EBM 血液疾患の治療 2023-2024

出版社: 中外医学社
著者:
発行日: 2022-10-20
分野: 臨床医学:内科  >  血液
ISBN: 9784498225404
電子書籍版: 2022-10-20 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

14,300 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

14,300 円(税込)

商品紹介

血液疾患における諸問題をいかに解決し,対応すべきか,最新のエビデンスをもとに解説したレファランス.治療に必須の知見を「序論,指針,エビデンス,根拠となった臨床研究の問題点と限界,患者に適応する際の注意点,コメント」の順に紹介し,今日の時点における最新の治療法,考え方だけでなく,現場で判断に迷うような事柄・問題点に指針を与えるものとなっている.さらにはCOVID-19や最新研究の話題までフォローしており,血液疾患診療を網羅的に学ぶために最適な一冊である.

目次

  • I.話題
      1.新型コロナウイルス感染症流行下における造血器腫瘍の治療
      Topics 1 血液疾患患者への新型コロナワクチン接種の現状と課題
      Topics 2 COVID-19と血栓症

    II.赤血球系疾患
      1.再生不良性貧血とHLA
      2.再生不良性貧血に対するTPO-RA
      3.重症再生不良性貧血に対するHLA半合致移植・臍帯血移植
      4.赤芽球癆の治療
      5.MDSの分子病態解明の進歩
      6.MDSに対する予後予測
      7.低リスクMDSの治療
      8.高リスクMDSの治療
      9.遺伝性骨髄不全症候群に対する診断と治療
      Topics 1 血液疾患とゲノム編集治療
      10.温式自己免疫溶血性貧血(wAIHA)の治療
      11.寒冷凝集素症の治療
      12.PNHに対する治療
      Topics 2 PNHに対する開発中の新規治療薬
      13.腎性貧血に対するHIF-PH阻害薬
      Topics 3 加齢とクローン性造血

    III.白血病

    A.急性骨髄性白血病(AML)
      1.初発AMLの治療
      2.再発・難治性AMLの治療
      3.高齢者AMLの治療
      4.小児AMLの治療
      5.CBF白血病の治療
      6.AMLに対する分子標的治療の現状
      7.AMLに対する造血幹細胞移植の現状と課題
      Topics 1 AMLの分子病態解析研究の進歩
      Topics 2 AML幹細胞

    B.急性前骨髄球性白血病(APL)
      1.初発APLの治療
      2.再発・難治APLの治療

    C.急性リンパ性白血病(ALL)
      1.成人Ph陽性ALLの治療
      2.成人Ph陰性ALLの治療
      3.再発・難治ALLの治療
      4.AYA世代ALLの治療
      5.高齢者ALLの治療

    D.慢性骨髄性白血病(CML)
      1.初発CML-CPにおける治療選択
      2.進行期(AP/BP)CMLの治療
      3.チロシンキナーゼ阻害薬による有害事象のマネジメント
      4.TFRを目指したCML治療の現状と課題
      Topics 慢性骨髄性白血病におけるTKI耐性機序とその克服

    E.骨髄増殖性腫瘍(MPN)
      1.真性多血症(PV)の治療
      2.本態性血小板血症の治療
      3.原発性骨髄線維症(PMF)の治療
      4.慢性好中球性白血病の病態と診断・治療
      5.好酸球増加症の診断と治療
      Topics MPN分子病態研究の進歩
          「成人発症MPNのドライバー変異は胎児期や小児期に生じている」

    IV.リンパ系腫瘍

    A.慢性リンパ性白血病(CLL)
      1.初発CLLの治療方針
      2.再発・難治性CLLの治療方針
      3.CLLで検索すべき遺伝子異常

    B.Indolent B細胞リンパ腫
      1.進行期低腫瘍量濾胞性リンパ腫の治療方針
      2.進行期高腫瘍量濾胞性リンパ腫の治療方針
      3.再発・再燃濾胞性リンパ腫の治療方針
      4.辺縁帯リンパ腫・リンパ形質細胞リンパ腫の治療方針

