医学と薬学 79/9 2022年9月号

出版社: 自然科学社
発行日: 2022-08-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: 筋ジストロフィー ―診断と治療の最先端
電子書籍版: 2022-08-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,540 円(税込)

目次

  • 特集 筋ジストロフィー ―診断と治療の最先端

    序文
    筋ジストロフィー
     ―その多様性と診断アルゴリズム
    分子病態と先端治療開発
     ―デュシェンヌ型筋ジストロフィー
    分子病態と先端治療開発
     ―顔面肩甲上腕型筋ジストロフィー
    分子病態と先端治療開発
     ―筋強直性ジストロフィー
    分子病態と先端治療開発
     ―福山型先天性筋ジストロフィー
    筋ジストロフィー患者の集学的治療とケア

    Diagnosis
     バイオセンサTSAb「ヤマサ」の基礎的・臨床的検討
     エクルーシス試薬FT4IVを用いた基礎的・臨床的検討

    Cosmetic
     洗顔料の毛穴改善効果

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 筋ジストロフィー - 診断と治療の最先端】

P.1154 掲載の参考文献
1) Fardeau M : L'Homme de chair. 岩田誠 (総監訳), 武田伸一 (監訳), 石垣景子, 他 (編) : 筋学を築き上げた人々, pp.97-123, 診断と治療社, 東京, 2021.
2) Erb WH : Dystrophia muscularis progressiva. Klinische und pathologischanatomische Studien. Deut Zeits Nervenheilk 1 : 13-94・173-261, 1891.
3) 難病情報センター : 筋ジストロフィー (指定難病113). https://www.nanbyou.or.jp/entry/4523
4) Public Law 107-84. https://www.congress.gov-/107/plaws/publ84/PLAW-107publ84.pdf
5) Gowers WR : Pseudo-hypertrophic muscular paralysis : a clinical lecture. J. & A. Churchill, London, 1879.
6) 石原傳幸 : X染色体性筋ジストロフィー. 杉田秀夫, 小澤英二郎, 埜中征哉 編, 新筋肉病学, pp.502-516, 南江堂, 東京, 1995.
7) 神経・筋疾患患者登録Remudy. ジストロフィノパチー患者登録サイト. http://www.remudy.jp/dystrophinopathy/index.html
8) Walton JN, Nattrass EJ : On the classification, natural history and treatment of the myopathy. Brain 77 : 69-231, 1954.
9) Bonne G, Rivier F, Hamroun D : The 2018 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 27 : 1152-1183, 2017.
10) Online Mendelian Inheritance in Man (OMIM). https://www.ncbi.nlm.nih.gov/omim
11) Straub V, Murphy A, Udd B, LGMD workshop study group : Limb girdle muscular dystrophies-Nomenclature and reformed classification. Neuromuscul Disord 28 : 702-710, 2018.
12) 尾方克久 : 顔面肩甲上腕型筋ジストロフィー. 下畑享良 編, 脳神経内科診断ハンドブック, pp.456-459, 中外医学社, 東京, 2022.
13) 尾方克久 : Emery-Dreifuss型筋ジストロフィー. 下畑享良 編, 脳神経内科診断ハンドブック, pp.460-462, 中外医学社, 東京, 2022.
14) 尾方克久 : 筋疾患, 神経筋接合部疾患. Medical Practice 38 : 1865-1869, 2021.
15) 久留聡, 鈴木重明, 尾方克久, 他 : 診断未確定慢性ミオパチーにおける壊死性ミオパチー関連抗体スクリーニング. 臨床神経 57 : 562-566, 2017.
16) 斎藤良彦, 西野一三 : 筋炎・壊死性ミオパチーの筋病理 : 筋炎と筋ジストロフィーは病理で鑑別できるか. Brain and Nerve 神経研究の進歩 73 : 147-159, 2021.
