日本臨牀 別冊 腎臓症候群(第3版)I

出版社: 日本臨牀社
発行日: 2022-08-31
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: 腎臓症候群(第3版)I
電子書籍版: 2022-08-31 (第3版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

19,800 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

19,800 円(税込)

目次

  • I.AKIとCKD
     1.急性腎障害(AKI)
     2.慢性腎臓病(CKD)
     3.心腎症候群・腎心症候群

    II.糸球体疾患
     1.C1q腎症
     2.フィブロネクチン腎症
     3.IgA腎症
     4.PGNMIDとその亜系
     5.コラーゲン線維性糸球体腎症
     6.ネフローゼ症候群[一次性,二次性]
     7.メサンギウム増殖性糸球体腎炎[non-IgA腎症]
     8.管外増殖性糸球体腎炎
     9.管内増殖性糸球体腎炎
     10.急性糸球体腎炎
     11.急速進行性糸球体腎炎
     12.抗糸球体基底膜抗体型糸球体腎炎・Goodpasture症候群
     13.抗尿細管基底膜抗体型腎炎
     14.細線維性糸球体腎炎とイムノタクトイド糸球体症
     15.先天性糸球体硬化症
     16.巣状分節性糸球体硬化症
     17.足細胞陥入糸球体症
     18.肉芽腫性糸球体腎炎
     19.微小変化型ネフローゼ症候群
     20.膜性腎症
     21.膜性増殖性糸球体腎炎I型,III型

    III.尿細管間質性腎症
     1.尿細管間質性腎炎
     2.IgG4関連尿細管間質性腎炎
     3.ぶどう膜炎を伴う尿細管間質性腎炎症候群(TINU症候群)
     4.特発性尿細管間質性腎炎[急性、慢性]
     5.肉芽腫性間質性腎炎
     6.慢性腎盂腎炎
     7.膀胱尿管逆流による腎実質障害(逆流性腎症)
     8.IgM陽性形質細胞を伴った尿細管間質性腎炎(IgMPC-TIN)

    IV.腎血管系障害
     1.Nutcracker現象
     2.Patchy renal vasoconstriction
     3.血栓性微小血管症
     4.重複腎動脈
     5.腎梗塞,梗塞腎
     6.腎硬化症[良性,悪性]
     7.腎静脈血栓症
     8.腎動静脈瘻
     9.血管炎に伴う腎障害
     10.腎動脈狭窄症
     11.腎動脈血栓 腎動脈塞栓 腎動脈閉塞
     12.腎動脈線維筋性異形成
     13.腎動脈瘤

    V.尿細管輸送異常症
     1.尿細管性アシドーシス
     2.Ⅳ型(高K血性)尿細管性アシドーシス
     3.Bartter症候群・Gitelman症候群(遺伝性塩類喪失性尿細管機能異常症)
     4.Carbonic anhydrase II 欠損症
     5.Fanconi症候群
     6.Liddle症候群
     7.Lowe症候群
     9.Nephrogenic syndrome of inappropriate antidiuresis (NSIAD)
     10.アミノ酸尿細管輸送異常症
     11.シスチン蓄積症
     12.偽性バーター症候群・偽性ギッテルマン症候群
     13.偽性低アルドステロン症I型
     14.偽性低アルドステロン症II型
     15.原発性低リン血症性くる病
     16.腎性低尿酸血症(特発性,遺伝性、続発性)
     17.腎性糖尿
     18.腎性尿崩症
     19.特発性尿細管性タンパク尿症(Dent病)

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I AKIとCKD

P.8 掲載の参考文献
7) Ostermann M, et al : Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference : A Consensus Statement. JAMA Netw Open 3 : e2019209, 2020.
8) Prowle JR, et al : Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10 : 37-47, 2014.
9) Kellum JA, et al : Acute kidney injury. Nat Rev Dis Primers 7 : 52, 2021.
10) Tumlin JA, et al : Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit Care Med 46 : 949-957, 2018.
11) Asfar P, et al : High versus low blood-pressure target in patients with septic shock. N Engl J Med 370 : 1583-1593, 2014.
13) Semler MW, et al : Balanced Crystalloids versus Saline in Critically Ill Adults. N Engl J Med 378 : 829-839, 2018.
14) STARRT-AKI Investigators, et al : Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N Engl J Med 383 : 240-251, 2020.
15) Gaudry S, et al : Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2) : a multicentre, open-label, randomised, controlled trial. Lancet 397 : 1293-1300, 2021.
P.14 掲載の参考文献
1) Inker LA, et al : New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med 385 : 1737-1749, 2021.
5) Perkovic V, et al : Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 380 : 2295-2306, 2019.
6) Heerspink HJL, et al : Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 383 : 1436-1446, 2020.
7) Herrington WG, et al : The potential for improving cardio-renal outcomes by sodium-glucose cotransporter-2 inhibition in people with chronic kidney disease : a rationale for the EMPAKIDNEY study. Clin Kidney J 11 : 749-761, 2018.
8) Ito S, et al : Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN) : Phase 3 Randomized Controlled Clinical Trial. Clin J Am Soc Nephrol 15 : 1715-1727, 2020.
9) Bakris GL, et al : Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 383 : 2219-2229, 2020.
10) Epstein M : Considerations for the future : current and future treatment paradigms with mineralocorticoid receptor antagonists-unmet needs and underserved patient cohorts. Kidney Int Suppl (2011) 12 : 69-75, 2022.
P.19 掲載の参考文献
4) Matsumoto Y, et al : Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol 18 : 1525-1533, 2007.
6) Hickson LJ, et al : Senolytics decrease senescent cells in humans : Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47 : 446-456, 2019.
7) Johmura Y, et al : Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371 : 265-270, 2021.
8) CONSENSUS Trial Study Group : Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316 : 1429-1435, 1987.
11) Packer M, et al : Effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system : a secondary analysis of the PARADIGM-HF trial. Lancet Diabetes Endocrinol 6 : 547-554, 2018.
13) Bakris GL, et al : Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 383 : 2219-2229, 2020.
14) Heerspink HJL, et al : Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 383 : 1436-1446, 2020.
16) Provenzano R, et al : Efficacy and Cardiovascular Safety of Roxadustat for Treatment of Anemia in Patients with Non-Dialysis-Dependent CKD : Pooled Results of Three Randomized Clinical Trials. Clin J Am Soc Nephrol 16 : 1190-1200, 2021.
17) Chertow GM, et al : Vadadustat in Patients with Anemia and Non-Dialysis-Dependent CKD. N Engl J Med 384 : 1589-1600, 2021.
19) Yamamoto T, et al : Renoprotective Benefit of Tolvaptan in Acute Decompensated Heart Failure Patients With Loop Diuretic-Resistant Status. J Clin Med Res 11 : 49-55, 2019.
20) Komiya S, et al : Efficacy of tolvaptan on advanced chronic kidney disease with heart failure : a randomized controlled trial. Clin Exp Nephrol, 2022. (DOI : 10.1007/s10157-022-02224-x)