    C.マントル細胞リンパ腫
      1.若年者マントル細胞リンパ腫(MCL)の治療方針
      2.高齢者マントル細胞リンパ腫(MCL)の治療方針

    D.Aggressive B細胞リンパ腫
      1.限局期びまん性大細胞型B細胞リンパ腫の初回治療方針
      2.若年進行期びまん性大細胞型B細胞リンパ腫の初回治療方針
      3.高齢者びまん性大細胞型B細胞リンパ腫の治療方針
      4.再発・再燃びまん性大細胞型B細胞リンパ腫の治療方針
      5.中枢神経原発リンパ腫の治療

    E.T/NK細胞リンパ腫
      1.末梢性T細胞リンパ腫の初回治療方針
      2.再発・難治末梢性T細胞リンパ腫の治療方針
      3.節外性NK/T細胞リンパ腫の治療方針
      4.アグレッシブNK細胞白血病の治療方針

    F.成人T細胞白血病/リンパ腫(ATLL)
      1.ATLLの治療方針
      2.ATLに対する造血幹細胞移植

    G.ホジキンリンパ腫
      1.限局期ホジキンリンパ腫の治療方針
      2.進行期ホジキンリンパ腫の治療
      3.再発・難治ホジキンリンパ腫の治療方針

    H.総合・その他
      1.AYA世代リンパ腫の特徴と治療方針
      2.リンパ系腫瘍に対して今後期待される新薬
      3.次期WHO分類(第5版)リンパ系腫瘍における方針
      Topics リンパ腫病型とゲノム異常

    V.多発性骨髄腫と関連疾患
      1.MGUS/くすぶり型多発性骨髄腫(SMM)の治療方針
      2.移植適応初発多発性骨髄腫(MM)の治療
      3.移植非適応初発多発性骨髄腫(MM)の治療方針
      4.再発・難治性多発性骨髄腫(MM)の治療
      5.多発性骨髄腫(MM)における維持療法の意義
      6.多発性骨髄腫(MM)に対する免疫療法の現状と課題
      7.Frailty評価と高齢者多発性骨髄腫(MM)の治療
      8.原発性ALアミロイドーシスの治療戦略
      9.原発性マクログロブリン血症の治療
      10.POEMS症候群に対する治療戦略
      11.Castleman病の診断と治療
      12.原発性形質細胞性白血病の治療
      Topics 1 多発性骨髄腫の病態解明研究の進歩
      Topics 2 多発性骨髄腫に対する新薬開発の動向

    VI.出血・血栓性疾患
      1.特発性血小板減少性紫斑病(ITP)の診断・治療
      2.後天性血栓性血小板減少性紫斑病(aTTP)治療の新展開
      3.血友病診療の新しい考え方
      4.新しいVWD診療ガイドライン
      5.後天性凝固因子インヒビターに対する診断・治療の進歩
      6.最近の抗血栓療法の考え方
      7.DICの診断と治療
      Topics 1 がん関連血栓塞栓症の病態生理
      Topics 2 遺伝性血栓性素因に対する妊娠管理

    VII.支持療法・輸血
      1.輸血のトリガー値
      2.TRALIとTACOの予防と治療
      3.発熱性好中球減少症(FN)の予防と治療
      4.アゾール系抗真菌薬と新規抗がん剤の相互作用
      5.造血器腫瘍女性患者の妊娠後の経過

    VIII.造血幹細胞移植
      1.急性GVHDの新規治療
      2.慢性GVHDの新規治療
      3.特発性肺炎症候群(IPS)の治療
      4.造血幹細胞移植後のクローン性ドナー造血の影響
      5.造血幹細胞移植前後における免疫チェックポイント阻害薬使用が与える影響
      6.同種造血幹細胞移植後のメチル化阻害薬維持療法
      7.造血幹細胞移植後のB型肝炎ウイルス対策