17) 石垣景子, 池田 (谷口) 真理子, 白石一浩 : 先天性筋ジストロフィー (乳児~小児筋ジストロフィーの病型診断を念頭に). 厚生労働科学研究費 難治性疾患政策研究事業「筋ジストロフィーの標準的医療普及のための調査研究」班 編, 筋ジストロフィーの病型診断を進めるための手引き, pp.4-16, 2019. https://doctors.mdcst.jp/diagnosis/manual/
18) 尾方克久 : 肢帯型筋ジストロフィー (小児~成人筋ジストロフィーの病型診断を念頭に). 厚生労働科学研究費 難治性疾患政策研究事業「筋ジストロフィーの標準的医療普及のための調査研究」班 編, 筋ジストロフィーの病型診断を進めるための手引き, pp.17-27, 2019. https://doctors.mdcst.jp/diagnosis/manual/
19) 松浦徹 : 筋強直性ジストロフィー (1型が否定された場合の病型診断を念頭に). 厚生労働科学研究費 難治性疾患政策研究事業「筋ジストロフィーの標準的医療普及のための調査研究」班 編, 筋ジストロフィーの病型診断を進めるための手引き, pp.28-34, 2019. https://doctors.mdcst.jp/diagnosis/manual/
20) 国立精神・神経医療研究センター神経研究所疾病研究第一部 : 顔面肩甲上腕型筋ジストロフィーの遺伝学的診断. https://www.ncnp.go.jp/nin/guide/r1/FSHD.html
P.1165 掲載の参考文献
1) Emery AE : Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul Disord 1 : 19-29, 1991.
2) Monaco AP, Neve RL, Colletti-Feener C, et al : Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323 : 646-650, 1986
3) Hoffman EP, Brown RH Jr, Kunkel LM : Dystrophin : the protein product of the Duchenne muscular dystrophy locus. Cell 51 : 919-928, 1987.
4) Pastoret C, Sebille A : mdx mice show progressive weakness and muscle deterioration with age. J Neurol Sci 129 : 97-105, 1995
5) Yoshida M, Hama H, Ishikawa-Sakurai M, et al : Biochemical evidence for association of dystrobrevin with the sarcoglycan-sarcospan complex as a basis for understanding sarcoglycanopathy. Hum Mol Genet 9 : 1033-1040, 2000.
6) Koenig M, Beggs AH, Mo yer M, et al : The molecular basis for Duchenne versus Becker muscular dystrophy : correlation of severity with type of deletion. Am J Hum Genet 45 : 498-506, 1989.
7) Matsuo M, Masumura T, Nishio H, et al : Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe. J Clin Invest 87 : 2127-2131, 1991.
8) Dunckley MG, Manoharan M, Villiet P, et al : Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7 : 1083-1090, 1998.
9) Amantana A, Iversen PL : Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 5 : 550-555, 2005.
10) Aoki Y, Nakamura A, Yokota T, et al : In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18 : 1995-2005, 2010.
11) Echigoya Y, Lim KRQ, Melo D, et al : Exons 45-55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Mol Ther 27 : 2005-2017, 2019.
12) Aoki Y, Yokota T, Nagata T, et al : Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109 : 13763-13768, 2012.
13) Komaki H, Nagata T, Saito T, et al : Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med 10 : eaan0713, 2018.
14) Aartsma-Rus A, van Ommen GJ : Antisense-mediated exon skipping : a versatile tool with therapeutic and research applications. Rna 13 : 1609-1624, 2007.
15) Kuhn J, Klein PM, Al Danaf N, et al : Supramolecular Assembly of Aminoethylene-Lipopeptide PMO Conjugates into RNA Splice-Switching Nanomicelles. Advanced Functional Materials 29, 2019.
16) Tone Y, Mamchaoui K, Tsoumpra MK, et al : Immortalized Canine Dystrophic Myoblast Cell Lines for Development of Peptide-Conjugated Splice-Switching Oligonucleotides. Nucleic Acid Ther 31 : 172-181, 2021.
17) Beroud C, Tuffery-Giraud S, Matsuo M, et al : Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28 : 196-202, 2007.
18) Harper SQ, Hauser MA, DelloRusso C, et al : Modular flexibility of dystrophin : implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8 : 253-261, 2002.
19) Koo T, Okada T, Athanasopoulos T, et al : Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J Gene Med 13 : 497-506, 2011.
20) Mendell JR, Sahenk Z, Lehman K, et al : Assessment of Systemic Delivery of rAAVrh74.MHCK7. micro-dystrophin in Children With Duchenne Muscular Dystrophy. JAMA Neurol 77 : 1122-1131, 2020.
21) https://www.parentprojectmd.org/wp-content/uploads/2021/12/DMD-Study-1001-Update_Letter-to-the-Community.pdf, 2021.