II 糸球体疾患

P.26 掲載の参考文献
2) Jennette JC, Hipp CG : Immunohistopathologic evaluation of C1q in 800 renal biopsy specimens. Am J Clin Pathol 83 : 415-420, 1985.
3) Vizjak A, et al : Pathology, clinical presentations, and outcomes of C1q nephropathy. J Am Soc Nephrol 19 : 2237-2244, 2008.
7) Fukuma Y, et al : Clinicopathologic correlation of C1q nephropathy in children. Am J Kidney Dis 47 : 412-418, 2006.
8) Kersnik Levart T, et al : C1Q nephropathy in children. Pediatr Nephrol 20 : 1756-1761, 2005.
9) Kanai T, et al : Predominant but silent C1q deposits in mesangium on transplanted kidneys-longterm observational study. BMC Nephrol 19 : 82, 2018.
10) Said SM, et al : C1q deposition in the renal allograft : a report of 24 cases. Mod Pathol 23 : 1080-1088, 2010.
11) Arlaud GJ, et al : Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity. Mol Immunol 39 : 383-394, 2002.
12) Lu JH, et al : The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol Immunol 5 : 9-21, 2008.
13) Sato T, et al : C1q, a subunit of the first component of complement, enhances antibody-mediated apoptosis of cultured rat glomerular mesangial cells. Clin Exp Immunol 109 : 510-517, 1997.
14) Cortes-Hernandez J, et al : Murine glomerular mesangial cell uptake of apoptotic cells is inefficient and involves serum-mediated but complement-independent mechanisms. Clin Exp Immunol 130 : 459-466, 2002.
15) van den Dobbelsteen ME, et al : Both IgG- and C1q-receptors play a role in the enhanced binding of IgG complexes to human mesangial cells. J Am Soc Nephrol 7 : 573-581, 1996.
P.30 掲載の参考文献
1) Mazzucco G, et al : Glomerulonephritis with organized deposits : a mesangiopathic, not immune complex-mediated disease? A pathologic study of two cases in the same family. Hum Pathol 23 : 63-68, 1992.
2) Strom EH, et al : Glomerulopathy associated with predominant fibronectin deposits : a newly recognized hereditary disease. Kidney Int 48 : 163-170, 1995.
3) Otsuka Y, et al : A recurrent fibronectin glomerulopathy in a renal transplant patient : a case report. Clin Transplant 26 (Suppl 24) : 58-63, 2012.
4) Castelletti F, et al : Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A 105 : 2538-2543, 2008.
5) Sekiguchi K, Hakomori S : Functional domain structure of fibronectin. Proc Natl Acad Sci U S A 77 : 2661-2665, 1980.
6) Singh P, et al : Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26 : 397-419, 2010.
7) Mao Y, Schwarzbauer JE : Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24 : 389-399, 2005.
8) Maqueda A, et al : The heparin III-binding domain of fibronectin (III4-5 repeats) binds to fibronectin and inhibits fibronectin matrix assembly. Matrix Biol 26 : 642-651, 2007.
9) Ohashi T, Erickson HP : Fibronectin aggregation and assembly : the unfolding of the second fibronectin type III domain. J Biol Chem 286 : 39188-39199, 2011.
10) Moretti FA, et al : A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived. J Biol Chem 282 : 28057-28062, 2007.
11) Satoskar AA, et al : Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli. Mod Pathol 25 : 709-721, 2012.
12) Ohtsubo H, et al : Identification of mutations in FN1 leading to glomerulopathy with fibronectin deposits. Pediatr Nephrol 31 : 1459-1467, 2016.
13) Yoshino M, et al : Clinicopathological analysis of glomerulopathy with fibronectin deposits (GFND) : a case of sporadic, elderly-onset GFND with codeposition of IgA, C1q, and fibrinogen. Intern Med 52 : 1715-1720, 2013.
14) 上杉憲子, ほか : Fibronectin Glomerulopathy 4家系5症例の臨床病理学的特徴と形態学的検討. 日本腎臓学会誌 41 : 49-59, 1999.
15) Nadamuni M, et al : Fibronectin glomerulopathy : an unusual cause of adult-onset nephrotic syndrome. Am J Kidney Dis 60 : 839-842, 2012.
P.36 掲載の参考文献
1) Berger J, Hinglais N : [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris) 74 : 694-695, 1968.
2) 遠藤正之 : IgA腎症の疫学・症候・予後. 日本腎臓学会誌 50 : 442-447, 2008.
3) Donadio JV, Grande JP : IgA nephropathy. N Engl J Med 347 : 738-748, 2002.
4) Kiryluk K, et al : Geographic differences in genetic susceptibility to IgA nephropathy : GWAS replication study and geospatial risk analysis. PLoS Genet 8 : e1002765, 2012.
5) Yasutake J, et al : Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transplant 30 : 1315-1321, 2015.
6) Kokubo T, et al : Protective role of IgA1 glycans against IgA1 self-aggregation and adhesion to extracellular matrix proteins. J Am Soc Nephrol 9 : 2048-2054, 1998.
8) Yamada K, et al : Down-regulation of core 1 beta1, 3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 25 : 3890-3897, 2010.
9) Yamada K, et al : Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney Int Rep 2 : 1194-1207, 2017.
10) Yamada K, et al : Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Dis (Basel) 6 : 168-180, 2020.
11) 二瓶義人, 鈴木祐介 : COVID-19感染症およびワクチン関連腎炎. 日本腎臓学会誌 64 : 4-8, 2022.
13) Hirano K, et al : Association Between Tonsillectomy and Outcomes in Patients With Immunoglobulin A Nephropathy. JAMA Netw Open 2 : e194772, 2019.
14) Trimarchi H, et al : Oxford Classification of IgA nephropathy 2016 : an update from the IgA Nephropathy Classification Working Group. Kidney Int 91 : 1014-1021, 2017.
15) 松尾清一, ほか : IgA腎症診療指針 (第3版). 日本腎臓学会誌 53 : 123-135, 2011.
P.42 掲載の参考文献
1) 涌井秀樹 : 多発性骨髄腫と類縁疾患の腎障害. 臨床血液 54 : 1876-1887, 2013.
5) Bridoux F, et al : Proliferative glomerulonephritis with monoclonal immunoglobulin deposits : a nephrologist perspective. Nephrol Dial Transplant 36 : 208-215, 2021.
6) Nasr SH, et al : Light chain only variant of proliferative glomerulonephritis with monoclonal immunoglobulin deposits is associated with a high detection rate of the pathogenic plasma cell clone. Kidney Int 97 : 589-601, 2020.
7) Best Rocha A, Larsen CP : Membranous Glomerulopathy With Light Chain-Restricted Deposits : A Clinicopathological Analysis of 28 Cases. Kidney Int Rep 2 : 1141-1148, 2017.
9) Gumber R, et al : A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int 94 : 199-205, 2018.
10) Nara M, et al : Long-term prognosis of monoclonal immunoglobulin-associated glomerular diseases with nonorganized deposits : a report of 38 cases from a Japanese single center. Clin Nephrol. (in press)
11) Masai R, et al : Characteristics of proliferative glomerulo-nephritis with monoclonal IgG deposits associated with membranoproliferative features. Clin Nephrol 72 : 46-54, 2009.
12) Komatsuda A, et al : Proliferative glomerulonephritis with monoclonal immunoglobulin light chain deposits : a rare entity mimicking immune-complex glomerulonephritis. Intern Med 51 : 3273-3276, 2012.
14) Joly F, et al : Randall-type monoclonal immunoglobulin deposition disease : novel insights from a nationwide cohort study. Blood 133 : 576-587, 2019.
P.45 掲載の参考文献
1) 荒川正昭, ほか : Idiopathic mesangio-degenerative glomerulonephropathy-新しい糸球体疾患の提唱-. 日本腎臓学会誌 21 : 914-915, 1979.
8) Alsaad KO, et al : Collagenofibrotic (Collagen Type III) glomerulopathy in association with diabetic nephropathy. Saudi J Kidney Dis Transpl 28 : 898-905, 2017.
9) Soni SS, et al : Collagenofibrotic glomerulopathy in association with Hodgkin's lymphoma. Saudi J Kidney Dis Transpl 22 : 126-129, 2011.
P.50 掲載の参考文献
1) エビデンスに基づくネフローゼ症候群診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2020.
2) 旭浩一, ほか : 疾患登録・調査研究分科会「重点疾患2014年度新規受療患者数調査ならびに経年的推移の検討」. 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 「難治性腎疾患に関する調査研究」, 平成27年度総括・分担研究報告書, 2016.
3) 杉山斉, ほか : 腎臓病総合レジストリー (J-RBR/J-KDR) 2015年次報告と経過報告. 追加資料 : ネフローゼ症候群統計. [https://jsn.or.jp/news/160617_kp-2.pdf]
4) Yao T, et al : Integration of Genetic Testing and Pathology for the Diagnosis of Adults with FSGS. Clin J Am Soc Nephrol 14 : 213-223, 2019.
5) Svenningsen P, et al : Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20 : 299-310, 2009.
6) 肺血栓塞栓症/深部静脈血栓症 (静脈血栓塞栓症) 予防ガイドラインダイジェスト版 (肺血栓塞栓症/深部静脈血栓症 (静脈血栓塞栓症) 予防ガイドライン作成委員会編), p167, 2004.
P.54 掲載の参考文献
1) 城謙輔 : IgA腎症. 腎生検病理アトラス「腎生検病理診断標準化への指針」病理改訂版 (日本腎臓学会・腎病理診断標準化委員会, 日本腎病理協会編), p105-110, 東京医学社, 2010.
2) 金内雅夫, ほか : non IgA型メサンギウム増殖性腎炎. 腎と透析 28 : 759-763, 1990.
3) Vikse BE, et al : Prognostic factors in mesangioproliferative glomerulonephritis. Nephrol Dial Transplant 17 : 1603-1613, 2002.
4) 横山仁, ほか : 腎臓病総合レジストリー (J-RBR/J-KDR) の経緯と展望. 日本腎臓学会誌 59 : 1042-1048, 2017.
5) Hisada A, et al : Clinical and Histological Characteristics in Patients with Non-IgA Mesangioproliferative Glomerulonephritis. Juntendo Medical Journal 61 : 41-48, 2015.
6) Waikhom R, et al : Non-IgA mesangioproliferative glomerulonephritis : a benign entity? Nephrol Dial Transplant 27 : 2322-2327, 2012.
7) 金井達也, ほか : メサンギウム増殖性糸球体腎炎 (非IgA腎症). 日本臨牀 46 : 1262-1268, 1988.
8) Owada K, et al : Genetical, histological, and clinical characteristics of IgA-negative mesangioproliferative glomerulopathy. Clin Exp Nephrol 14 : 56-62, 2010.
9) 永松正 : 動物モデル糸球体腎炎モデルの現状と展望. 日本薬理学雑誌 132 : 96-99, 2008.
10) Silva FG : Mesangial proliferative glomerulonephritis. In : Heptinstall's Pathology of the Kidney. 5th ed (ed by Jennette JC, et al), p455-478, Lippincott-Raven, Philadelphia, 1998.
11) Cohen AH, et al : Nehprotic syndrome with glomerular mesangial IgM deposits. Lab Invest 38 : 610-619, 1978.
12) Bhasin HK, et al : Mesangial proliferative glomerulonephritis. Lab Invest 39 : 21-29, 1978.
P.58 掲載の参考文献
1) Singh SK, et al : New insights into the pathogenesis of cellular crescents. Curr Opin Nephrol Hypertens 20 : 258-262, 2011.
2) Jennette JC : Rapidly progressive crescentic glomerulonephritis. Kidney Int 63 : 1164-1177, 2003.
3) Ryu M, et al : Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J Pathol 228 : 482-494, 2012.
4) Anguiano L, et al : The glomerular crescent : triggers, evolution, resolution, and implications for therapy. Curr Opin Nephrol Hypertens 29 : 302-309, 2020.
5) Zipfel PF, et al : Complement catalyzing glomerular diseases. Cell Tissue Res 385 : 355-370, 2021.
6) 岡林佑典, 清水章 : 糸球体腎炎の病理像と疾患分類-増殖性炎症による病理像の多様性と疾患分類-. 日本腎臓学会誌 58 : 622-631, 2016.
P.63 掲載の参考文献
1) Sugiyama H, et al : Annual report of J-RBR/J-KDR 2018 [in Japanese]. [https://cdn.jsn.or.jp/news/180711_kp.pdf] (2022年6月閲覧)
2) Wu Q, et al : Characterization and quantification of proliferating cell patterns in endocapillary proliferation. Nephrol Dial Transplant 27 : 3234-3241, 2012.
3) Arai M, et al : The severity of glomerular endothelial cell injury is associated with infiltrating macrophage heterogeneity in endocapillary proliferative glomerulonephritis. Sci Rep 11 : 13339, 2021.
4) Cao Y, et al : Immune cell infiltration characteristics and related core genes in lupus nephritis : results from bioinformatic analysis. BMC Immunol 20 : 37, 2019.
5) Bos EMJ, et al : Use of Glomerular CD68+ Cells as a Surrogate Marker for Endocapillary Hypercellularity in Lupus Nephritis. Kidney Int Rep 7 : 841-847, 2022.
