on mortality in heart failure patients. Eur J Clin Invest. 2014 ; 44 : 1197-205.
6) Sargento L, Satendra M, Almeida I, et al. Nutritional status of geriatric outpatients with systolic heart failure and its prognostic value regarding death or hospitalization, biomarkers and quality of life. J Nutr Health Aging. 2013 ; 17 : 300-4.
7) 厚生労働省. 令和元年国民健康・栄養調査結果の概要. 2020. https://www.mhlw.go.jp/content/10900000/000687163.pdf
8) 日本高血圧学会高血圧治療ガイドライン作成委員会. 高血圧治療ガイドライン 2019. 東京 : ライフサイエンス出版. 2019.
9) 日本腎臓学会. 慢性腎臓病に対する食事療法基準 2014年版. 東京 : 東京医学社 ; 2014.
P.285 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_オリジナル版_190830.pdf. (2020年4月閲覧)
2) Tsuchihashi M, Tsutsui H, Kodama K, et al. Medical and socioenvironmental predictors of hospital readmission in patients with congestive heart failure. Am Heart J. 2001 ; 142 : 20A-6A.
3) 伊藤貴史, 河野裕治, 青柳陽一郎, 他. フレイルを呈する高齢心不全患者のサルコペニア・カヘキシアの実態調査. 心臓リハ. 2021 ; 27 : 34-9.
3) 鬼村優一, 弓野大. 心不全の栄養管理と理学療法. 理学療法-技術と研究-. 2020 ; 48 : 23-7.
4) Kelley AS, Morrison RS. Palliative care for the seriously ill. N Engl J Med. 2015 ; 373 : 747-55.
4) Vlassara H, Spiegel RJ, Dovalet DS, et al. Reduced plasma lipoprotein lipase activity in patients with malignancy-associated weight loss. Horm Metab Res. 1986 ; 18 : 698-703.
5) 日本循環器学会, 日本心臓リハビリテーション学会, 日本冠疾患学会, 他. 2021年改訂版 心血管疾患におけるリハビリテーションに関するガイドライン [Internet]. (2021年6月16日閲覧). https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Makita.pdf
5) Pisters PW, Pearlstone DB. Protein and amino acid metabolism in cancer cachexia : investigative techniques and therapeutic interventions. Crit Rev Clin Lab Sci. 1993 ; 30 : 223-72.
6) 日本体力医学会体力科学編集委員会, 監訳. 運動処方の指針. 第7版. 東京 : 南江堂 ; 2006.
7) Piepoli MF, Conraads V, Corra U, et al. Exercise training in heart failure : from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011 ; 13 : 347-57.
8) Dideriksen K, Reitelseder S, Holm L. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients. 2013 ; 5 : 852-76.
9) Mitchell CJ, Churchward-Venne TA, West DWD, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012 ; 113 : 71-7.
10) Kikuchi N, Nakazato K. Low-load bench press and push-up induce similar muscle hypertrophy and strength gain. J Exerc Sci Fit. 2017 ; 15 : 37-42.
P.292 掲載の参考文献
1) Desai AS, Claggett BL, Packer M, et al. Influence of sacubitril/valsartan (LCZ696) on 30-day readmission after heart failure hospitalization. J Am Coll Cardiol. 2016 ; 68 : 241-8.
P.297 掲載の参考文献
1) 日本心臓移植研究会. 心臓移植の現状 2019年12月31日現在. 心臓移植レジストリ報告 (20191231.pdf) (www.jsht.jp) (2021年3月閲覧)
2) Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation : a 10-year update. J Heart Lung Transplant. 2016 ; 35 : 1-23.
3) Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure : The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J. 2016 ; 37 : 2129-200.
4) Doumouras BS, Fan CS, Mueller B, et al. The effect of pre-heart transplant body mass index on posttransplant outcomes : an analysis of the ISHLT Registry Data. Clin Transplant. 2019 ; 33 : e13621.
5) 日本胸部外科学会J-MACS委員会. J-MACS Statistical Report. https://www.jpats.org (2021年3月閲覧)
6) Saito A, Amiya E, Hatano M, et al. Controlling nutritional status score as a predictive marker for patients with implantable left ventricular assist device. ASAIO J. 2020 ; 66 : 166-72.