22) http://join.parentprojectmd.org/site/DocServer/A_Message_from_Pfizer_on_our_DMD_Clinical_Program_-_Sept.pdf, 2021
23) https://www.solidbio.com/about/media/pressreleases/solid-biosciences-reports-efficacy-andsafety-data-from-the-ongoing-ignite-dmdclinical-trial-and-resumption-of-patient-dosingin-the-2e14-vg-kg-cohort, 2021.
24) Ohshima S, Shin JH, Yuasa K, et al : Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol Ther 17 : 73-80, 2009.
25) Le Guiner C, Servais L, Montus M, et al : Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8 : 16105, 2017.
26) Manno CS, Pierce GF, Arruda VR, et al : Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12 : 342-347, 2006.
27) Nelson CE, Hakim CH, Ousterout DG, et al : In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351 : 403-407, 2016.
28) Amoasii L, Hildyard JCW, Li H, et al : Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362 : 86-91, 2018.
29) Gee P, Lung MSY, Okuzaki Y, et al : Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun 11 : 1334, 2020.
P.1172 掲載の参考文献
1) Van Geel M, Dickson MC, Beck AF, et al : Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics 79 (2) : 210 -217, 2002.
2) Lemmers RJLF, de Kievit P, Sandkuijl L, et al : Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet 32 (2) : 235-236, 2002.
3) Lemmers RJLF, Van Der Vliet PJ, Klooster R, et al : A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329 (5999) : 1650-1653, 2010.
4) Bakker E, Wijmenga C, Vossen RHAM, et al : The FSHD-linked locus D4F104S1 (p13E-11) on 4q35 has a homologue on 10qter. Muscle Nerve 2 : S39-S44, 1995.
5) Deidda G, Cacurri S, Grisanti P, et al : Physical mapping evidence for a duplicated region on chromosome 10qter showing high homology with the facioscapulohumeral muscular dystrophy locus on chromosome 4qter. Eur J Hum Genet 3 (3) : 155-167, 1995.
6) Lemmers RJ, Tawil R, Petek LM, et al : Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44 (12) : 1370-1374, 2012.
7) Van Den Boogaard ML, Lemmers RJLF, Balog J, et al : Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. Am J Hum Genet 98 (5) : 1020-1029, 2016.
8) Hamanaka K, Sikrova D, Mitsuhashi S, et al : Homozygous nonsense variant in LRIF1 associated with facioscapulohumeral muscular dystrophy. Neurology 94 (23) : e2441-e2447, 2020.
9) Hamanaka K, Goto K, Arai M, et al : Clinical, muscle pathological, and genetic features of Japanese facioscapulohumeral muscular dystrophy 2 (FSHD2) patients with SMCHD1 mutations. Neuromuscul Disord 26 (4-5) : 300 -308, 2016.
10) Jones TI, Yan C, Sapp PC, et al : Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin. Epigenetics 6 (1) : 23, 2014.
11) Van Overveld PGM, Lemmers RJFL, Sandkuijl LA, et al : Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 35 (4) : 315-317, 2003.
12) de Greef JC, Lemmers RJLF, van Engelen BGM, et al : Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat 30 (10) : 1449 -1459, 2009.
13) Snider L, Geng LN, Lemmers RJLF, et al : Facioscapulohumeral dystrophy : Incomplete suppression of a retrotransposed gene. PLoS Genet 6 (10) : 2010.
14) Cabianca DS, Casa V, Bodega B, et al : A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in fshd muscular dystrophy. Cell 149 (4) : 819-831, 2012.
15) Campbell AE, Shadle SC, Jagannathan S, et al : NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. Elife 7 : e31023, 2018.
16) Zeng W, De Greef JC, Chen YY, et al : Specific loss of histone H3 lysine 9 trimethylation and HP1γ/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 5 (7) : e1000559, 2009.
17) Haynes P, Bomsztyk K, Miller DG : Sporadic DUX4 expression in FSHD myocytes is associated with incomplete repression by the PRC2 complex and gain of H3K9 acetylation on the contracted D4Z4 allele. Epigenetics Chromatin 11 (1) : 47, 2018.
18) Feng Q, Snider L, Jagannathan S, et al : A feed-back loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy. Elife 4 : e04996, 2015.
19) Yao Z, Snider L, Balog J, et al : DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum Mol Genet 23 (20) : 5342-5352, 2014.
20) Resnick R, Wong CJ, Hamm DC, et al : DUX4-Induced Histone Variants H3.X and H3.Y Mark DUX4 Target Genes for Expression. Cell Rep 29 (7) : 1812-1820, 2019.