6) Agrawal N, Gowrishankar S : The Utility of Assessing CD68+ Glomerular Macrophages in Assessing Endocapillary Hypercellularity in IgA Nephropathy. Indian J Nephrol 31 : 16-21, 2021.
8) Tang X, et al : Cell-Mediated Glomerulonephritis Without Immune Complexes in Native Kidney Biopsies : A Report of 7 Cases. Am J Kidney Dis, 2021. (DOI : 10.1053/j.ajkd.2021.11.009)
9) Kudose S, et al : Sensitivity and Specificity of Pathologic Findings to Diagnose Lupus Nephritis. Clin J Am Soc Nephrol 14 : 1605-1615, 2019.
10) Working Group of the International IgA Nephropathy Network and the Renal Pathology Society ; Roberts ISD, et al : The Oxford classification of IgA nephropathy : pathology definitions, correlations, and reproducibility. Kidney Int 76 : 546-556, 2009.
11) Working Group of the International IgA Nephropathy Network and the Renal Pathology Society ; Cattran DC, et al : The Oxford classification of IgA nephropathy : rationale, clinicopathological correlations, and classification. Kidney Int 76 : 534-545, 2009.
12) Chakera A, et al : Prognostic value of endocapillary hypercellularity in IgA nephropathy patients with no immunosuppression. J Nephrol 29 : 367-375, 2016.
13) Trimarchi H, et al : Oxford Classification of IgA nephropathy 2016 : an update from the IgA Nephropathy Classification Working Group. Kidney Int 91 : 1014-1021, 2017.
14) Hodgin JB, et al : The molecular phenotype of endocapillary proliferation : novel therapeutic targets for IgA nephropathy. PLoS One 9 : e103413, 2014.
15) Soares MF, et al : Relationship between renal CD68+ infiltrates and the Oxford Classification of IgA nephropathy. Histopathology 74 : 629-637, 2019.
16) Kaihan AB, et al : Clinical impact of endocapillary proliferation with modified cutoff points in IgA nephropathy patients. PLoS One 14 : e0214414, 2019.
17) Inagaki K, et al : Clinical impact of endocapillary proliferation according to the Oxford classification among adults with Henoch-Schonlein purpura nephritis : a multicenter retrospective cohort study. BMC Nephrol 19 : 208, 2018.
18) Yang XQ, et al : Correlation between endocapillary proliferative and nephrotic-range proteinuria in children with Henoch-Schonlein purpura nephritis. Pediatr Nephrol 34 : 663-670, 2019.
20) Bajema IM, et al : Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis : clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int 93 : 789-796, 2018.
21) Yuan M, et al : Urinary sediments could differentiate endocapillary proliferative lupus nephritis and endocapillary proliferative IgA nephropathy. Int Immunopharmacol 90 : 107122, 2021.
22) Wilhelmus S, et al : Interobserver agreement on histopathological lesions in class III or IV lupus nephritis. Clin J Am Soc Nephrol 10 : 47-53, 2015.
P.68 掲載の参考文献
1) Nasr SH, et al : Bacterial infection-related glomerulonephritis in adults. Kidney Int 83 : 792-803, 2013.
2) 尾田高志 : 感染症と腎炎. 日本内科学会雑誌 109 : 903-909, 2020.
3) Oda T, Yoshizawa N : Factors Affecting the Progression of Infection-Related Glomerulonephritis to Chronic Kidney Disease. Int J Mol Sci 22 : 905, 2021.
4) Nasr SH, et al : IgA-dominant acute poststaphylococcal glomerulonephritis complicating diabetic nephropathy. Hum Pathol 34 : 1235-1241, 2003.
5) Rodriguez-Iturbe B, et al : The current state of poststreptococcal glomerulonephritis. J Am Soc Nephrol 19 : 1855-1864, 2008.
6) Satoskar AA, et al : Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol 16 : 32-50, 2020.
9) Chapter 9 : Infection-related glomerulonephritis. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2 : 200-208, 2012.
10) Odaka J, et al : A case of post-pneumococcal acute glomerulonephritis with glomerular depositions of nephritis-associated plasmin receptor. CEN Case Rep 4 : 112-116, 2015.
11) Hirano D, et al : Glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma pneumoniae induces infection-related glomerulonephritis. Clin Nephrol 92 : 263-272, 2019.
12) Komaru Y, et al : Nephritis-associated plasmin receptor (NAPlr) positive glomerulonephritis caused by Aggregatibacter actinomycetemcomitans bacteremia : A case report. Clin Nephrol 90 : 155-160, 2018.
13) Uchida T, Oda T : Glomerular Deposition of Nephritis-Associated Plasmin Receptor (NAPlr) and Related Plasmin Activity : Key Diagnostic Biomarkers of Bacterial Infection-related Glomerulonephritis. Int J Mol Sci 21 : 2595, 2020.
14) 小島亜希, 尾田高志 : 溶連菌感染後急性糸球体腎炎. 腎臓内科 14 : 653-658, 2021.
15) 尾田高志 : 急性糸球体腎炎症候群. 新臨床内科学 [第10版] (矢崎義雄監), p1181-1183, 医学書院, 2020.
P.74 掲載の参考文献
1) エビデンスに基づく急速進行性腎炎症候群 (RPGN) 診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2020.
2) 金子修三, 山縣邦弘 : 我が国の急速進行性糸球体腎炎の診療における現況と将来の展望. 日本科学会雑誌 109 : 886-895, 2020.
3) 松尾清一, ほか : 厚生労働省特定疾患進行性腎障害に関する調査研究班報告急速進行性腎炎症候群の診療指針 第2版. 日本腎臓学会誌 53 : 509-555, 2011.
4) 急速進行性糸球体腎炎診療指針作成合同委員会 : 急速進行性腎炎症候群の診療指針. 日本腎臓学会誌 44 : 55-82, 2002.
5) Kaneko S, et al : Epidemiology and temporal changes in the prognosis of rapidly progressive glomerulonephritis in Japan : a nationwide 1989-2015 survey. Clin Exp Nephrol 26 : 234-246, 2022.
6) Yamagata K, et al : ANCA-associated systemic vasculitis in Japan : clinical features and prognostic changes. Clin Exp Nephrol 16 : 580-588, 2012.
7) Geetha D, Jefferson JA : ANCA-Associated Vasculitis : Core Curriculum 2020. Am J Kidney Dis 75 : 124-137, 2020.
8) 旭浩一, ほか : 疾患登録・疫学調査研究分科会腎臓領域指定難病新規受療患者数 : 全国アンケート調査. 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 分担研究報告書平成30年度分担研究報告書, 2019.
9) Yamagata K, et al : Temporal change in life and renal prognosis of rapidly progressive glomerulonephritis in Japan via nationwide questionnaire survey. Clin Exp Nephrol 23 : 573-575, 2019.
10) Sada KE, et al : Comparison of severity classification in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study. Mod Rheumatol 26 : 730-737, 2016.
12) Yates M, et al : EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis 75 : 1583-1594, 2016.
13) Jayne DRW, et al : Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med 384 : 599-609, 2021.
P.78 掲載の参考文献
3) Cui Z, et al : Antiglomerular basement membrane disease : clinical features and diagnosis, In : Oxford Textbook of Clinical Nephropathy, 4th edition (ed by Turner N, et al), p599-605, Oxford University Press, Oxford, 2016.
4) 難病情報センターホームページ : 抗糸球体基底膜腎炎 (指定難病221) [https://www.nanbyou.or.jp/entry/4379].
5) Kaneko S, et al : Epidemiology and temporal changes in the prognosis of rapidly progressive glomerulonephritis in Japan : a nationwide 1989-2015 survey. Clin Exp Nephrol 26 : 234-246, 2022.
6) Wieslander J, et al : Isolation of the specific glomerular basement membrane antigen involved in Goodpasture syndrome. Proc Natl Acad Sci U S A 81 : 1544-1548, 1984.
7) Saus J, et al : Identification of the Goodpasture antigen as the α3 (IV) chain of collagen IV. J Biol Chem 263 : 13374-13380, 1988.
10) Nakamura A, et al : Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen : a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191 : 899-906, 2000.
11) エビデンスに基づく急速進行性腎炎症候群 (RPGN) 診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), p48-55, 東京医学社, 2020.
P.82 掲載の参考文献
1) Steblay RW, et al : Renal tubular disease and autoantibodies against tubular basement membrane induced in guinea pigs. J Immunol 107 : 589-594, 1971.
2) Steblay RW, et al : Transfer of experimental autoimmune renal cortical tubular and interstitial disease in guinea pigs by serum. Science 180 : 966-968, 1973.
3) Ueda S, et al : Autoimmune interstitial nephritis induced in inbred mice. Analysis of mouse tubular basement membrane antigen and genetic control of immune response to it. Am J Pathol 132 : 304-318, 1988.
4) Wieslander J, et al : Goodpasture antigen of the glomerular basement membrane : localization to non-collagenous regions of type IV collagen. Proc Natl Acad Sci U S A 81 : 3838-3842, 1984.
5) Butkowski RJ, et al : Properties of the globular domain of type IV collagen and its relationship to the Goodpasture antigen. J Biol Chem 260 : 3739-3747, 1985.
6) Butkowski RJ, et al : Characterization of a tubular basement membrane component reactive with autoantibodies associated with tubulointerstitial nephritis. J Biol Chem 265 : 21091-21098, 1990.
7) Yoshioka K, et al : Isolation and characterization of the tubular basement membrane antigen associated with human tubulo-interstitial nephritis. Clin Exp Immunol 90 : 319-325, 1992.
8) Bergstein J, et al : Interstitial nephritis with anti-tubular-basement-membrane antibody. N Engl J Med 292 : 875-878, 1975.
9) Ivanyi B, et al : Childhood membranous nephropathy, circulating antibodies to the 58-kD TIN antigen, and anti-tubular basement membrane nephritis : an 11-year follow-up. Am J Kidney Dis 32 : 1068-1074, 1998.
10) Dixit MP, et al : Kimura disease with advanced renal damage with anti-tubular basement membrane antibody. Pediatr Nephrol 19 : 1404-1407, 2004.
11) Wilson CB, et al : Antitubular basement membrane antibodies after renal transplantation. Transplantation 18 : 447-452, 1974.
13) 新保秀光, ほか : ループス腎炎 (LN) の尿細管基底膜 (TBM) 沈着免疫複合体 (IC) の尿細管間質性腎炎への関与. アレルギー 42 : 941-947, 1993.
14) Frasca GM, et al : Immunological tubulo-interstitial deposits in IgA nephropathy. Kidney Int 22 : 184-191, 1982.
P.88 掲載の参考文献
2) Alpers CE, et al : Fibrillary glomerulonephritis : an entity with unusual immunofluorescence features. Kidney Int 31 : 781-789, 1987.
4) Brady HR : Fibrillary glomerulopathy. Kidney Int 53 : 1421-1429, 1998.
6) Nasr SH, et al : Immunotactoid glomerulopathy : clinicopathologic and proteomic study. Nephrol Dial Transplant 27 : 4137-4146, 2012.
7) Rosenstock JL, et al : Fibrillary and immunotactoid glomerulonephritis : Distinct entities with different clinical and pathologic features. Kidney Int 63 : 1450-1461, 2003.
8) Adeyi OA, et al : Fibrillary glomerulonephritis : a report of 2 cases with extensive glomerular and tubular deposits. Hum Pathol 32 : 660-663, 2001.
9) Arakawa M, Yamanaka N : Collagenofibrotic glomerulopathy : a new type of primary glomerulopathy revealing massive collagen deposition in the renal glomerulus. In : Collagenofibrotic glomerulopathy (ed by Arakawa M, Yamanaka N), p3-8, Smith Gordon, London, 1991.
10) Gonul II, et al : Glomerular mesangial fibrillary deposits in a patient with diabetes mellitus. Int Urol Nephrol 38 : 767-772, 2006.
11) Strom EH, et al : Glomerulopathy associated with predominant fibronectin deposits : a newly recognized hereditary disease. Kidney Int 48 : 163-170, 1995.
12) Andeen NK, et al : DnaJ Homolog Subfamily B Member 9 Is a Putative Autoantigen in Fibrillary GN. J Am Soc Nephrol 29 : 231-239, 2018.
13) Alexander MP, et al : Congophilic Fibrillary Glomerulonephritis : A Case Series. Am J Kidney Dis 72 : 325-336, 2018.
P.91 掲載の参考文献
1) Herxheimer G : Concerning hyaline glomeruli of the newborn and infants. Frankf Z Pathol 2 : 138-152, 1909.