7) 坂本陽子, 坂田泰史. 移植外科における周術期栄養管理-心臓-. 外科と代謝・栄. 2019 ; 53 : 1-6.
8) Guvnc TS, Guzelburc O, Ekmekci A, et al. The effect of left ventricular assist device implantation on serum albumin, total protein and body mass : a short-term, longitudinal follow-up study. Heart Lung Circ. 2017 ; 26 : 702-8.
9) Genev I, Yost G, Gregory M, et al. Improved nutrition status in patients with advanced heart failure implanted with a left ventricular assist device. Nutr Clin Pract. 2019 ; 34 : 444-9.
10) 戸田宏一. 植込型補助人工心臓時代のチーム医療. 人工臓器. 2012 ; 41 : 72-5.
11) Abe R, Matsumoto A, Sakaguchi R, et al. Perioperative enteral nutrition after left ventricular assist device implantation. Nutr Metab Insights. 2018 ; 11 : 1-6.
12) Imamura T, Kinugawa K, Fujino T, et al. Aortic insufficiency in patients with sustained left ventricular systolic dysfunction after axial flow assist device implantation. Circ J. 2015 ; 79 : 104-11.
13) Aggarwal A, Kumar A, Gregory M, et al. Nutrition assessment in advanced heart failure patients evaluated for ventricular assist device or cardiac transplantation. Nutr Clin Pract. 2013 ; 28 : 112-9.
14) Yost G, Gregory M, Bhat G. Short-form nutrition assessment in patients with advanced heart failure evaluated for ventricular assist device placement or cardiac transplantation. Nutr Clin Pract. 2014 ; 29 : 686-91.
15) 横山富美子, 山口貞子, 花本園恵, 他. 植込型左室補助人工心臓患者に対するチームでの栄養管理と継続栄養指導. 日病態栄会誌. 2015 ; 19 (Suppl I) : S-99.
P.304 掲載の参考文献
1) 長井直子. 項目別 & 疾患別 検査値の意味と読み方のポイント 心臓移植. 臨床栄養. 2018 ; 133 : 565-9.
2) Barge-Caballero E, Garcia-Lopez F, Marzoa-Rivas R, et al. Prognostic value of the nutritional risk index in heart transplant recipients. Rev Esp Cardiol. 2017 ; 70 : 639-45.
3) Russo MJ, Hong KN, Davies RR, et al. The effect of body mass index on survival following heart transplantation : do outcomes support consensus guidelines? Ann Surg. 2010 ; 251 : 144-52.
4) Mehra MR, Canter CE, Hannan MM, The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation : a 10-year update. J Heart Lung Transplant. 2016 ; 35 : 1-23.
P.311 掲載の参考文献
1) 特定非営利活動法人日本緩和医療学会 緒言・提言. 「WHO (世界保健機関) による緩和ケアの定義 (2002年)」定訳作成について. https://www.jspm.ne.jp/proposal/proposal.html
2) 厚生労働省健康局. 脳卒中, 心臓病その他の循環器病に係る診療提供体制の在り方について. 2017. https://www.mhlw.go.jp/content/10900000/000347907.pdf
3) 腰本さおり, 青木汐里, 本間健. 緩和ケアに関わる管理栄養士の現状と課題. 日病態栄会誌. 2018 ; 21 : 435-45.
4) 宮下光令, 柴信行, 下川宏明. 末期心不全の緩和ケアを考える. Heart. 2012 ; 2 : 501-11.
5) 日本循環器学会, 他. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf
7) 東口高志. 終末期がん患者のエネルギー代謝動態とその管理. 静脈経腸栄養. 2009 ; 24 : 1071-5.
8) Evans WJ, Morley JE, Argiles J, et al. Cachexia : a new definition. Clin Nutr. 2008 ; 27 : 79.
9) 村井亜美. 管理栄養士の役割. In : 大石醒悟, 編. 実践から識る! 心不全緩和ケアチームの作り方. 東京 : 南山堂 ; 2018. p.64-7.

第9章 心不全の栄養を多職種で介入する

P.317 掲載の参考文献
1) 日本循環器学会ガイドライン作成委員会. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf (2021年5月閲覧)
2) Fonarow GC, Albert NM, Curtis AB, et al. Improving evidence-based care for heart failure in outpatient cardiology practices : primary results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010 ; 122 : 585-96.