21) Hendrickson PG, Dorais JA, Grow EJ, et al : Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 49 (6) : 925-934, 2017.
22) Whiddon J. L, Langford A. T, Wong C, et al : Conservation and innovation in the DUX4-family gene network. Nat Genet 49 (6) : 935-940, 2017.
23) De Iaco A, Planet E, Coluccio A, et al : DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet 49 (6) : 941-945, 2017.
24) Kowaljow V, Marcowycz A, Ansseau E, et al : The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord 17 (8) : 611-623, 2007.
25) Bosnakovski D, Xu Z, Ji Gang E, et al : An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J 27 (20) : 2766-2779, 2008.
26) Wallace LM, Garwick SE, Mei W, et al : DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69 (3) : 540-552, 2011.
27) Rickard AM, Petek LM, Miller DG : Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Hum Mol Genet 24 (20) : 5901-5914, 2015.
28) Mitsuhashi H, Mitsuhashi S, Lynn-jones T, et al : Expression of DUX4 in zebrafish development recapitulates facioscapulohumeral muscular dystrophy. Hum Mol Genet 22 (3) : 568-577, 2013.
29) Wuebbles RD, Long SW, Hanel ML, et al : Testing the effects of FSHD candidate gene expression in vertebrate muscle development. Int J Clin Exp Pathol 3 (4) : 386-400, 2010.
30) Giesige CR, Wallace LM, Heller KN, et al : AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI insight 3 (22) : e123538, 2018.
31) Jones T, Jones PL : A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy. PLoS One 13 (2) : e0192657, 2018.
32) Bosnakovski D, Chan SSK, Recht OO, et al : Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nat Commun 8 (1) : 550, 2017.
33) Bosnakovski D, Gearhart MD, Toso EA, et al : p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. Dis Model Mech 10 (10) : 1211-1216, 2017.
34) Shadle SC, Zhong JW, Campbell AE, et al : DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genet 13 (3) : e1006658, 2017.
35) Shadle SC, Bennett SR, Wong CJ, et al : DUX4-induced bidirectional HSATII satellite repeat transcripts form intranuclear double-stranded RNA foci in human cell models of FSHD. Hum Mol Genet 28 (23) : 3997-4011, 2019.
36) Lek A, Zhang Y, Woodman KG, et al : Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci Transl Med 12 (536) : eaay0271, 2020.
37) Turki A, Hayot M, Carnac G, et al : Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 53 (5) : 1068-1079, 2012.
38) Winokur ST, Barrett K, Martin JH, et al : Facioscapulohumeral muscular dystrophy (FSHD) myoblasts demonstrate increased susceptibility to oxidative stress. Neuromuscul Disord 13 (4) : 322-333, 2003.
39) Sasaki-Honda M, Jonouchi T, Arai M, et al : A patient-derived iPSC model revealed oxidative stress increases facioscapulohumeral muscular dystrophy-causative DUX4. Hum Mol Genet 27 (23) : 4024-4035, 2018.
40) Knopp P, Krom YD, Banerji CRS, et al : DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J Cell Sci 129 (20) : 3816-3831, 2016.
41) Dandapat A, Bosnakovski D, Hartweck LM, et al : Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene. Cell Reports 8 (5) : 1484-1496, 2014.
42) Geng LN, Yao Z, Snider L, et al : DUX4 Activates Germline Genes, Retroelements, and Immune Mediators : Implications for Facioscapulohumeral Dystrophy. Dev Cell 22 (1) : 38 -51, 2012.
43) Campbell AE, Oliva J, Yates MP, et al : BET bromodomain inhibitors and agonists of the beta-2 adrenergic receptor identified in screens for compounds that inhibit DUX4 expression in FSHD muscle cells. Skelet. Muscle 7 (1) : 16, 2017.
44) Cruz JM, Hupper N, Wilson LS, et al : Protein kinase A activation inhibits DUX4 gene expression in myotubes from patients with facioscapulohumeral muscular dystrophy. J Biol Chem 293 (30) : 11837-11849, 2018.
45) Oliva J, Galasinski S, Richey A, et al : Clinically advanced p38 inhibitors suppress DUX4 expression in cellular and animal models of facioscapulohumeral muscular dystrophys. J Pharmacol Exp Ther 370 (2) : 219 -230, 2019.