2) Friedman HH, et al : Kidney Lesions in Stillborn and Newborn Infants : "Congenital Glomerulosclerosis". Am J Pathol 18 : 699-713, 1942.
4) MacDonald MS, Emery JL : The late intrauterine and postnatal development of human renal glomeruli. J Anat 93 : 331-340, 1959.
5) Kikuchi M, et al : Podocyte number and density changes during early human life. Pediatr Nephrol 32 : 823-834, 2017.
11) Manalich R, et al : Relationship between weight at birth and the number and size of renal glomeruli in humans : a histomorphometric study. Kidney Int 58 : 770-773, 2000.
P.96 掲載の参考文献
1) Churg J, et al : Pathology of the nephrotic syndrome in children : a report for the International Study of Kidney Disease in Children. Lancet 760 : 1299-1302, 1970.
3) エビデンスに基づくネフローゼ症候群診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2020.
4) 和田健彦 : 巣状分節性糸球体硬化症. 腎と透析 86 : 551-556, 2019.
5) Rosenberg AZ, Kopp JB : Focal Segmental Glomerulosclerosis. Clin J Am Soc Nephrol 12 : 502-517, 2017.
6) Ni L, et al : The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med 19 : 441, 2021.
7) Eremina V, et al : Role of the VEGF-a signaling pathway in the glomerulus : evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 106 : 32-37, 2007.
8) D'Agati VD, et al : Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol 8 : 399-406, 2013.
9) 堺秀人, ほか : 厚生労働省特定疾患進行性腎障害に関する研究班報告難治性ネフローゼ症候群 (成人例) の診療指針-平成13年度までの調査研究より-. 日本腎臓学会誌 44 : 751-761, 2002.
10) Tsuchimoto A, et al : Utility of Columbia classification in focal segmental glomerulosclerosis : renal prognosis and treatment response among the pathological variants. Nephrol Dial Transplant 35 : 1219-1227, 2020.
P.101 掲載の参考文献
2) Haas M, et al : Consensus definitions for glomerular lesions by light and electron microscopy : recommendations from a working group of the Renal Pathology Society. Kidney Int 98 : 1120-1134, 2020.
3) Wostmann F, et al : Case report : a peculiar glomerulopathy in a patient suffering from nephrotic syndrome. BMC Nephrol 20 : 326, 2019.
4) Ting JA, et al : Podocyte Infolding Glomerulopathy, First Case Report From North America. Can J Kidney Health Dis 8 : 20543581211048357, 2021.
5) Malvar A, et al : Podocyte infolding glomerulopathy ; report of the first case in Latin America and review of the literature. Nefrologia (Engl Ed) 40 : 469-473, 2020.
6) Liu X, et al : A case of Podocytic Infolding Glomerulopathy with SLE and literature review. BMC Nephrol 22 : 410, 2021.
7) Zhang T, et al : Podocytic infolding glomerulopathy : two new cases with connective tissue disease and literature review. Clin Rheumatol 38 : 1521-1528, 2019.
8) Manabe S, et al : Cell invasion in glomerular basement membrane : infolding glomerulopathy. Kidney Int 98 : 1623, 2020.
9) Fang JY, et al : A Case of Podocytic Infolding Glomerulopathy with Primary Sjogren's Syndrome and Hashimoto's Thyroiditis. Chin Med J (Engl) 131 : 2747-2748, 2018.
10) Matthai SM, et al : Podocyte Infolding Glomerulopathy (PIG) in a Patient With Undifferentiated Connective Tissue Disease : A Case Report. Am J Kidney Dis 72 : 149-153, 2018.
11) Nishi S, et al : A nephropathy presenting the microparticles in the glomerular basement membrane in a patient of hepatitis B viral infection. Clin Exp Nephrol 12 : 518-521, 2008.
12) Harada M, et al : A case of podocytic infolding glomerulopathy with multiple myeloma. BMC Nephrol 15 : 32, 2014.
13) Iguchi A, et al : A case of podocytic infolding glomerulopathy with focal segmental glomerulosclerosis. Case Rep Nephrol Urol 3 : 110-116, 2013.
14) Xiong S, et al : Podocytic infolding in Schimke immuno-osseous dysplasia with novel SMARCAL1 mutations : a case report. BMC Nephrol 21 : 170, 2020.
15) Burkholder PM, et al : Extracellular clusters of spherical microparticles in glomeruli in human renal glomerular diseases. Lab Invest 28 : 415-425, 1973.
16) Dales S, Wallace AC : Nuclear pore complexes deposited in the glomerular basement membrane are associated with autoantibodies in a case of membranous nephritis. J Immunol 134 : 1588-1593, 1985.
17) Debiec H, et al : Antenatal membranous glomerulonephritis with vascular injury induced by anti-neutral endopeptidase antibodies : toward new concepts in the pathogenesis of glomerular diseases. J Am Soc Nephrol 14 (Suppl 1) : S27-32, 2003.
18) Kowalewska J, et al : Membranous glomerulopathy with spherules : an uncommon variant with obscure pathogenesis. Am J Kidney Dis 47 : 983-992, 2006.
20) Pandit AP, et al : Podocytic Infolding Glomerulopathy in a Patient with Phospholipase A2 Receptor-Positive Membranous Nephropathy and Review of the Literature. Nephron 145 : 496-502, 2021.
P.108 掲載の参考文献
1) Wegener F : Uber eine eigenartige rhinogene Granulomatose mit besonderer Beteiligung des Arterien systems und der Nieren. Beitr Pathol Anat Allg Pathol 102 : 36-68, 1939.
3) Churg J, Strauss L : Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 27 : 277-301, 1951.
4) 藤元昭一, ほか : 血管炎の疫学と分類~国際比較研究・国際的動向~. 日本腎臓学会誌 56 : 80-86, 2014.
7) 上杉憲子 : 多発血管炎性肉芽腫症・腎臓病理医の視点より. 腎と透析 86 (増刊号 : 全身性疾患と腎update) : 84-91, 2019.
8) 天野宏一 : 好酸球性多発血管炎性肉芽腫症. 医学のあゆみ 263 : 517-520, 2017.
9) Robson JC, et al : 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. Ann Rheum Dis 81 : 315-320, 2022.
10) Grayson PC, et al : 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis with Polyangiitis. Ann Rheum Dis 81 : 309-314, 2022.
11) エビデンスに基づく急速進行性腎炎症候群 (RPGN) 診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), p60-69, 東京医学社, 2020.
15) Smith R, et al : A Randomized, Controlled Trial of Rituximab versus Azathioprine After Induction of Remission with Rituximab for Patients with ANCA-associated Vasculitis and Relapsing Disease. 2019 ACR/ARP Annual Meeting, Abstract Number : 806, American College Rheumatology, 2019
16) 抗リン脂質抗体症候群・好酸球性多発血管炎性肉芽腫症・結節性多発動脈炎・リウマトイド血管炎の治療の手引き 2020 (厚生労働科学研究費補助金 (難治性疾患政策研究事業) 難治性血管炎に関する調査研究 : 針谷正祥編), 診断と治療社, 2021.
17) Wechsler ME, et al : Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N Engl J Med 376 : 1921-1932, 2017.
P.114 掲載の参考文献
1) 腎疾患の移行期医療支援ガイド-IgA腎症・微小変化型ネフローゼ症候群- (厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2019.
2) エビデンスに基づくネフローゼ症候群診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2020.
3) 難治性疾患政策研究事業「小児腎領域の希少・難治性疾患群の診療・研究体制の確立」 (厚生労働科学研究費補助金) : 小児特発性ネフローゼ症候群診療ガイドライン 2020 (日本小児腎臓病学会監), 診断と治療社, 2020.
4) Yokoyama H, et al : Membranous nephropathy in Japan : analysis of the Japan Renal Biopsy Registry (J-RBR). Clin Exp Nephrol 16 : 557-563, 2012.
5) Orikasa M, et al : Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody. J Immunol 141 : 807-814, 1988.
6) Purohit S, et al : Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 8 : 761600, 2021.
7) Bazzi C, et al : A modern approach to selectivity of proteinuria and tubulointerstitial damage in nephrotic syndrome. Kidney Int 58 : 1732-1741, 2000.
8) Vivarelli M, et al : Minimal Change Disease. Clin J Am Soc Nephrol 12 : 332-345, 2017.
9) Meyrier A, Niaudet P : Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int 94 : 861-869, 2018.
10) Azukaitis K, et al : Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst Rev 3 : CD001537, 2022.
P.120 掲載の参考文献
1) Yokoyama H, et al : Membranous nephropathy in Japan : analysis of the Japan Renal Biopsy Registry (J-RBR). Clin Exp Nephrol 16 : 557-563, 2012.
2) Fresquet M, et al : Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J Am Soc Nephrol 26 : 302-313, 2015.
5) Xie J, et al : The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat Commun 11 : 1600, 2020.
7) Tomas NM, et al : A Heterologous Model of Thrombospondin Type 1 Domain-Containing 7A-Associated Membranous Nephropathy. J Am Soc Nephrol 28 : 3262-3277, 2017.
8) Sethi S, et al : Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 97 : 163-174, 2020.
9) Hayashi N, Beck LH Jr : Moore's law for membranous nephropathy. Kidney Int 98 : 1081-1084, 2020.
10) Sethi S, et al : Protocadherin 7-associated membranous nephropathy. J Am Soc Nephrol 32 : 1249-1261, 2021.
11) Caza TN, et al : Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int 100 : 171-181, 2021.
12) Al-Rabadi LF, et al : Serine Protease HTRA1 as a Novel target antigen in primary membranous nephropathy. J Am Soc Nephrol 32 : 1666-1681, 2021.
13) Haddad G, et al : Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest 131 : e140453, 2021.
14) Luo J, et al : Clinicopathological characteristics and outcomes of PLA2R-associated membranous nephropathy in seropositive patients without PLA2R staining on kidney biopsy. Am J Kidney Dis, 2022. (DOI : 10.1053/j.ajkd.2022.01.426)
15) エビデンスに基づくネフローゼ症候群診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), p47-75, 東京医学社, 2020.
16) Kidney Disease : Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group : KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 100 : S1-S276, 2021.
17) Yokoyama H, et al : Better remission rates in elderly Japanese patients with primary membranous nephropathy in nationwide real-world practice : The Japan Nephrotic Syndrome Cohort Study (JNSCS). Clin Exp Nephrol 24 : 893-909, 2020.
P.125 掲載の参考文献
1) Pendergraft WF 3rd, et al : Primary glomerular disease. In : Brenner & Rector's The Kidney, 10th ed (ed by Skorecki K, et al), p1045-1054, Elsevier Saunders, Philadelphia, 2016.
2) 本田一穂 : 膜性増殖性糸球体腎炎の病理 : 過去・現在・未来. 日本腎臓学会誌 58 : 638-647, 2016.
3) エビデンスに基づくネフローゼ症候群診療ガイドライン 2020 (成田一衛監, 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 難治性腎障害に関する調査研究班編), 東京医学社, 2020.
4) Noris M, et al : Membranoproliferative glomerulonephritis : no longer the same disease and may need very different treatment. Nephrol Dial Transplant, 2021. (DOI : 10.1093/ndt/gfab281)
5) Sethi S, et al : C3 glomerulonephritis : clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int 82 : 465-473, 2012.
6) Servais A, et al : Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 82 : 454-464, 2012.
8) Hou J, et al : Toward a working definition of C3 glomerulopathy by immunofluorescence. Kidney Int 85 : 450-456, 2014.
9) Sethi S, et al : Membranoproliferative glomerulonephritis and C3 glomerulopathy : resolving the confusion. Kidney Int 81 : 434-441, 2012.
10) Idiopathic membranoproliferative glomerulonephritis. Kidney Int Suppl (2011) 2 : 198-199, 2012.
11) Goodship TH, et al : Atypical hemolytic uremic syndrome and C3 glomerulopathy : conclusions from a "Kidney Disease : Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 91 : 539-551, 2017.
12) Vivarelli M, et al : Eculizumab for the treatment of dense-deposit disease. N Engl J Med 366 : 1163-1165, 2012.
13) Radhakrishnan S, et al : Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med 366 : 1165-1166, 2012.
14) Bomback AS, et al : Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 7 : 748-756, 2012.
15) Ruggenenti P, et al : C5 Convertase Blockade in Membranoproliferative Glomerulonephritis : A Single-Arm Clinical Trial. Am J Kidney Dis 74 : 224-238, 2019.