3) Badia T, Formiga F, Ferrer A, et al. Multifactorial assessment and targeted intervention in nutritional status among the older adults : a randomized controlled trial : the Octabaix study. BMC Geriatr. 2015 ; 15 : 45.
4) 厚生労働省チーム医療の推進に関する検討会. チーム医療の推進について (チーム医療の推進に関する検討会報告書). 平成22年3月19日.
5) 高増哲也. 小児アレルギー診療におけるスキルミクス (多職種協働). 日小児難治喘息・アレルギー会誌. 2015 ; 13 : 199-202.
6) 日本循環器学会ガイドライン作成委員会. 2021年改訂版 心血管疾患におけるリハビリテーションに関するガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Makita.pdf (2021年5月閲覧)
7) Suzuki N, Kida K, Suzuki K, et al. Assessment of transthyretin combined with mini nutritional assessment on admission provides useful prognostic information in patients with acute decompensated heart failure. Int Heart J. 2015 ; 56 : 226-33.
P.323 掲載の参考文献
1) 日本集中治療医学会重症患者の栄養管理ガイドライン作成委員会. 日本版重症患者の栄養療法ガイドライン. 日集中医誌. 2016 ; 23 : 185-281.
2) 森みさ子. 病棟看護師の栄養管理における役割. 日静脈経腸栄会誌. 2015 ; 3 : 1246-53.
3) 長田卓也, 野村俊仁, 仲眞美子, 他. ベッド上の下肢運動に伴う筋ポンプと呼吸の影響について. デサントスポーツ科. 2001 ; 22 : 82-7.
4) 若林秀隆, 荒木暁子, 森みさ子. サルコペニアを防ぐ! 看護師によるリハビリテーション栄養. 東京 : 医学書院 ; 2017. p.2.
5) Hamzeh N, Ghadimi F. Obesity, heart failure, and obesity paradox. J Tehran Heart Cent. 2017 ; 12 : 1-5.
6) Savarese G, Lund LH, Dahlstrom U, et al. Nurse-led heart failure clinics are associated with reduced mortality but not heart failure hospitalization. J Am Heart Assoc. 2019 ; 8 : e011737.
7) Stromberg A, Martensson J, Fridlund B, et al. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure : results from a prospective, randomised trial. Eur Heart J. 2003 ; 24 : 1014-23.
8) Okura Y, Ramadan MM, Ohno Y, et al. Impending epidemic future projection of heart failure in Japan to the year 2055. Circ J. 2008 ; 72 : 489-91.
9) Casas R, Castro-Barquero S, Estruch R, et al. Nutrition and cardiovascular health. Int J Mol Sci. 2018 ; 19 : 3988.
10) Yoshihisa A, Kanno Y, Watanabe S, et al. Impact of nutritional indices on mortality in patients with heart failure. Open Heart. 2018 ; 5 : e000730.
11) Brandhorst S, Longo VD. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ Res. 2019 ; 124 : 952-65.
12) 富田ゆり子, 湯浅美千代, 島田広美. 急性増悪により入院した高齢慢性心不全患者の自己管理に向け病棟看護師が行う支援方法. 医療看研. 2021 ; 17 : 51-60.
13) 光岡明子, 平田弘美. 高齢の慢性心不全患者の自己管理に関連した文献検討. 人間看研. 2015 ; 13 : 81-91.
14) 島田詩絵奈, 小野加奈, 佐藤三穂. 心疾患患者の退院後におけるQOLに影響する要因の検討. 看科会誌. 2018 ; 18 : 29-36.
15) 坂田泰彦, 後岡広太郎, 下川宏明. 心不全の疫学 : 心不全パンデミック. 日内会誌. 2020 ; 109 : 186-90.
P.329 掲載の参考文献
1) McAlister FA, Stewart S, Ferrua S, et al. Multidisciplinary strategies for the management of heart failure patients at high risk for admission : a systematic review of randomized trials. J Am Coll Cardiol. 2004 ; 44 : 810-9.
2) 厚生労働省チーム医療の推進に関する検討会. チーム医療の推進について. 2010. https://www.mhlw.go.jp/shingi/2010/03/dl/s0319-9a.pdf (2020年5月閲覧)
P.334 掲載の参考文献
1) Liebson PR. ASCOT-Blood Pressure Trial (ASCOT-BPLA) and HOPE-TOO. Prev Cardiol. 2006 ; 9 : 60-3.