46) Vanderplanck C, Ansseau E, Charron S, et al : The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS One 6 (10) : e26820, 2011.
47) Ansseau E, Vanderplanck C, Wauters A, et al : Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in faciosscapulohumeral muscular dystrophy (FSHD). Genes (Basel) 8 (3) : 93, 2017.
48) Marsollier AC, Ciszewski L, Mariot V, et al : Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy : A new gene-silencing approach. Hum Mol Genet 25 (8) : 1468-1478, 2016.
49) Chen JCJ, King OD, Zhang Y, et al : Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics. Mol Ther 24 (8) : 1405 -1411, 2016.
50) Lim KRQ, Bittel A, Maruyama R, et al : DUX4 Transcript Knockdown with Antisense 2' -O-Methoxyethyl Gapmers for the Treatment of Facioscapulohumeral Muscular Dystrophy. Mol Ther 29 (2) : 848-858, 2021.
51) Rashnonejad A, Amini-Chermahini G, Taylor NK, et al : Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Mol Ther Nucleic Acids 23 : 476-486, 2021.
52) Wallace LM, Liu J, Domire JS, et al : RNA interference inhibits DUX4-induced muscle toxicity in vivo : Implications for a targeted FSHD therapy. Mol Ther 20 (7) : 1417-1423, 2012.
53) Wallace LM, Saad NY, Pyne NK, et al : Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. Mol Ther Methods Clin Dev 8 : 121-130, 2018.
54) Himeda CL, Jones TI, Jones PL : CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol Ther 24 (3) : 527-535, 2016.
55) Himeda CL, Jones TI, Jones PL : Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol Ther Methods Clin Dev 20 : 298-311, 2021.
56) Himeda CL, Jones TI, Virbasius CM, et al : Identification of Epigenetic Regulators of DUX4-fl for Targeted Therapy of Facioscapulohumeral Muscular Dystrophy. Mol Ther 26 (7) : 1797-1807, 2018.
57) Sikrova D, Cadar VA, Ariyurek Y, et al : Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids 25 : 342-354, 2021.
58) Gaudelli NM, Komor AC, Rees HA, et al : Programmable base editing of A・T to G・C in genomic DNA without DNA cleavage. Nature 551 (7681) : 464-471, 2017.
P.1182 掲載の参考文献
1) Nakamori M, Takahashi MP : Myotonic dystrophy. Translational research in muscular dystrophy. (ed. by Takeda S, Miyagoe-Suzuki Y, Yoshimura M), pp.39-61, Springer Japan, Tokyo, 2016.
2) Mankodi A, Logigian E, Callahan L, et al : Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289 (5485) : 1769-1773, 2000.
3) Liquori CL, Ricker K, Moseley ML, et al : Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293 (5531) : 864-867, 2001.
4) Mankodi A, T akahashi MP, Jiang H, et al : Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10 (1) : 35-44, 2002.
5) Savkur RS, Philips AV, Cooper TA : Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29 (1) : 40-47, 2001.
6) Freyermuth F, Rau F, Kokunai Y, et al : Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 7 : 11067, 2016.
7) Tang ZZ, Yarotskyy V, Wei L, et al : Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca (V) 1.1 calcium channel. Hum Mol Genet 21 (6) : 1312-1324, 2012.
8) Nakamori M, Kimura T, Fujimura H, et al : Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve 36 (2) : 251-257, 2007.
9) Nakamori M, Kimura T, Kubota T, et al : Aberrantly spliced alpha-dystrobrevin alters alpha-syntrophin binding in myotonic dystrophy type 1. Neurology 70 (9) : 677-685, 2008.
10) Nakamori M, Sobczak K, Puwanant A, et al : Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 74 (6) : 862-872, 2013.
11) Wheeler TM, Leger AJ, Pandey SK, et al : Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488 (7409) : 111-115, 2012.
12) Warf MB, Nakamori M, Matthys CM, et al : Pen tamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci USA 106 (44) : 18551-18556, 2009.
13) Childs-Disney JL, Parkesh R, Nakamori M, et al : Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1. ACS Chem Biol 7 (12) : 1984-1993, 2012.
14) Parkesh R, Childs-Disney JL, Nakamori M, et al : Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 134 (10) : 4731-4742, 2012.
15) Li J, Nakamori M, Matsumoto J, et al : A Dimeric 2,9-Diamino-1,10-phenanthroline Derivative Improves Alternative Splicing in Myotonic Dystrophy Type 1 Cell and Mouse Models. Chemistry 24 (68) : 18115-18122, 2018.