III 尿細管間質性腎症

P.133 掲載の参考文献
1) Ulinski T, et al : Acute tubulointerstitial nephritis. Pediatr Nephrol 27 : 1051-1057, 2012.
2) Andreoli SP : Acute kidney injury in children. Pediatr Nephrol 24 : 253-263, 2009.
4) Rossert J : Drug-induced acute interstitial nephritis. Kidney Int 60 : 804-817, 2001.
5) Hodgkins KS, Schnaper HW : Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27 : 901-909, 2012.
6) Clarkson MR : Acute interstitial nephritis : clinical features and response to corticosteroid therapy. Nephrol Dial Transplant 19 : 2778-2783, 2004.
10) Nakaosa N, et al : Tubulointerstitial nephritis : a biopsy case series of 139 Japanese patients. Clin Exp Nephrol 26 : 435-444, 2022.
11) Nessi R, et al : Acute renal failure after rifampicin : a case report and survey of the literature. Nephron 16 : 148-159, 1976.
12) Perazella MA : Drug use and nephrotoxicity in the intensive care unit. Kidney Int 81 : 1172-1178, 2012.
14) Takahashi N, et al : Tubulointerstitial Nephritis with IgM-Positive Plasma Cells. J Am Soc Nephrol 28 : 3688-3698, 2017.
15) Gonzalez E, et al : Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int 73 : 940-946, 2008.
P.137 掲載の参考文献
2) 川野充弘, ほか : IgG4 関連腎臓病診療指針. 日本腎臓学会誌 53 : 1062-1073, 2011.
5) Yamada K, et al : New clues to the nature of immunoglobulin G4-related disease : a retrospective Japanese multicenter study of baseline clinical features of 334 cases. Arthritis Res Ther 19 : 262, 2017.
6) Nakashima H, et al : Estimation of the number of histological diagnosis for IgG4-related kidney disease referred to the data obtained from the Japan Renal Biopsy Registry (J-RBR) questionnaire and cases reported in the Japanese Society of Nephrology Meetings. Clin Exp Nephrol 21 : 97-103, 2017.
7) Perugino CA, Stone JH : IgG4-related disease : an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol 16 : 702-714, 2020.
8) Umehara H, et al : The front line of research into immunoglobin G4-related disease-Do autoantibodies cause immunoglobin G4-related disease? Mod Rheumatol 29 : 214-218, 2019.
9) Yoshita K, et al : Light-microscopic characteristics of IgG4-related tubulointerstitial nephritis : distinction from non-IgG4-related tubulointerstitial nephritis. Nephrol Dial Transplant 27 : 2755-2761, 2012.
10) 佐伯敬子, ほか : IgG4関連腎臓病診断基準 2020 (IgG4関連腎臓病診断基準 2011 改訂版). 日本腎臓学会誌 63 : 187-197, 2021.
13) Saeki T, et al : Recovery of renal function after glucocorticoid therapy for IgG4-related kidney disease with renal dysfunction. Clin Exp Nephrol 20 : 87-93, 2016.
14) Carruthers MN, et al : Rituximab for IgG4-related disease : a prospective, open-label trial. Ann Rheum Dis 74 : 1171-1177, 2015.
P.141 掲載の参考文献
1) Dobrin RS, et al : Acute eosinophilic interstitial nephritis and renal failure with bone marrowlymph node granulomas and anterior uveitis. A new syndrome. Am J Med 59 : 325-333, 1975.
2) Amaro D, et al : Tubulointerstitial nephritis and uveitis (TINU) syndrome : a review. Br J Ophthalmol 104 : 742-747, 2020.
3) Regusci A, et al : Tubulointerstitial nephritis and uveitis syndrome : a systematic review. Nephrol Dial Transplant 37 : 876-886, 2022.
4) Mandeville JT, et al : The tubulointerstitial nephritis and uveitis syndrome. Surv Ophthalmol 46 : 195-208, 2001.
5) Clive DM, Vanguri VK : The Syndrome of Tubulointerstitial Nephritis With Uveitis (TINU). Am J Kidney Dis 72 : 118-128, 2018.
7) Saarela V, et al : Tubulointerstitial nephritis and uveitis syndrome in children : a prospective multicenter study. Ophthalmology 120 : 1476-1481, 2013.
10) Li C, et al : Tubulointerstitial nephritis with uveitis in Chinese adults. Clin J Am Soc Nephrol 9 : 21-28, 2014.
11) Baughman RP, et al : Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 164 : 1885-1889, 2001.
12) Iannuzzi MC, et al : Sarcoidosis. N Engl J Med 357 : 2153-2165, 2007.
13) Ungprasert P, et al : Diagnostic Utility of Angiotensin-Converting Enzyme in Sarcoidosis : A Population-Based Study. Lung 194 : 91-95, 2016.
14) Jahnukainen T, et al : Prednisone in the treatment of tubulointerstitial nephritis in children. Pediatr Nephrol 28 : 1253-1260, 2013.
15) Sobolewska B, et al : Long-term Follow-up of Patients with Tubulointerstitial Nephritis and Uveitis (TINU) Syndrome. Ocul Immunol Inflamm 26 : 601-607, 2018.
P.145 掲載の参考文献
2) Churg J, et al : Introduction and classification of tubulo-interstitial diseases. In : Renal Disease : Classification and Atlas of Tubulo-Interstitial Diseases (ed by Churg J, et al), p2, Igaku-Shoin, Tokyo, 1985.
3) 菊本陽子, ほか : 特発性尿細管間質性腎炎 [急性, 慢性] ; 尿細管間質性腎症. 別冊日本臨牀新領域別症候群シリーズ No.17 腎臓症候群 (第2版) 上, p198-203, 日本臨牀社, 2012.
7) AKI (急性腎障害) 診療ガイドライン 2016 (AKI (急性腎障害) 診療ガイドライン 作成委員会編). 日本腎臓学会誌 59 : 419-533, 2017.
9) 薬剤性腎障害診療ガイドライン 2016 (薬剤性腎障害の診療ガイドライン 作成委員会編). 日本腎臓学会誌 58 : 477-555, 2016.
P.149 掲載の参考文献
1) O'Riordan E, et al : Isolated sarcoid granulomatous interstitial nephritis : review of five cases at one center. Clin Nephrol 55 : 297-302, 2001.
2) Mignon F, et al : Granulomatous interstitial nephritis. Adv Nephrol Necker Hosp 13 : 219-245, 1984.
8) Rossert J : Drug-induced acute interstitial nephritis. Kidney Int 60 : 804-817, 2001.
11) Baughman RP, et al : Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 164 : 1885-1889, 2001.
12) Schupp JC, et al : Phenotypes of organ involvement in sarcoidosis. Eur Respir J 51 : 1700991, 2018.
17) World Health Organization : Global Tuberculosis Control 2009 : Epidemiology, Strategy, Financing, World Health Organization, Geneva, 2009.
20) Ogura M, et al : Fungal granulomatous interstitial nephritis presenting as acute kidney injury diagnosed by renal histology including PCR assay. Clin Kidney J 5 : 459-462, 2012.
21) Shah KK, et al : Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis 7 : 1-12, 2017.
P.154 掲載の参考文献
1) 森吉臣 : 主要腎疾患-現況・病態・診断・治療 慢性腎盂腎炎. 別冊医学のあゆみ 腎疾患 : state of arts (成清卓二, 浅野泰編), p299-300, 医歯薬出版, 1997.
2) 頼岡徳在, ほか : 【慢性腎不全初期から末期まで】原因疾患別の治療指針 間質性腎炎・慢性腎盂腎炎. 臨牀と研究76 : 1512-1515, 1999.
3) Anumudu S, Eknoyan G : Pyelonephritis : A Historical Reappraisal. J Am Soc Nephrol 30 : 914-917, 2019.
7) Schaeffer AJ, Schaeffer EM : Kidney Infections, Vol 1, Section IV, Infection and Inflammation. In : Campbell-Walsh Urology, 9th ed (ed by Wein AJ, et al), p265-287, Saunders Elsevier, Philadelphia, 2007.
8) Hamasuna R, et al : Obstructive pyelonephritis as a result of urolithiasis in Japan : diagnosis, treatment and prognosis. Int J Urol 22 : 294-300, 2015.
10) Matsumoto T, et al : Nationwide survey of antibacterial activity against clinical isolates from urinary tract infections in Japan (2008). Intl J Antimicrob Agents 37 : 210-218, 2011
11) Kobayashi K, et al : The third national Japanese antimicrobial susceptibility pattern surveillance program : Bacterial isolates from complicated urinary tract infection patients. J Infect Chemother 26 : 418-428, 2020.
13) Heyns CF : Urinary tract infections in obstruction of the urinary tract. In : Urological Infection, Edition 2010 (ed by Naber KG, et al), p452-480, European Association of Urology, Stockholm, 2010.
14) Zanetti G, Trinchieri A : Urinary tract infections in patients with urolithiasis. In : Urological Infection, Edition 2010 (ed by Naber KG, et al), p481-496, European Association of Urology, Stockholm, 2010.
15) 山本新吾, ほか : JAID/JSC感染症治療ガイドライン 2015-尿路感染症・男性性器感染症-. 日本化学療法学会雑誌 64 : 1-30, 2016.
P.159 掲載の参考文献
1) Peters C, Rushton HG : Vesicoureteral reflux associated renal damage : congenital reflux nephropathy and acquired renal scarring. J Urol 184 : 265-273, 2010.
3) Mackie GG, Stephens FD : Duplex kidneys : a correlation of renal dysplasia with position of the ureteral orifice. J Urol 114 : 274-280, 1975.
4) Murawski IJ, Gupta IR : Vesicoureteric reflux and renal malformations : a developmental problem. Clin Genet 69 : 105-117, 2006.
5) Vats KR, et al : A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33-34. J Am Soc Nephrol 17 : 1158-1167, 2006.
6) Rolleston GL, et al : Relationship of infantile vesicoureteric reflux to renal damage. Br Med J 1 : 460-463, 1970.
7) Matsuoka H, et al : Renal pathology in patients with reflux nephropathy. The turning point in irreversible renal disease. Eur Urol 26 : 153-159, 1994.
9) 松岡弘文 : 逆流性腎症. 西日本泌尿器科 72 : 513-522, 2010.
10) el-Khatib MT, Bailey RR : Reflux nephropathy and primary vesicoureteric reflux in adults. Q J Med 77 : 1241-1253, 1990.
11) Zhang Y, Bailey RR : A long term follow up of adults with reflux nephropathy. N Z Med J 108 : 142-144, 1995.
12) 坂井清英, ほか : DMSA腎シンチグラムによるVURの腎障害の評価と落とし穴. 日本小児泌尿器科学会雑誌 18 : 16-22, 2009.
13) Neild GH, et al : Renal outcome in adults with renal insufficiency and irregular asymmetric kidneys. BMC Nephrol 5 : 12, 2004.
14) Matsuoka H, et al : The long-term prognosis of nephropathy in operated reflux. J Pediatr Urol 15 : 605.e1-605.e8, 2019.
15) Ardissino G, et al : Long-term outcome of vesicoureteral reflux associated chronic renal failure in children. Data from the ItalKid Project. J Urol 172 : 305-310, 2004.
P.165 掲載の参考文献
1) Takahashi N, et al : Tubulointerstitial Nephritis with IgM-Positive Plasma Cells. J Am Soc Nephrol 28 : 3688-3698, 2017.
2) Takahashi N, et al : Tubulointerstitial nephritis with IgM-positive plasmacytoid large lymphocyte infiltration in a patient with primary biliary cirrhosis and Sjogren's syndrome. Clin Nephrol 74 : 74-80, 2010.
3) Miyaguchi Y, et al : [Tubulointerstitial nephritis with IgM-positive plasma cells in an elderly woman diagnosed by a renal biopsy and treated with corticosteroid therapy]. Nihon Ronen Igakkai Zasshi 58 : 630-636, 2021.
4) Cohen EP, et al : Absence of H (+) -ATPase in cortical collecting tubules of a patient with Sjogren's syndrome and distal renal tubular acidosis. J Am Soc Nephrol 3 : 264-271, 1992.
5) DeFranco PE, et al : Absence of vacuolar H (+) -ATPase pump in the collecting duct of a patient with hypokalemic distal renal tubular acidosis and Sjogren's syndrome. J Am Soc Nephrol 6 : 295-301, 1995.
6) Ren H, et al : Renal involvement and followup of 130 patients with primary Sjogren's syndrome. J Rheumatol 35 : 278-284, 2008.
7) Francois H, Mariette X : Renal involvement in primary Sjogren syndrome. Nat Rev Nephrol 12 : 82-93, 2016.
8) Lino M, et al : Tubulointerstitial nephritis and Fanconi syndrome in primary biliary cirrhosis. Am J Kidney Dis 46 : e41-46, 2005.
9) Hara M, et al : [Case of fanconi syndrome positive for anti-M2 antibodies revealed by severe hypokalemia and multiple bone fracture]. Nihon Jinzo Gakkai Shi 53 : 719-725, 2011.
10) Saeki T, et al : Tubulointerstitial nephritis and Fanconi syndrome in a patient with primary Sjogren's syndrome accompanied by antimitochondrial antibodies : A case report and review of the literature. Mod Rheumatol 28 : 897-900, 2018.
12) Talwalkar JA, Lindor KD : Primary biliary cirrhosis. Lancet 362 : 53-61, 2003.
13) Minato M, et al : Glucocorticoid-dependent Tubulointerstitial Nephritis with IgM-positive Plasma Cells Presenting with Intracellular Crystalline Inclusions within the Rough Endoplasmic Reticulum. Intern Med 60 : 3129-3136, 2021.
14) Mizoguchi S, et al : IgM-Positive Tubulointerstitial Nephritis Associated With Asymptomatic Primary Biliary Cirrhosis. Kidney Int Rep 3 : 1004-1009, 2018.
15) Matsuoka-Uchiyama N, et al : Tubulointerstitial Nephritis Cases With IgM-Positive Plasma Cells. Kidney Int Rep 5 : 1576-1580, 2020.