2) Miller ER 3rd, Pastor-Barriuso R, Dalal D, et al. Metaanalysis : high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005 ; 142 : 37-46.
3) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント. http://www.asas.or.jp/jhfs/pdf/statement20181012.pdf
4) 日本老年医学会, 日本医療研究開発機構研究費・高齢者の薬物治療の安全性に関する研究研究班, 編. 高齢者の安全な薬物療法ガイドライン 2015. 東京 ; メジカルビュー社 ; 2015. p.26-31.
5) 川口充, 澤木康平, 大久保みぎわ, 他. 薬物治療と口腔内障害. 日薬理誌. 2006 ; 127 : 447-53.
6) 児玉浩子, 板倉弘重, 大森啓充, 他. 亜鉛欠乏症の診療指針. 日臨栄会誌. 2016 ; 38 : 104-48.
7) Grimm RH Jr, Leon AS, Hunninghake DB, et al. Effects of thiazide diuretics on plasma lipids and lipoproteins in mildly hypertensive patients : a double-blind controlled trial. Ann Intern Med. 1981 ; 94 : 7-11.
8) Kasiske BL, Ma JZ, Kalil RS, et al. Effects of antihypertensive therapy on serum lipids. Ann Intern Med. 1995 ; 122 : 133-41.
9) Giugliano D, Acampora R, Marfella R, et al. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann Intern Med. 1997 ; 126 : 955-9.
10) Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension : a randomized controlled trial. JAMA. 2004 ; 292 : 2227-36.
11) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療 (2021年JCS/JHFSガイドライン フォーカスアップデート版. 2021.
12) Amabile CM, Spencer AP. Keeping your patient with heart failure safe a review of potentially dangerous medications. Arch Intern Med. 2004 ; 164 : 709-20.
13) Ho JM-W, Macdonald EM, Luo J, et al. Pregabalin and heart failure : a population-based study. Pharmacoepidemiol Drug Saf. 2017 ; 26 : 1087-92.
14) Messerli FH. Vasodilatory edema : a common side effect of antihypertensive therapy. Curr Cardiol Rep. 2002 ; 4 : 479-82.
15) Zinman B, Wanner C, Lachin JM, et al. EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015 ; 373 : 2117-28.
16) Wiviott SD, Raz I, Bonaca MP, et al. DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019 ; 380 : 347-57.
17) Radholm K, Figtree G, Perkovic V, et al. Canagliflozin and heart failure in type 2 diabetes mellitus : results from the CANVAS program. Circulation. 2018 ; 138 : 458-68.
18) McMurray JJV, Solomon SD, Inzucchi SE, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 ; 381 : 1995-2008.
19) Packer M, Anker SD, Butler J, et al. EMPEROR-Reduced Trial Committees and Investigators. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction : the EMPEROR-reduced trial. Circulation. 2021 ; 143 : 326-36.
20) Heerspink HJL, Stefansson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020 ; 383 : 1436-46.
P.339 掲載の参考文献
1) Piepoli MF, Corra U, Adamopoulos S, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery : a policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur J Prev Cardiol. 2014 ; 21 : 664-81.
2) Cederholm T, Jensen GL, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition-a consensus report from the global clinical nutrition community. Clin Nutr. 2019 ; 38 : 1-9.
3) Fried LP, Tangen CM, Walston J, et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults : evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 ; 56 : M146-56.
4) Gariballa S, Alessa A. Sarcopenia : prevalence and prognostic significance in hospitalized patients. Clin Nutr. 2013 ; 32 : 772-6.
5) 日本循環器学会/日本心臓リハビリテーション学会合同ガイドライン. 2021年改訂版 心血管疾患におけるリハビリテーションに関するガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Makita.pdf
6) Koshikawa M, Harada M, Noyama S, et al. Association between inflammation and skeletal muscle proteolysis, skeletal mass and strength in elderly heart failure patients and their prognostic implications. BMC Cardiovasc Disord. 2020 ; 20 : 228.
7) Coats AJS, Clark AL, Piepoli M, et al. Symptoms and quality of life in heart failure : the muscle hypothesis. Br Heart J. 1994 ; 72 (2 Suppl) : S36-9.