16) Jenquin JR, Coonrod LA, Silverglate QA, et al : Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms. ACS Chem Biol 13 (9) : 2708-2718, 2018.
17) Matsumoto J, Nakamori M, Okamoto T, et al : The Dimeric Form of 1,3-Diaminoisoquinoline Derivative Rescued the Mis-splicing of Atp2a1 and Clcn1 Genes in Myotonic Dystrophy Type 1 Mouse Model. Chemistry 26 (63) : 14305-14309, 2020.
18) Nakamori M, Taylor K, Mochizuki H, et al : Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 3 (1) : 42 -54, 2016.
19) Arandel L, Matloka M, Klein AF, et al : Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 6 (2) : 207-220, 2022.
20) Bassez G, Audureau E, Hogrel JY, et al : Improved mobility with metformin in patients with myotonic dystrophy type 1 : a randomized controlled trial. Brain 141 (10) : 2855-2865, 2018.
21) Siboni RB, Nakamori M, Wagner SD, et al : Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models. Cell Rep 13 (11) : 2386-2394, 2015.
22) Reddy K, Jenquin JR, McConnell OL, et al : A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels. Proc Natl Acad Sci USA 116 (42) : 20991-21000, 2019.
23) Ketley A, Wojciechowska M, Ghidelli-Disse S, et al : CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Sci Transl Med 12 (541) : eaaz2415, 2020.
24) Nakamori M, Gourdon G, Thornton CA : Stabilization of expanded (CTG)* (CAG) repeats by antisense oligonucleotides. Mol Ther 19 (12) : 2222-2227, 2011.
25) Nakamori M, Panigrahi GB, Lanni S, et al : A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 52 (2) : 146-159, 2020.
26) Garcia-Lopez A, Llamusi B, Orzaez M, et al : In vivo discovery of a peptide that prevents CUGRNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models. Proc Natl Acad Sci USA 108 (29) : 11866-11871, 2011.
27) Ofori LO, Hoskins J, Nakamori M, et al : From dynamic combinatorial 'hit' to lead : in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy. Nucleic Acids Res 40 (13) : 6380-6390, 2012.
28) Jones K, Wei C, Iakova P, et al : GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest 122 (12) : 4461-4472, 2012.
29) Oana K, Oma Y, Suo S, et al : Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice. Sci Rep 3 : 2142, 2013.
30) Coonrod LA, Nakamori M, Wang W, et al : Reducing levels of toxic RNA with small molecules. ACS Chem Biol 8 (11) : 2528-2537, 2013.
31) Siboni RB, Bodner MJ, Khalifa MM, et al : Biological Efficacy and Toxicity of Diamidines in Myotonic Dystrophy Type 1 Models. J Med Chem 58 (15) : 5770-5780, 2015.
32) Laustriat D, Gide J, Barrault L, et al : In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. Mol Ther Nucleic Acids 4 (11) : e262, 2015.
33) Herrendorff R, Faleschini MT, Stiefvater A, et al : Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I. J Biol Chem 291 (33) : 17165-17177, 2016.
34) Chen G, Masuda A, Konishi H, et al : Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep 6 : 25317, 2016.
35) Brockhoff M, Rion N, Chojnowska K, et al : Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 127 (2) : 549-563, 2017.
36) Wei C, Stock L, Valanejad L, et al : Correction of GSK3β at young age prevents muscle pathology in mice with myotonic dystrophy type 1. FASEB J 32 (4) : 2073-2085, 2018.
37) Maury Y, Poydenot P, Brinon B, et al : Pluripotent Stem Cell-Based Drug Screening Reveals Cardiac Glycosides as Modulators of Myotonic Dystrophy Type 1. iScience 11 : 258-271 2019.
38) Wang M, Weng WC, Stock L, et al : Correction of Glycogen Synthase Kinase 3β in Myotonic Dystrophy 1 Reduces the Mutant RNA and Improves Postnatal Survival of DMSXL Mice. Mol Cell Biol 39 (21) : e00155-19, 2019.
39) Angelbello AJ, Rzuczek SG, Mckee KK, et al : Precise small-molecule cleavage of an r (CUG) repeat expansion in a myotonic dystrophy mouse model. Proc Natl Acad Sci USA 116 (16) : 7799-7804, 2019.