IV 腎血管系障害

P.173 掲載の参考文献
2) Granata A : From Nutcracker Phenomenon to Nutcracker Syndrome : A Pictorial Review. Diagnostics (Basel) 11 : 101, 2021.
3) El-Sadr AR, Mina E : Anatomical and surgical aspects in the operative management of varicocele. Urol Cutaneous Rev 54 : 257-262, 1950.
4) de Schepper A : ["Nutcracker" phenomenon of the renal vein and venous pathology of the left kidney]. J Belge Radiol 55 : 507-511, 1972.
5) Gulleroglu K, et al : Nutcracker syndrome. World J Nephrol 3 : 277-281, 2014.
6) He Y, et al : Nutcracker syndrome-ow well do we know it? Urology 83 : 12-17, 2014.
8) Ribeiro FS, et al : Prevalence of left renal vein compression (nutcracker phenomenon) signs on computed tomography angiography of healthy individuals. J Vasc Surg Venous Lymphat Disord 8 : 1058-1065, 2020.
9) Kolber MK, et al : Nutcracker syndrome : diagnosis and therapy. Cardiovasc Diagn Ther 11 : 1140-1149, 2021.
10) Ananthan K, et al : Nutcracker Syndrome : An Update on Current Diagnostic Criteria and Management Guidelines. Eur J Vasc Endovasc Surg 53 : 886-894, 2017.
11) Mazarakis A, et al : Is hypertension a manifestation of the nutcracker phenomenon/syndrome? Case report and brief review of the literature. Hippokratia 16 : 187-189, 2012.
12) 血尿診断ガイドライン 2013 (血尿診断ガイドライン編集委員会編), ライフサイエンス出版, 2013. [https://www.jslm.org/others/news/hugl20140523.pdf] (2022年6月閲覧)
13) 第IX章急性腹症の鑑別診断. 急性腹症診療ガイドライン 2015 (急性腹症診療ガイドライン出版委員会編), p122-153, 医学書院, 2015. [https://minds.jcqhc.or.jp/docs/minds/acuteabdomen/acute-abdomen-chapter9.pdf] (2022年6月閲覧)
14) Vianello FA, et al : Micro- and macroscopic hematuria caused by renal vein entrapment : systematic review of the literature. Pediatr Nephrol 31 : 175-184, 2016.
15) Shin JI, et al : Effect of renal Doppler ultrasound on the detection of nutcracker syndrome in children with hematuria. Eur J Pediatr 166 : 399-404, 2007.
P.177 掲載の参考文献
6) Lee J, et al : Clinical characteristics of acute renal failure with severe loin pain and patchy renal vasoconstriction. Kidney Res Clin Pract 31 : 170-176, 2012.
7) Son CN, et al : Prevalence and possible causes of hypouricemia at a tertiary care hospital. Korean J Intern Med 31 : 971-976, 2016.
8) Park JH, et al : Renal effects of uric acid : hyperuricemia and hypouricemia. Korean J Intern Med 35 : 1291-1304, 2020.
9) Hosoyamada M : Hypothetical Mechanism of Exercise-Induced Acute Kidney Injury Associated with Renal Hypouricemia. Biomedicines 9 : 1847, 2021.
10) Maekawa M, et al : Acute Renal Failure with Severe Loin Pain and Patchy Renal Vasoconstriction in a Patient without Hypouricemia, Provoked by Epileptic Seizure. Intern Med 56 : 2001-2005, 2017.
14) Hosoya T, et al : Xanthine Oxidoreductase Inhibitors Suppress the Onset of Exercise-Induced AKI in High HPRT Activity Urat1-Uox Double Knockout Mice. J Am Soc Nephrol 33 : 326-341, 2022.
P.183 掲載の参考文献
1) 厚生労働科学研究費補助金 (難治性疾患政策研究事業) 「血液凝固異常症等に関する研究」班TTPグループ : 血栓性血小板減少性紫斑病 (TTP) 診療ガイド 2020.
2) 芦田明 : 志賀毒素産生性腸管出血性大腸菌関連溶血性尿毒症症候群 (STEC-HUS). 日本血栓止血学会誌 31 : 37-44, 2010.
3) 非典型溶血性尿毒症症候群診断基準改訂委員会, 日本腎臓学会, 日本小児科学会. 非典型溶血性尿毒症症候群 (aHUS) 診療ガイド 2015.
4) AKI (急性腎障害) 診療ガイドライン 2016 (AKI (急性腎障害) 診療ガイドライン 作成委員会編). 日本腎臓学会誌 59 : 419-533, 2017.
5) Vaught AJ, et al : Germline mutations in the alter native pathway of complement predispose to HELLP syndrome. JCI Insight 3 : e99128, 2018.
6) Fakhouri F, et al : Pregnancy-triggered atypical hemolytic uremic syndrome (aHUS) : a Global aHUS Registry analysis. J Nephrol 34 : 1581-1590, 2021.
7) Timmermans SAMEG, et al : Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int 91 : 1420-1425, 2017.
8) Cavero T, et al : Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int 96 : 995-1004, 2019.
9) Mazepa MA, et al : How targeted therapy disrupts the treatment paradigm for acquired TTP : the risks, benefits, and unknowns. Blood 134 : 415-420, 2019.
10) 溶血性尿毒症症候群の診断・治療ガイドライン (五十嵐隆, ほか ; 溶血性尿毒症症候群の診断・治療ガイドライン作成班編), 東京医学社, 2014.
12) Fakhouri F, et al : Haemolytic uraemic syndrome. Lancet 390 : 681-696, 2017.
13) Goodship TH, et al : Atypical hemolytic uremic syndrome and C3 glomerulopathy : conclusions from a "Kidney Disease : Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 91 : 539-551, 2017.
14) Fujisawa M, et al : Clinical characteristics and genetic backgrounds of Japanese patients with atypical hemolytic uremic syndrome. Clin Exp Nephrol 22 : 1088-1099, 2018.
P.188 掲載の参考文献
1) Gulas E, et al : Morphological and clinical aspects of the occurrence of accessory (multiple) renal arteries. Arch Med Sci 14 : 442-453, 2018.
2) Natsis K, et al : A morphometric study of multiple renal arteries in Greek population and a systematic review. Rom J Morphol Embryol 55 : 1111-1122, 2014.
3) Mohamed T, Sequeira-Lopez MLS : Development of the renal vasculature. Semin Cell Dev Biol 91 : 132-146, 2019.
4) Marshall AG : Aberrant renal arteries and hypertension. Lancet 2 : 701-705, 1951.
5) 工藤啓, ほか : 本態性高血圧における重複腎動脈の頻度とその病態的意義についての検討. 日本内科学会雑誌 76 : 796-801, 1987.
6) Rizzari MD, et al : Outcome of living kidney donors left with multiple renal arteries. Clin Transplant 26 : E7-11, 2012.
7) Mendelsohn FO : Does complete renal denervation translate into superior clinical outcomes? Lessons learned from denervation of accessory renal arteries. Clin Res Cardiol 103 : 681-683, 2014.
8) 甲斐達也, 有馬秀二 : 線維筋性異形成が原因と考えられる重複腎動脈合併腎血管性高血圧患者. 治療学 43 : 573-578, 2009.
11) O'Kelly F, et al : The impact of donor renal arteries on perioperative complications and allograft survival in paediatric renal transplantation. J Pediatr Urol 17 : 541.e1-541.e11, 2021.
12) 高須伸治, ほか : 複数腎動脈の血行再建術式とその腎移植成績. 移植 25 : 283-287, 1990.
13) Zagyapan R, et al : A retrospective study on multiple renal arteries in Turkish population. Anatomy 3 : 35-39, 2009.
14) 佐藤洋 : 決め手の一枚. 複数腎動脈 (multiple renal artery) に注意! Vascular Lab 5 : 389-392, 2008.
15) Stephens FD : Ureterovascular hydronephrosis and the "aberrant" renal vessels. J Urol 128 : 984-987, 1982.
P.191 掲載の参考文献
1) 法井薫, ほか : 腎梗塞と調律, 左房径, CHADS2スコアの関連. 心臓 44 : 546-550, 2012.
4) Nah S, et al : Predictors of renal infarction in patients presenting to the emergency department with flank pain : A retrospective observational study. PLoS One 16 : e0261054, 2021.
6) Jentzsch MS, et al : Abdominal pain due to renal Infarction : An unexpected presentation of COVID-19. R I Med J (2013) 104 : 16-19, 2021.
7) Pizzarossa AC, Merola V : [Etiology of renal infarction. A systematic review]. Rev Med Chil 147 : 891-900, 2019.
8) Kwon JH, et al : Renal Complications in Patients with Renal Infarction : Prevalence and Risk Factors. Kidney Blood Press Res 41 : 865-872, 2016.
9) Yang J, et al : Risk factors and outcomes of acute renal infarction. Kidney Res Clin Pract 35 : 90-95, 2016.
13) Mesiano P, et al : Acute renal infarction : a single center experience. J Nephrol 30 : 103-107, 2017.
14) 日本超音波医学会用語・診断基準委員会, 腎動脈超音波診断ガイドライン小委員会 : 超音波による腎動脈病変の標準的評価法. 超音波医学 42 : 185-200, 2015.
15) 藤原和歌子, 加藤順 : 造影超音波検査が診断に有効であった腎梗塞の1例. 松江市立病院医学雑誌 21 : 72-76, 2017.
16) Ivanes F, et al : Renal arteriography with endovascular ultrasound for the management of renal infarction patients. BMC Nephrol 21 : 273, 2020.
17) Delezire A, et al : Acute renal infarction : long-term renal outcome and prognostic factors. J Nephrol 34 : 1501-1509, 2021.
18) Rhee H, et al : The significance of clinical features in the prognosis of acute renal infarction : single center experience. Clin Exp Nephrol 16 : 611-616, 2012.
P.196 掲載の参考文献
1) Hallan SI, et al : Hypertensive nephrosclerosis : wider kidney biopsy indications may be needed to improve diagnostics. J Intern Med 289 : 69-83, 2021.
2) Shiraishi N, et al : Prevalence and risk factor analysis of nephrosclerosis and ischemic nephropathy in the Japanese general population. Clin Exp Nephrol 18 : 461-468, 2014.
3) Sumida K, et al : Clinicopathological discordance in biopsy-proven nephrosclerosis : a nationwide cross-sectional study of the Japan Renal Biopsy Registry (J-RBR). Clin Exp Nephrol 26 : 325-332, 2022.