8) Gielen S, Adams V, Mobius-Winkler S, et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003 ; 42 : 861-8.
9) Loncar G, Springer J, Anker M, et al. Cardiac cachexia : hic et nunc. J Cachexia Sarcopenia Muscle. 2016 ; 7 : 246-60.
P.343 掲載の参考文献
1) 日本循環器学会, 日本心不全学会, 日本脳卒中学会, 他. 2021年改訂版循環器疾患における緩和ケアについての提言. 2021. (2021年6月閲覧)
2) 石蔵文信. 抑うつ患者への対応. In : 和泉徹, 他編. 心不全を予防する-発症させない 再発させないための診療ストラテジー. 東京 : 中山書店 ; 2006. p.336-43.
3) 日本サイコペニア・フレイル学会, 編. フレイル診療ガイド. http://jssf.umin.jp/clinical_guide.html. (2021年6月閲覧)
4) Honda S, Nagai T, Sugao Y, et al. Prevalence, determinants, and prognostic significance of delirium in patients with acute heart failure. Int J Cardiology. 2016 ; 222 : 521-7.
5) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. (2021年6月閲覧)
6) 鈴木規雄, 木田圭亮, 明石嘉浩. 慢性心不全患者の栄養管理. 心臓リハ. 2019 ; 25 : 271-6.
7) 日本心不全学会ガイドライン委員会, 編. 心不全患者における栄養評価・管理に関するステートメント. 2018. (2021年6月閲覧)
8) 冨永良喜. ストレスマネジメント支援の今日的意義と課題. 臨床心理学. 2012 ; 12 : 766-75.
9) 木田圭亮, 渡邉大輝, 鈴木規雄. 慢性心不全における低栄養とその介入について [症例提示]. In : 佐藤幸人, 編. 予防から緩和までをサポートする心臓病の栄養管理・食事療法. 臨栄別冊. 2019 ; 106-11.
10) 赤穂理絵. 心不全の緩和ケアで生じる倫理的課題に精神科医はどう関わるか. 精神科治療. 2020 ; 35 : 291-7.
11) 木田圭亮, 佐藤如雄. 心不全再発予防 (疾患管理プログラム 多職種連携). ICUとCCU. 2019 ; 43 : 265-72.
P.347 掲載の参考文献
1) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント. 2018. p.55.
2) 増田利隆. 令和2年診療報酬改定-栄養関連の概要. 臨床栄養. 2020 ; 137 : 146-7.
3) 介護報酬早見表 2021年4月版. 東京 : 医学通信社 ; 2021. p.46-9, 424.
4) 東京保険医協会. 2020年4月改定保険点数便覧. 2020. p.360-1.
5) 全国保険医団体連合会. 医療系介護報酬改定のポイント. 2021. p.27-8.

第10章 心不全の栄養に関するContraversy

P.352 掲載の参考文献
1) Withering W. An account of the foxglove and some of its medical uses ; with practical remarks on dropsy and other diseases. Birmingham, England : M. Swinney London ; 1785.
2) 猪又孝元. 心不全管理をアートする. 東京 : メジカルレビュー社 ; 2017.
3) Li Y, Fu B, Qian X. Liberal versus restricted fluid administration in heart failure patients. A systematic review and meta-analysis of randomized trials. Int Heart J. 2015 ; 56 : 192-5.
4) 日本循環器学会, 日本心不全学会, 日本胸部外科学会, 他. 急性・慢性心不全診療ガイドライン (2017年改訂版). 2018. http://www.j-circ.or.jp/guideline/pdf/JCS2017_tsutsui_h.pdf
5) 木村玄次郎. 低Na血症. 腎と透析. 1986 ; 21 : 273-6.
6) 頼建光. 低Na血症はよく起こる ; 頻度と成因. Fluid Manag Renaiss. 2013 ; 3 : 16-21.
7) 大手信之. 心不全における体液・電解質異常. Fluid Manag Renaiss. 2012 ; 2 : 121-6.
8) Rennke HG, Denker BM, 黒川清, 監訳. 体液異常と腎臓の病態生理 第2版. 東京 : メディカル・サイエンス・インターナショナル ; 2007.
9) Waldreus N, Sjostrand F, Hahn RG. Thirst in the elderly with and without heart failure. Arch Gerontol Geriatr. 2011 ; 53 : 174-8.