40) Bargiela A, Sabater-Arcis M, Espinosa-Espinosa J, et al : Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc Natl Acad Sci USA 116 (50) : 25203-25213, 2019.
P.1190 掲載の参考文献
1) Fukuyama Y, Osawa M, Suzuki H : Congenital progressive muscular dystrophy of the Fukuyama type-clinical, genetic and pathological considerations. Brain Dev 3 : 1-29, 1981.
2) Kobayashi K, Nakahori Y, Miyake M, et al : An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394 : 388-392, 1998.
3) Kondo-Iida E, Kobayashi K, Watanabe M, et al : Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8 : 2303-2309, 1999.
4) Murakami T, Hayashi YK, Noguchi S, et al : Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol 60 : 597-602, 2006.
5) Hayashi YK, Ogawa M, Tagawa K, et al : Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57 : 115-121, 2001.
6) Kanagawa M, Toda T : Muscular Dystrophy with Ribitol-Phosphate Deficiency : A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis 4 : 259-267, 2017.
7) Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, et al : Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478 : 127-131, 2011.
8) Kanagawa M, Kobayashi K, Tajiri M, et al : Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 14 : 2209-2223, 2016.
9) Cataldi MP, Lu P, Blaeser A, et al : Ribitol restores functionally glycosylated alpha-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun 9 : 3448, 2018.
10) Taniguchi-Ikeda M, Koyanagi-Aoi M, Maruyama T, et al : Restoration of the defect in radial glial fiber migration and cortical plate organization in a brain organoid model of Fukuyama muscular dystrophy. iScience 24 : 103140, 2021.
11) Tokuoka H, Imae R, Nakashima H, et al : CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 13 : 1847, 2022.
12) Ishigaki K, Ihara C, Nakamura H, et al : National registry of patients with Fukuyama congenital muscular dystrophy in Japan. Neuromuscul Disord 28 : 885-893, 2018.
13) Sato T, Adachi M, Nakamura K, et al : The gross motor function measure is valid for Fukuyama congenital muscular dystrophy. Neuromuscul Disord 27 : 45-49, 2017.
14) Sato T, Adachi M, Matsuo A, et al : A short form of gross motor function measure for Fukuyama congenital muscular dystrophy. Brain Dev 42 : 383-388, 2020.
P.1197 掲載の参考文献
1) 松村剛 : 筋疾患における中枢神経系障害の重要性. Brain Nerve 68 (2) : 109 -118, 2016
2) 小林道雄, 石崎雅俊, 足立克仁, 他 : ジストロフィン異常症保因者の遺伝カウンセリング・健康管理の実態に関する調査. 臨神経 56 (6) : 407 -412, 2016.
3) Ishizaki M, Kobayashi M, Adachi K, et al : Female dystrophinopathy : Review of current literature. Neuromuscul Disord 28 (7) : 572 -581, 2018.
4) 松村剛 : 筋ジストロフィー医療を巡る課題と展望-神経内科の立場から-. 医療 70 (7) : 312-316, 2016.
5) 松村剛, 齊藤利雄, 藤村晴俊, 他 : Duchenne muscular dystrophy 患者の経時的死因分析. 臨神経 51 (10) : 743 -750, 2011.
6) 石川悠加 : 呼吸リハビリテーションの動向. J Clin Rehabil 31 (2) : 128 -133, 2022.
7) 野崎園子 : 筋ジストロフィーと摂食嚥下障害. MED REHABIL 212 (2017年7月増刊号) : 189 -197, 2017.
8) 松村剛 : 筋ジストロフィーの臨床現場における歯科学的問題. 医療 61 (12) : 781-785, 2007.
9) 「デュシェンヌ型筋ジストロフィー診療ガイドライン」作成委員会 編 : デュシェンヌ型筋ジストロフィー診療ガイドライン 2014, 南江堂, 東京, 2014.
10) 「筋強直性ジストロフィー診療ガイドライン」作成委員会 編 : 筋強直性ジストロフィー診療ガイドライン 2020, 南江堂, 東京, 2020.

【Diagnosis】

P.1207 掲載の参考文献
1) Adams DD, Purves HD : Abnormal responses in the assay thyrotropin. Proc Univ Otago Sch Med 34 : 11-12, 1956.
2) Adams DD : Pathogenesis of the hyperthyroidism of Graves' disease. Br Med J 1 : 1015-1019, 1956.