4) 日本透析医学会統計調査委員会 ; 花房規男, ほか : わが国の慢性透析療法の現況 (2020年12月31日現在). 日本透析医学会雑誌 54 : 611-657, 2021.
5) Liang S, et al : Clinico-pathological characteristics and outcomes of patients with biopsy-proven hypertensive nephrosclerosis : a retrospective cohort study. BMC Nephrol 17 : 42, 2016.
6) van Varik BJ, et al : Mechanisms of arterial remodeling : lessons from genetic diseases. Front Genet 3 : 290, 2012.
7) Griffin KA : Hypertensive Kidney Injury and the Progression of Chronic Kidney Disease. Hypertension 70 : 687-694, 2017.
8) 古市賢吾, 和田隆志 : 腎硬化症の定義, 臨床と病理. 日本腎臓学会誌 58 : 80-84, 2016.
9) A Fogo, et al : Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans : a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int 51 : 244-252, 1997.
10) エビデンスに基づくCKD診療ガイドライン 2018 (日本腎臓学会編), 東京医学社, 2018.
11) 星佐弥子, ほか : 悪性腎硬化症の臨床病理学的検討. 日本腎臓学会誌 50 : 488-498, 2008.
12) 高血圧治療ガイドライン 2019 (日本高血圧学会高血圧治療ガイドライン作成委員会編), 日本高血圧学会, 2019.
P.201 掲載の参考文献
P.204 掲載の参考文献
2) Novic AC, Fergany A : Renovascular Hypertension and Ischemic Nephropathy. In : Campbell-Walsh Urology, 9th ed (ed by Wein AJ, et al), p1189-1190, Saunders, London, 2006.
7) Takebayashi S, et al : Transarterial embolization and ablation of renal arteriovenous malformations : efficacy and damages in 30 patients with long-term followup. J Urol 159 : 696-701, 1998.
10) Resnick S, Chiang A : Transcatheter embolization of a high-flow renal arteriovenous fistula with use of a constrained wallstent to prevent coil migration. J Vasc Interv Radiol 17 (2 Pt 1) : 363-367, 2006.
P.211 掲載の参考文献
3) Pagnoux C, et al : Clinical Features and Outcomes in 348 Patients with Polyarteritis Nodosa : A Systematic Retrospective Study of Patients Diagnosed between 1963 and 2005 and Entered into the French Vasculitis Study Group Database. Arthritis Rheum 62 : 616-626, 2010.
4) Navon Elkan P, et al : Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370 : 921-931, 2014.
5) 抗リン脂質抗体症候群・好酸球性多発血管炎性肉芽腫症・結節性多発動脈炎・リウマトイド血管炎の治療の手引き 2020 (厚生労働科学研究費補助金 (難治性疾患政策研究事業) 難治性血管炎に関する調査研究 : 針谷正祥編), 診断と治療社, 2021.
6) Fujimoto S, et al : Comparison of the epidemiology of anti-neutrophil cytoplasmic antibody-associated vasculitis between Japan and the U.K. Rheumatology (Oxford) 50 : 1916-1920, 2011.
9) ANCA 関連血管炎診療ガイドライン 2017 (厚生労働科学研究費補助金難治性疾患等政策研究事業編), 診断と治療社, 2017.
10) Jayne DRW, et al : Avacopan for the Treatment of ANCA-Associated Vasculitis. N Engl J Med 384 : 599-609, 2021.
14) Segelmark M, Hellmark T : Anti-glomerular basement membrane disease : an update on subgroups, pathogenesis and therapies. Nephrol Dial Transplant 34 : 1826-1832, 2019.
P.214 掲載の参考文献
1) Hansen KJ, et al : Prevalence of renovascular disease in the elderly : a population-based study. J Vasc Surg 36 : 443-451, 2002.
2) de Mast Q, Beutler JJ : The prevalence of atherosclerotic renal artery stenosis in risk groups : a systematic literature review. J Hypertens 27 : 1333-1340, 2009.
4) Simon G : What is critical renal artery stenosis? Implications for treatment. Am J Hypertens 13 : 1189-1193, 2000.
5) Brunner HR, et al : Hypertension of renal origin : evidence for two different mechanisms. Science 174 : 1344-1346, 1971.
6) Johansson M, et al : Increased cardiovascular mortality in hypertensive patients with renal artery stenosis. Relation to sympathetic activation, renal function and treatment regimens. J Hypertens 17 : 1743-1750, 1999.
8) Edwards MS, et al : Renovascular disease and the risk of adverse coronary events in the elderly ; a prospective, population-based study. Arch Intern Med 165 : 207-213, 2005.
9) Zhu XY, et al : Cortical microvascular remodeling in the stenotic kidney : role of increased oxidative stress. Arterioscler Thromb Vasc Biol 24 : 1854-1859, 2004.
11) Bax L, et al : Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function : a randomized trial. Ann Intern Med 150 : 840-848, W150-151, 2009.
P.220 掲載の参考文献
3) Murray NP, et al : Renal infarction associated with asymptomatic Covid-19 infection. Hematol Transfus Cell Ther 43 : 353-356, 2021.
4) Cantador E, et al : Incidence and consequences of systemic arterial thrombotic events in COVID-19 patients. J Thromb Thrombolysis 50 : 543-547, 2020.
5) Iwashima Y, Ishimitsu T : How should we define appropriate patients for percutaneous transluminal renal angioplasty treatment? Hypertens Res 43 : 1015-1027, 2020.
6) Watson PS, et al : Effect of Renal Artery Stenting on Renal Function and Size in Patients with Atherosclerotic Renovascular Disease. Circulation 102 : 1671-1677, 2000.
7) Koivuviita N, et al : Thromboembolism as a cause of renal artery occlusion and acute kidney injury : the recovery of kidney function after two weeks. Case Rep Nephrol Urol 4 : 82-87, 2014.
8) Thatipelli M, et al : Renal artery stent placement for restoration of renal function in hemodialysis recipients with renal artery stenosis. J Vasc Interv Radiol 19 : 1563-1568, 2008.
P.224 掲載の参考文献
1) Gornik HL, et al : First International Consensus on the diagnosis and management of fibromuscular dysplasia. Vasc Med 24 : 164-189, 2019.
2) Plouin PF, Bax L : Diagnosis and treatment of renal artery stenosis. Nat Rev Nephrol 6 : 151-159, 2010.
3) Hendricks NJ, et al : Is fibromuscular dysplasia underdiagnosed? A comparison of the prevalence of FMD seen in CORAL trial participants versus a single institution population of renal donor candidates. Vasc Med 19 : 363-367, 2014.
5) Kim ESH, et al : Clinical manifestations of fibromuscular dysplasia vary by patient sex : a report of the United States registry for fibromuscular dysplasia. J Am Coll Cardiol 62 : 2026-2028, 2013.
6) Savard S, et al : Association between 2 angiographic subtypes of renal artery fibromuscular dysplasia and clinical characteristics. Circulation 126 : 3062-3069, 2012.
7) Mishima E, et al : Low frequency of cervicocranial artery involvement in Japanese with renal artery fibromuscular dysplasia compared with that of Caucasians. Clin Exp Nephrol 22 : 1294-1299, 2018.
8) Kiando SR, et al : PHACTR1 Is a Genetic Susceptibility Locus for Fibromuscular Dysplasia Supporting Its Complex Genetic Pattern of Inheritance. PLoS Genet 12 : e1006367, 2016.
9) Gupta RM, et al : A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell 170 : 522-533.e15, 2017.
10) Savard S, et al : Association of smoking with phenotype at diagnosis and vascular interventions in patients with renal artery fibromuscular dysplasia. Hypertension 61 : 1227-1232, 2013.
11) Silhol F, et al : Intranuclear expression of progesterone receptors in smooth muscle cells of renovascular fibromuscular dysplasia : a pilot study. Ann Vasc Surg 29 : 830-835, 2015.
12) Shimabukuro M : A New Plausible Link between Lysophosphatidylcholine, TGF-β, and Fibromuscular Dysplasia. J Atheroscler Thromb 23 : 665-667, 2016.
14) Wilcox CS : Use of angiotensin-converting-enzyme inhibitors for diagnosing renovascular hypertension. Kidney Int 44 : 1379-1390, 1993.
15) Weinberg I, et al : Anti-platelet and anti-hypertension medication use in patients with fibromuscular dysplasia : Results from the United States Registry for Fibromuscular Dysplasia. Vasc Med 20 : 447-453, 2015.
16) Wang LC, et al : Mechanism of stent failure in a patient with fibromuscular dysplasia following renal artery stenting. Ann Vasc Surg 29 : 123.e19-21, 2015.
17) Iwasaki T, et al : Kidney enlargement effect of angioplasty for nonatherosclerotic renovascular disease : reversibility of ischemic kidney. Hypertens Res 43 : 1214-1221, 2020.
19) Oribe S, et al : Fibromuscular dysplasia with recurrence after "long-term" following percutaneous transcatheter renal angioplasty : two case reports with a review of 26 patients. BMC Nephrol 22 : 187, 2021.
P.229 掲載の参考文献
1) Chaer RA, et al : The Society for Vascular Surgery clinical practice guidelines on the management of visceral aneurysms. J Vasc Surg 72 : 3S-39S, 2020.
3) Korfer D, et al : Arterial Aneurysm Localization Is Sex-Dependent. J Clin Med 11 : 2450, 2022.
4) Klausner JQ, et al : The contemporary management of renal artery aneurysms. J Vasc Surg 61 : 978-984.e1, 2015.