10) Packer M. The neurohormonal hypothesis : a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992 ; 20 : 248-54.
11) Allida SM, Inglis SC, Davidson PM, et al. Thirst in chronic heart failure : a review. J Clin Nurs. 2015 ; 24 : 916-26.
P.359 掲載の参考文献
1) 日本心不全学会ガイドライン委員会, 編. 心不全患者における栄養評価・管理に関するステートメント. 2018. http://www.asas.or.jp/jhfs/pdf/statement20181012.pdf (2020年1月閲覧)
2) McClave SA, Taylor B, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.). JPEN. 2016 ; 40 : 159-211.
3) Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019 ; 38 : 48-79.
4) 小谷譲治, 江木盛時, 海塚安郎, 他. 日本版重症患者の栄養療法ガイドライン. 日集中医誌. 2016 ; 23 : 185-281.
5) Bartlett RH, Dechert RE, Mault JR, et al. Measurement of metabolism in multiple organ failure. Surgery. 1982 ; 92 : 771-9.
6) Tappy L, Schwarz JM, Schneiter P, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998 ; 26 : 860-7.
7) Rice TW, Wheeler AP, Thompson BT, et al. Initial trophic vs full enteral feeding in patients with acute lung injury : the EDEN randomized trial. JAMA. 2012 ; 307 : 795-803.
9) Arabi YM, Tamim HM, Dhar GS, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients : a randomized controlled trial. Am J Clin Nutr. 2011 ; 93 : 569-77.
10) NCBI. Nutrition Support for Adults : Oral Nutrition Supports, Enteral Tube Feeding and Parenteral Nutrition. CG32, 2006. https://www.ncbi.nlm.nih.gov/books/NBK49256/ (2020年1月閲覧)
11) Doig GS, Simpson F, Heighes PT, et al. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults : a randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir Med. 2015 ; 3 : 943-52.
12) 日本版敗血症診療ガイドライン2016作成特別委員会. 日本版敗血症診療ガイドライン 2016. 日集中医誌. 2017 ; 24 : S1-232.
13) 東別府直紀, 讃井將満, 祖父江和哉, 他. 国際栄養調査から見える本邦ICUにおける栄養療法の現状と問題点. 日集中医誌. 2014 ; 21 : 243-52.
14) Phan KA, Dux CM, Osland EJ, et al. Effect of hypocaloric normoprotein or trophic feeding versus target full enteral feeding on patient outcomes in critically ill adults : a systematic review. Anaesth Intensive Care. 2017 ; 45 : 663-75.
15) Chapman M, Peake SL, Bellomo R, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018 ; 379 : 1823-34.
16) Villet S, Chiolero RL, Bollomo MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005 ; 24 : 502-9.
17) Faisy C, Lerolle N, Dachraoui F, et al. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Br J Nutr. 2009 ; 101 : 1079-87.
18) Braunschweig CL, Freels S, Sheen PM, et al. Role of timing and dose of energy received in patients with acute lung injury on mortality in the Intensive Nutrition in Acute Lung Injury Trial (INTACT) : a post hoc analysis. Am J Clin Nutr. 2017 ; 105 : 411-6.
19) Miyajima I, Yatabe T, Kuroiwa H, et al. Influence of nutrition support therapy on readmission among patients with acute heart failure in the intensive care unit : a single-center observational study. Clin Nutr. 2020 ; 39 : 174-9.
P.365 掲載の参考文献
1) 日本循環器学会, 日本心臓リハビリテーション学会, 日本冠疾患学会, 他. 2021年改訂版 心血管疾患におけるリハビリテーションに関するガイドライン. 2021.
2) Yaku H, Ozasa N, Morimoto T, et al. Demographics, management, and in-hospital outcome of hospitalized acute heart failure syndrome patients in contemporary real clinical practice in Japan- observations from the prospective, multicenter Kyoto Congestive Heart Failure (KCHF) Registry. Circ J. 2018 ; 82 : 2811-9.
3) Saitoh M, dos Santos MR, Emami A, et al. Anorexia, functional capacity, and clinical outcome in patients with chronic heart failure : results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). ESC Heart Fail. 2017 ; 4 : 448-57.