3) Smith BR, Hall R : Thyroid-stimulating immunoglobulins in Graves' disease. Lancet 2 : 423-431, 1974.
4) Kamijo K, Kato T, Kawasaki K et al : Retrospective and prospective studies on the usefulness of the period of time from the euthyroid state to the normalization of TBII and TSAb as a predictor of remission in Basedow's patients. Exp Clin Endocrinol 97 : 312-315, 1991.
5) Kamijo K : TSH-receptor antibody measurement in patients with various thyrotoxicosis and Hashimoto's thyroiditis : a comparison of two two-step assays, coated plate ELISA using porcine TSH-receptor and coated tube radioassay using human recombinant TSH-receptor. Endocr J 50 : 113-116, 2003.
6) Kamijo K, Ishikawa K, Tanaka M : Clinical evaluation of 3rd generation assay for thyrotropin receptor antibodies : the M22-biotin-based ELISA initiated by Smith. Endocr J 54 : 619-624, 2007.
7) 上條桂一, 富樫和美 : ECLIA TRAb (全自動電気化学発光免疫測定法) およびMc4-TSAb (Thyrertain bioreceptor assay法) について. 日本甲状腺学会誌 2 : 11-15, 2011.
8) Kamijo K : Study on cut-off value setting for differential diagnosis between Graves' disease and painless thyroiditis using TRAb (Elecsys TRAb) measurement via the fully automated electrochemiluminescence immunoassay system. Endocrine Journal 57 : 895-902, 2010.
9) Kamijo K, Nagata A, Sato Y : Clinical significance of a sensitive assay for thyroid stimulating antibodies in Graves' disease using polyethylene glycol a high concentrations and porcine thyroid cells. Endocr J 46 : 397-403, 1999.
10) Kamijo K, Togashi K : Development of more sensitive bioassay of TSAb due to the modification of conventional assays and its measurement in M22-TRAb-seronegative Graves' patients. Ann Thyroid Res 1 : 5-10, 2014.
11) Kamijo K, Murayama H, Uzu T et al : Similar clinical performance of a novel chimeric thyroid-stimulating hormone receptor bioassay and an automated thyroid-stimulating hormone receptor binding assay in Graves' disease. Thyroid 21 : 1295-1299, 2011.
12) 田上哲也, 保科元気, 尾嶋汐海, 他 : 次世代迅速TSAb測定法の開発 :測定原理と基礎性能-臨床評価. 糖尿病・内分泌代謝科 53 : 479-486, 2021.
13) 日本甲状腺学会ホームページより http://www.japanthyroid.jp
P.1216 掲載の参考文献
1) Engvall E and Perlmann P : Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8 (9) : 871-874, 1971.
2) 石川栄治 : エンザイムイムノアッセイの基礎と臨床. 臨床病理 34 (11) : 1284-1290, 1986.
3) 池田斉 : Non-RIA法による甲状腺機能検査. 日本臨床検査自動化学会会誌 21 (5) : 653-660, 1996.
4) 猪俣啓子, 山本晶子, 幸下美沙紀, 他 : 全自動電気化学発光免疫測定装置「モジュラーアナリティクス <EE> 」による「エクルーシス試薬FT3II」の基礎的検討, および甲状腺関連項目の臨床的検討. 医学と薬学 51 (1) : 187-196, 2004.
5) 宮崎直子, 田中克昌, 北川亘, 他 : エクルーシス試薬FT4II・エクルーシス試薬FT3IIIを用いた基礎的・臨床的検討. 医学と薬学 70 (2) : 367-380, 2013.
6) Blackburn GF, Shah HP, Kenten JH, et al : Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37 (9) : 1534-1539, 1991.
7) 北川亘, 後藤正寿, 宮崎直子, 他 : エクルーシス試薬カルシトニンの基礎的・臨床的検討. 医学と薬学 72 (1) : 97-108, 2015.
8) 北川亘, 宮崎直子, 田中克昌, 他 : エクルーシス試薬FT4IIIを用いた基礎的・臨床的検討. 医学と薬学 75 (6) : 681-692, 2018.
9) 山口昭弘, 西尾香奈子, 水嶋好清, 他 : マイクロプレート固相化ビオチン-HRP標識アビジン競合法による血清ビオチン定量法. 札幌市衛研年報 17 : 77-83, 1990.

最近チェックした商品履歴

Loading...