V 尿細管輸送異常症

P.237 掲載の参考文献
P.241 掲載の参考文献
3) Quigley R, Wolf MTF : Renal Tubular Acidosis in Children. In : Pediatric Nephrology, 7th ed (ed by Avner ED, et al), p1273-1306, Springer-Verlag, Berlin, Heidelberg, 2016.
4) Batlle D, Arruda J : Hyperkalemic Forms of Renal Tubular Acidosis : Clinical and Pathophysiological Aspects. Adv Chronic Kidney Dis 25 : 321-333, 2018.
5) 濱田陸, 石倉健司 : IV型尿細管性アシドーシス. 小児内科 45 : 1607-1611, 2013.
6) Al-Awqati Q, et al : Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J Clin Invest 58 : 351-358, 1976.
7) Heering PJ, et al : Aldosterone resistance in kidney transplantation is in part induced by a downregulation of mineralocorticoid receptor expression. Clin Transplant 18 : 186-192, 2004.
10) Chen Z, et al : Activation of mTORC1 in collecting ducts causes hyperkalemia. J Am Soc Nephrol 25 : 534-545, 2014.
11) Grahammer F, et al : mTORC2 critically regulates renal potassium handling. J Clin Invest 126 : 1773-1782, 2016.
12) Kamel KS, Halperin ML : Intrarenal urea recycling leads to a higher rate of renal excretion of potassium : an hypothesis with clinical implications. Curr Opin Nephrol Hypertens 20 : 547-554, 2011.
P.246 掲載の参考文献
1) Nozu K, et al : Inherited salt-losing tubulopathy : An old condition but a new category of tubulopathy. Pediatr Int 62 : 428-437, 2020.
2) Hsu YJ, et al : Heterozygous mutations of the sodium chloride cotransporter in Chinese children : prevalence and association with blood pressure. Nephrol Dial Transplant 24 : 1170-1175, 2009.
4) Kondo A, et al : Examination of the predicted prevalence of Gitelman syndrome by ethnicity based on genome databases. Sci Rep 11 : 16099, 2021.
6) Matsunoshita N, et al : Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet Med 18 : 180-188, 2016.
7) Yamazaki H, et al : Atypical phenotype of type I Bartter syndrome accompanied by focal segmental glomerulosclerosis. Pediatr Nephrol 24 : 415-418, 2009.
8) Estevez R, et al : Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414 : 558-561, 2001.
9) Jeck N, et al : Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics 108 : E5, 2001.
10) Nozu K, et al : Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet 45 : 182-186, 2008.
11) Legrand A, et al : Prevalence of Novel MAGED2 Mutations in Antenatal Bartter Syndrome. Clin J Am Soc Nephrol 13 : 242-250, 2018.
12) Fujimura J, et al : Clinical and Genetic Characteristics in Patients With Gitelman Syndrome. Kidney Int Rep 4 : 119-125, 2019.
13) Cruz DN, et al : Gitelman's syndrome revisited : an evaluation of symptoms and health-related quality of life. Kidney Int 59 : 710-717, 2001.
14) Tseng MH, et al : Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab 97 : E1478-1482, 2012.
P.250 掲載の参考文献
1) Breton S : The cellular physiology of carbonic anhydrases. JOP 2 (4 Suppl) : 159-164, 2001.
2) Morrison H : Chapter 7 : Carbonic anhydrase II. In : Enzyme Active Sites and their Reaction Mechanisms, p31-35, Academic Press, London, 2020.
3) Sly WS, et al : Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80 : 2752-2756, 1983.
6) Kurschat CE, Alper SL : Hereditary renal tubular acidosis. In : Molecular and Genetic Basis of Renal Disease, 1st ed (ed by Mount DB, Pollack MR), p269-294, Saunders. Elsevier, Philadelphia, 2008.
P.256 掲載の参考文献
2) Debre R, et al : Rachitisme tardif coexistant avec une nephrite chronique et une glycosurie. Arch Med Enfants 37 : 597-606, 1934.
3) Fanconi G : Die nicht diabetischen glykosurien und hyperglykamien des alteren kindes. Jahrb Kinderheilk 133 : 257-300, 1931.
4) Norden AGW, et al : Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol 13 : 125-133, 2002.
6) Lemaire M : Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 320 : F145-F160, 2021.
8) Reichold M, et al : Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. J Am Soc Nephrol 29 : 1849-1858, 2018.
13) Hamilton AJ, et al : The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J Med Genet 51 : 165-169, 2014.
15) Chinsky JM, et al : Diagnosis and treatment of tyrosinemia type I : a US and Canadian consensus group review and recommendations. Genet Med 19 : 1380-1395, 2017.
17) シスチノーシス (シスチン蓄積症) 診療ガイドライン 2019 (日本先天代謝異常学会編), 診断と治療社, 2019.
P.260 掲載の参考文献
1) Liddle GW, et al : A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76 : 199-213, 1963.
2) 松井則明, ほか : Liddle症候群の兄弟例. 最新医学 31 : 1005-1009, 1976.
10) Staub O, et al : WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15 : 2371-2380, 1996.
12) Salih M, et al : A Missense Mutation in the Extracellular Domain of αENaC Causes Liddle Syndrome. J Am Soc Nephrol 28 : 3291-3299, 2017.
P.265 掲載の参考文献
4) 三浦健一郎 : 尿細管性蛋白尿を呈する遺伝性疾患の全国調査. 平成28年度厚生労働科学研究費補助金 (難治性疾患等政策研究事業) 総合研究報告書, 2017.
5) Attree O, et al : The Lowe' s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358 : 239-242, 1992.
9) Preston R, et al : A role for OCRL in glomerular function and disease. Pediatr Nephrol 35 : 641-648, 2020.
10) Sakakibara N, et al : Identification of novel OCRL isoforms associated with phenotypic differences between Dent disease-2 and Lowe syndrome. Nephrol Dial Transplant 37 : 262-270, 2022.
11) Tripathi RC, et al : Pathogenesis of cataracts in patients with Lowe's syndrome. Ophthalmology 93 : 1046-1051, 1986.
13) Berquez M, et al : The phosphoinositide 3-kinase inhibitor alpelisib restores actin organization and improves proximal tubule dysfunction in vitro and in a mouse model of Lowe syndrome and Dent disease. Kidney Int 98 : 883-896, 2020.
14) 菅原典子, ほか : 血液透析を導入した精神発達遅滞を伴う慢性腎不全の3症例. 日本小児腎臓病学会雑 22 : 1-5, 2009.
P.270 掲載の参考文献
9) Erdelyi LS, et al : Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney Int 88 : 1070-1078, 2015.
10) Vezzi V, et al : Vasopressin receptor 2 mutations in the nephrogenic syndrome of inappropriate antidiuresis show different mechanisms of constitutive activation for G protein coupled receptors. Sci Rep 10 : 9111, 2020.
12) Miyado M, et al : Germline-Derived Gain-of-Function Variants of Gsα-Coding GNAS Gene Identified in Nephrogenic Syndrome of Inappropriate Antidiuresis. J Am Soc Nephrol 30 : 877-889, 2019.
13) Sekiya N, Awazu M : A case of nephrogenic syndrome of inappropriate antidiuresis caused by carbamazepine. CEN Case Rep 7 : 66-68, 2018.
14) Kim S, et al : The Role of Vasopressin V2 Receptor in Drug-Induced Hyponatremia. Front Physiol 12 : 797039, 2021.
P.277 掲載の参考文献
1) Broer S, Palacin M : The role of amino acid transporters in inherited and acquired diseases. Biochem J 436 : 193-211, 2011.
2) Javed K, et al : Development of Biomarkers for Inhibition of SLC6A19 (B0AT1) -A Potential Target to Treat Metabolic Disorders. Int J Mol Sci 19 : 3597, 2018.
3) Jiang Y, et al : Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 4 : 406-417, 2015.
4) Belanger AM, et al : Inhibiting neutral amino acid transport for the treatment of phenylketonuria. JCI Insight 3 : e121762, 2018.
5) Nisoli E, et al : COVID-19 and Hartnup disease : an affair of intestinal amino acid malabsorption. Eat Weight Disord 26 : 1647-1651, 2021.
6) Lemaire M : Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 320 : F145-F160, 2021.
8) Reichold M, et al : Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. J Am Soc Nephrol 29 : 1849-1858, 2018.
10) Schlingmann KP, et al : Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J Am Soc Nephrol 27 : 604-614, 2016.
11) Klootwijk ED, et al : Mistargeting of Peroxisomal EHHADH and Inherited Renal Fanconi's Syndrome. N Engl J Med 370 : 129-138, 2014.
12) Hamilton AJ, et al : The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J Med Genet 51 : 165-169, 2014.
13) Hartmannova H, et al : Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum Mol Genet 25 : 4062-4079, 2016.
14) Sahota A, et al : Novel cystine ester mimics for the treatment of cystinuria-induced urolithiasis in a knockout mouse model. Urology 84 : 1249.e9-15, 2014.
15) Nagamori S, et al : Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci U S A 113 : 775-780, 2016.
16) Olschok K, et al : No evidence for point mutations in the novel renal cystine transporter AGT1/SLC7A13 contributing to the etiology of cystinuria. BMC Nephrol 19 : 278, 2018.
17) Martinelli D, et al : CUGC for lysinuric protein intolerance (LPI). Eur J Hum Genet 28 : 1129-1134, 2020.
19) Bauch C, Verrey F : Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Am J Physiol Renal Physiol 283 : F181-F189, 2002.
20) Rotoli BM, et al : y+LAT1 and y+LAT2 contribution to arginine uptake in different human cell models : Implications in the pathophysiology of Lysinuric Protein Intolerance. J Cell Mol Med 24 : 921-929, 2020.
22) Wendland JR, et al : A haplotype containing quantitative trait loci for SLC1A1 gene expression and its association with obsessive-compulsive disorder. Arch Gen Psychiatry 66 : 408-416, 2009.
24) Meier C, et al : Intestinal IMINO transporter SIT1 is not expressed in human newborns. Am J Physiol Gastrointest Liver Physiol 315 : G887-G895, 2018.
P.282 掲載の参考文献
1) Langman CB, et al : Controversies and research agenda in nephropathic cystinosis : conclusions from a "Kidney Disease : Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 89 : 1192-1203, 2016.
2) Gahl WA, et al : Cystinosis. N Engl J Med 347 : 111-121, 2002.
3) シスチノーシス (シスチン蓄積症) 診療ガイドライン 2019 (日本先天代謝異常学会編), 診断と治療社, 2019.
4) Besouw M, et al : Cysteamine : an old drug with new potential. Drug Discov Today 18 : 785-792, 2013.
5) Cherqui S, Courtoy PJ : The renal Fanconi syndrome in cystinosis : pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 13 : 115-131, 2017.
6) Brodin-Sartorius A, et al : Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int 81 : 179-189, 2012.
7) Gahl WA, et al : Nephropathic cystinosis in adults : natural history and effects of oral cysteamine therapy. Ann Intern Med 147 : 242-250, 2007.
8) ClinicalTrials.gov : Stem Cell Gene Therapy for Cystinosis. [https://clinicaltrials.gov/ct2/show/NCT03897361]
P.286 掲載の参考文献
1) Cruz DN, et al : Gitelman's syndrome revisited : an evaluation of symptoms and health-related quality of life. Kidney Int 59 : 710-717, 2001.
2) Nozu K, et al : Inherited salt-losing tubulopathy : An old condition but a new category of tubulopathy. Pediatr Int 62 : 428-437, 2020.
3) Matsunoshita N, et al : Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet Med 18 : 180-188, 2016.
4) Nagano C, et al : Clinical characteristics of HNF1B-related disorders in a Japanese population. Clin Exp Nephrol 23 : 1119-1129, 2019.
P.290 掲載の参考文献
6) Edelheit O, et al : Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clin Endocrinol (Oxf) 62 : 547-553, 2005.
9) Zennaro MC, et al : Aldosterone resistance : Structural and functional considerations and new perspectives. Mol Cell Endocrinol 350 : 206-215, 2012.
10) 金子一成 : 偽性低アルドステロン症I型. 日本腎臓学会誌 53 : 150-154, 2011.
P.294 掲載の参考文献
5) Moriguchi T, et al : WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 280 : 42685-42693, 2005.
6) Vitari AC, et al : The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391 : 17-24, 2005.
8) Bergaya S, et al : WNK1 regulates vasoconstriction and blood pressure response to α1-adrenergic stimulation in mice. Hypertension 58 : 439-445, 2011.
9) Louis-Dit-Picard H, et al : KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44 : 456-460, S1-3, 2012.
10) Kigoshi Y, et al : Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation. J Biol Chem 286 : 33613-33621, 2011.
11) Uchida S, et al : Regulation of with-no-lysine kinase signaling by Kelch-like proteins. Biol Cell 106 : 45-56, 2014.
12) Ohta A, et al : The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms : disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451 : 111-122, 2013.
13) Susa K, et al : Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet 23 : 5052-5060, 2014.
P.300 掲載の参考文献
2) Haffner D, et al : Clinical practice recommendations for the diagnosis and management of Xlinked hypophosphataemia. Nat Rev Nephrol 15 : 435-455, 2019.
4) Wagner CA, et al : Genetic diseases of renal phosphate handling. Nephrol Dial Transplant 29 (Suppl 4) : iv45-54, 2014.
5) Fukumoto S : FGF23-related hypophosphatemic rickets/osteomalacia : diagnosis and new treatment. J Mol Endocrinol 66 : R57-R65, 2021.
6) Beck-Nielsen SS, et al : FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 14 : 58, 2019.
7) 日本内分泌学会, ほか : くる病・骨軟化症の診断マニュアル. 日本内分泌学会雑誌 91 (Suppl) : 1-11, 2015.
8) Trombetti A, et al : Interdisciplinary management of FGF23-related phosphate wasting syndromes : a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat Rev Endocrinol 18 : 366-384, 2022.
9) Goldsweig BK, Carpenter TO : Hypophosphatemic rickets : lessons from disrupted FGF23 control of phosphorus homeostasis. Curr Osteoporos Rep 13 : 88-97, 2015.
10) Carpenter TO, et al : Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med 378 : 1987-1998, 2018.
11) Imel EA, et al : Burosumab versus conventional therapy in children with X-linked hypophosphataemia : a randomised, active-controlled, open-label, phase 3 trial. Lancet 393 : 2416-2427, 2019.
12) Imel EA, et al : Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Iron-Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. J Bone Miner Res 35 : 231-238, 2020.
P.305 掲載の参考文献
1) 腎性低尿酸血症診療ガイドライン [2017年第1版] (厚生労働科学研究費補助金 (難治性疾患政策研究事業) : 腎・泌尿器系の希少・難治性疾患群に関する診断基準・診療ガイドラインの確立研究班 (腎性低尿酸血症担当), 日本痛風・核酸代謝学会編). 痛風と核酸代謝 42 (Suppl) : 1-51, 2018.
2) Koo BS, et al : Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a Korean general population of 172, 970. Korean J Intern Med 36 : S264-S272, 2021.
4) Stiburkova B, et al : Renal Hypouricemia 1 : Rare Disorder as Common Disease in Eastern Slovakia Roma Population. Biomedicines 9 : 1607, 2021.
9) Mou LJ, et al : A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior reversible encephalopathy syndrome. J Nephrol 28 : 387-392, 2015.
10) 石川勲 : 運動後急性腎不全 (ALPE). 痛風と核酸代謝 34 : 145-157, 2010.
11) Hosoyamada M : Hypothetical Mechanism of Exercise-Induced Acute Kidney Injury Associated with Renal Hypouricemia. Biomedicines 9 : 1847, 2021.
P.309 掲載の参考文献
1) Marble A : Non-diabetic melituria. In : The Treatment of Diabetes Mellitus, 10th ed (ed by Joslin EP, et al), p717-738, Lea & Febiger, Philadelphia, 1959.
2) 飯野則昭, 斎藤亮彦 : 腎性糖尿. 専門医のための腎臓病学 [第2版] (下条文武監, 内山聖, ほか編), p541-544, 医学書院, 2009.
3) Oemar BS, et al : Complete absence of tubular glucose reabsorption : a new type of renal glucosuria (type 0). Clin Nephrol 27 : 156-160, 1987.
6) Urakami T, et al : Changes in annual incidence of school children with type 2 diabetes in the Tokyo Metropolitan Area during 1975-2015. Pediatr Diabetes 19 : 1385-1392, 2018.
7) 学校検尿と糖尿病. 学校検尿のすべて [令和2年度改訂], p92-113, 日本学校保健会, 2021.
8) Menzel R, et al : A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1α (HNF-1α) gene. Diabet Med 15 : 816-820, 1998.
9) 古田浩人 : 糖尿病と遺伝子-MODY. 月刊糖尿病 3 : 41-49, 2011.
10) Urakami T, et al : Renal glucosuria in schoolchildren : Clinical characteristics. Pediatr Int 60 : 35-40, 2018.
P.316 掲載の参考文献
2) Sasaki S : Aquaporin 2 : From its discovery to molecular structure and medical implications. Mol Aspects Med 33 : 535-546, 2012.
3) Spanakis E, et al : AVPR2 variants and mutations in nephrogenic diabetes insipidus : review and missense mutation significance. J Cell Physiol 217 : 605-617, 2008.
4) 佐々木成 : アクアポリン水チャネルと病気. 医学のあゆみ 245 : 745-753, 2013.
5) Sasaki S, et al : Hereditary nephrogenic diabetes insipidus in Japanese patients : analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2. Clin Exp Nephrol 17 : 338-344, 2013.
8) Kishore BK, Ecelbarger CM : Lithium : a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol 304 : F1139-F1149, 2013.
9) Ando F, et al : Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat Commun 7 : 13636, 2016.
10) Ando F, et al : AKAPs-PKA disruptors increase AQP2 activity independently of vasopressin in a model of nephrogenic diabetes insipidus. Nat Commun 9 : 1411, 2018.
P.320 掲載の参考文献
1) Devuyst O, Thakker RV : Dent's disease. Orphanet J Rare Dis 5 : 28, 2010.
2) Wrong OM, et al : Dent's disease ; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87 : 473-493, 1994.
5) Scheinman SJ, et al : Mapping the gene causing X-linked recessive nephrolithiasis to Xp11.22 by linkage studies. J Clin Invest 91 : 2351-2357, 1993.
6) Pook MA, et al : Dent's disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet 2 : 2129-2134, 1993.
8) Utsch B, et al : Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48 : 942.e1-14, 2006.
11) Shrimpton AE, et al : OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability. Nephron Physiol 112 : 27-36, 2009.
12) Devonald MA, Karet FE : Renal epithelial traffic jams and one-way streets. J Am Soc Nephrol 15 : 1370-1381, 2004.
13) Sekine T, et al : Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA : genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria. Nephrol Dial Transplant 29 : 376-384, 2014.

最近チェックした商品履歴

Loading...