4) Gupta D, Georgiopoulou VV, Kalogeropoulos AP, et al. Dietary sodium intake in heart failure. Circulation. 2012 ; 126 : 479-85.
5) Kalogeropoulos A, Papadimitriou L, Georgiopoulou V, et al. Low- versus moderate-sodium diet in patients with recent hospitalization for heart failure : the PROHIBIT Sodium Pilot Study. J Card Fail. 2020 ; 13 : e006389.
6) Mahtani KR, Heneghan C, Onakpoya I, et al. Reduced salt intake for heart failure : a systematic review. JAMA Intern Med. 2018 ; 178 : 1093-700.
7) Ezekowitz JA, Colin-Ramirez E, Ross H, et al. Reduction of dietary sodium to less than 100 mmol in heartfailure (SODIUM-HF) : an international, open-label,randomised, controlled trial. Lancet. 2022 ; Published online April 2, 2022.
8) Mahtani KR, Heneghan C, Onakpoya I, et al. Reduced salt intake for heart failure : a systematic review. JAMA Intern Med. 2018 ; 178 : 1693-700.
9) Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014 ; 10 : 268-78.
10) Hummel SL, Seymour EM, Brook RD, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013 ; 6 : 1165-71.
P.371 掲載の参考文献
1) 日本心不全ガイドライン委員会. 心不全における栄養評価・管理に関するステートメント. 2018.
2) 日本循環器学会, 日本心臓リハビリテーション学会, 日本冠疾患学会, 他. 心血管疾患におけるリハビリテーションに関するガイドライン 2021年改訂版. p.1-149.
4) 日本集中治療医学会早期リハビリテーション検討委員会. 集中治療における早期リハビリテーション~根拠に基づくエキスパートコンセンサス~. 日集中医誌. 2017 ; 24 : 255-303.
5) 日本静脈経腸栄養学会. 静脈経腸栄養ガイドライン. 第3版. 2013.
6) 栄養管理ガイドライン作成委員会日本呼吸療法医学会. 急性呼吸不全による人工呼吸患者の栄養管理ガイドライン 2011年版. 人工呼吸. 2012 ; 29 : 75-120.
7) McClave SA, Lukan JK, Stefater JA, et al. Poor validity of residual volumes as a marker for risk of aspiration in critically ill patients. Crit Care Med. 2005 ; 33 : 324-30.
8) Mostafa SM, Bhandari S, Ritchie G, et al. Constipation and its implications in the critically ill patient. Br J Anaesth. 2003 ; 91 : 815-9.

第11章 心不全の栄養・フレイルに関する最新のトピックス・エビデンス

P.379 掲載の参考文献
1) Sandek A, Bjarnason I, Volk HD, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012 ; 157 : 80-5.
2) Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 ; 472 : 57-63.
3) Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013 ; 368 : 1575-84.
4) Li XS, Obeid S, Klingenberg R, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes : a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017 ; 38 : 814-24.
5) Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure : refining the gut hypothesis. J Am Coll Cardiol. 2017 ; 64 : 1908-14.
6) Hayashi T, Yamashita T, Watanabe H, et al. Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J. 2018 ; 83 : 182-92.
7) Cui X, Ye L, Li J, et al. Metagenomic and metabolomics analyses unveil dysbiosis of gut microbeta in chronic heart failure patients. Sci Rep. 2018 ; 8 : 635.
8) Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut flora in patients with chronic heart failure. JACC Heart Fail. 2016 ; 4 : 220-7.
P.387 掲載の参考文献
1) Nagoshi T, Yoshimura M, Rosano GM, et al. Optimization of cardiac metabolism in heart failure. Curr Pharm Des. 2011 ; 17 : 3846-53.
2) Nagoshi T, Matsui T, Aoyama T, et al. PI3K rescues the detrimental effects of chronic Akt activation in the heart during ischemia/reperfusion injury. J Clin Invest. 2005 ; 115 : 2128-38.
3) Held C, Gerstein HC, Yusuf S, et al. Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation. 2007 ; 115 : 1371-5.
4) Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972 ; 30 : 595-602.
5) Nagoshi T. Major influence of diabetes on hospitalization for heart failure in patients with ischemic heart diseases. Circ J. 2020 ; 84 : 382-3.
6) Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000 ; 87 : 1123-32.
8) Tanaka Y, Nagoshi T, Kawai M, et al. Close linkage between serum uric acid and cardiac dysfunction in patients with ischemic heart disease according to covariance structure analysis. Sci Re. 2017 ; 7 : 2519.
9) Hirsch GA, Bottomley PA, Gerstenblith G, et al. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J Am Coll Cardiol. 2012 ; 59 : 802-8.
10) Opie LH. Allopurinol for heart failure : novel mechanisms. J Am Coll Cardiol. 2012 ; 59 : 809-12.
11) Tanaka Y, Nagoshi T, Yoshii A, et al. Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice. Free Radic Biol Med. 2021 ; 162 : 298-308.
12) Singh VP, Le B, Khode R, et al. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008 ; 57 : 3297-306.
13) Fujisaki M, Nagoshi T, Nishikawa T, et al. Rapid induction of aldosterone synthesis in cultured neonatal rat cardiomyocytes under high glucose conditions. Biomed Res Int. 2013 ; 2013 : 161396.
14) Sato A, Funder JW. High glucose stimulates aldosterone-induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinology. 1996 ; 137 : 4145-53.
15) Cooper SA, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol. 2007 ; 293 : H2009-23.
16) Miyashita K, Itoh H, Tsujimoto H, et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes. 2009 ; 58 : 2880-92.
17) Bordicchia M, Liu D, Amri EZ, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012 ; 122 : 1022-36.
18) Wang TJ. The natriuretic peptides and fat metabolism. N Engl J Med. 2012 ; 367 : 377-8.
19) Collins S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol. 2014 ; 10 : 157-63.
20) Kimura H, Nagoshi T, Yoshii A, et al. The thermogenic actions of natriuretic peptide in brown adipocytes : the direct measurement of the intracellular temperature using a fluorescent thermoprobe. Sci Rep. 2017 ; 7 : 12978.
21) Kang R, Nagoshi T, Kimura H, et al. Possible association between body temperature and B-type natriuretic peptide in patients with cardiovascular diseases. J Card Fail. 2021 ; 27 : 75-82.
22) Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004 ; 109 : 594-600.
23) Nagoshi T. Close linkage between natriuretic peptides and obesity-impact of sex on the interorgan metabolic crosstalk. Circ J. 2021 ; 85 : 655-6.
24) Neubauer S. The failing heart--an engine out of fuel. N Engl J Med. 2007 ; 356 : 1140-51.
P.394 掲載の参考文献
1) Matsue Y, Kamiya K, Saito H, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure : the FRAGILE-HF cohort study. Eur J Heart Fail. 2020 ; 22 : 2112-9.
2) Konishi M, Kagiyama N, Kamiya K, et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur J Prev Cardiol. 2021 ; 28 : 1022-9.
3) Nozaki K, Kamiya K, Hamazaki N, et al. Validity and utility of the questionnaire-based FRAIL scale in older patients with heart failure : findings from the FRAGILE-HF. J Am Med Dir Assoc. 2021 ; 22 : 1621-6.e1622.
4) Tanaka S, Kamiya K, Saito H, et al. Prevalence and prognostic value of the coexistence of anaemia and frailty in older patients with heart failure. ESC Heart Fail. 2021 ; 8 : 625-33.
5) Hirose S, Matsue Y, Kamiya K, et al. Prevalence and prognostic implications of malnutrition as defined by GLIM criteria in elderly patients with heart failure. Clin Nutr. 2021 ; 40 : 4334-40.
6) Jujo K, Kagiyama N, Saito K, et al. Impact of social frailty in hospitalized elderly patients with heart failure : a FRAGILE-HF registry subanalysis. J Am Heart Assoc. 2021 ; 10 : e019954.
7) Maeda D, Kagiyama N, Jujo K, et al. Aspartate aminotransferase to alanine aminotransferase ratio is associated with frailty and mortality in older patients with heart failure. Sci Rep. 2021 ; 11 : 11957.
8) Ozawa T, Yamashita M, Seino S, et al. Standardized gait speed ratio in elderly patients with heart failure. ESC Heart Fail. 2021 ; 8 : 3557-65.
9) Kitai T, Shimogai T, Tang WW, et al. Short physical performance battery vs. 6-minute walking test in hospitalized elderly patients with heart failure. Eur Heart J Open. 2021 ; 1 : oeab006.

最近チェックした商品履歴

Loading...