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I. 話題

P.5 掲載の参考文献
1) Buske C, Dreyling M, Alvarez-Larran A, et al. Managing hematological cancer patients during the COVID-19 pandemic : an ESMO-EHA Interdisciplinary Expert Consensus. ESMO Open. 2022 ; 7 : 100403.
2) Calderon-Parra J, Munez-Rubio E, Fernandez-Cruz A, et al. Incidence, clinical presentation, relapses and outcome of SARS-CoV-2 infection in patients treated with anti-CD20 monoclonal antibodies. Clin Infect Dis. 2021.
3) Vijenthira A, Gong IY, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19 : a systematic review and meta-analysis of 3377 patients. Blood. 2020 ; 136 : 2881-92.
4) Sharma A, Bhatt NS, St Martin A, et al. Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients : an observational cohort study. Lancet Haematol. 2021 ; 8 : e185-93.
5) Okamoto A, Fujigaki H, Iriyama C, et al. CD19-positive lymphocyte count is critical for acquisition of anti-SARS-CoV-2 IgG after vaccination in B-cell lymphoma. Blood Adv. 2022 ; 6 : 3230-33.
6) Shree T, Shankar V, Lohmeyer JJK, et al. CD20-targeted therapy ablates de novo antibody response to vaccination but spares preestablished immunity. Blood Cancer Discov. 2022 ; 3 : 95-102.
7) Ollila TA, Masel RH, Reagan JL, et al. Seroconversion and outcomes after initial and booster COVID-19 vaccination in adults with hematologic malignancies. Cancer. 2022.
8) Mittelman M, Magen O, Barda N, et al. Effectiveness of the BNT162b2mRNA COVID-19 vaccine in patients with hematological neoplasms in a nationwide mass vaccination setting. Blood. 2022 ; 139 : 1439-51.
9) Magen O, Waxman JG, Makov-Assif M, et al. Fourth dose of BNT162b2 mRNA Covid-19 vaccine in a nationwide setting. N Engl J Med. 2022 ; 386 : 1603-14.
10) Riise J, Meyer S, Blaas I, et al. Rituximab-treated patients with lymphoma develop strong CD8 T-cell responses following COVID-19 vaccination. Br J Haematol. 2022 ; 197 : 697-708.
11) Lim SH, Stuart B, Joseph-Pietras D, et al. Immune responses against SARS-CoV-2 variants after two and three doses of vaccine in B-cell malignancies : UK PROSECO study. Nat Cancer. 2022 ; 3 : 552-64.
P.10 掲載の参考文献
1) Seneviratne SL, Yasawardene P, Wijerathne W, et al. COVID-19 vaccination in cancer patients : a narrative review. J Int Med Res. 2022 ; 50 : 3000605221086155.
2) Addeo A, Shah PK, Bordry N, et al. Immunogenicity of SARS-CoV-2 messenger RNA vaccines in patients with cancer. Cancer Cell. 2021 ; 39 : 1091-8.e2.
3) Monin L, Laing AG, Munoz-Ruiz M, et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer : interim analysis of a prospective observational study. Lancet Oncol. 2021 ; 22 : 765-78.
4) Guven DC, Sahin TK, Akin S, et al. Impact of therapy in patients with hematologic malignancies on seroconversion rates after SARS-CoV-2 vaccination. Oncologist. 2022 ; 27 : e357-61.
5) Herzog Tzarfati K, Gutwein O, Apel A, et al. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am J Hematol. 2021 ; 96 : 1195-203.
6) Lim SH, Stuart B, Joseph-Pietras D, et al. Immune responses against SARS-CoV-2 variants after two and three doses of vaccine in B-cell malignancies : UK PROSECO study. Nat Cancer. 2022. doi : 10.1038/s43018-022-00364-3.
7) Nooka AK, Shanmugasundaram U, Cheedarla N, et al. Determinants of neutralizing antibody response after SARS CoV-2 vaccination in patients with myeloma. J Clin Oncol. 2022 ; 1-9.
8) Terao T, Yamashita T, Fukumoto A, et al. Low clinical protective response to SARS-CoV-2 mRNA COVID-19 vaccine in patients with multiple myeloma. Int J Hematol. 2022. doi : 10.1007/s12185-022-03300-4.
9) Van Oekelen O, Gleason CR, Agte S, et al. Highly variable SARS-CoV-2 spike antibody responses to two doses of COVID-19 RNA vaccination in patients with multiple myeloma. Cancer Cell. 2021 ; 39 : 1028-30.
10) Riccardi N, Falcone M, Yahav D. Vaccination for SARS-CoV-2 in hematological patients. Acta Haematol. 2022 ; 2. doi : 10.1159/000523753.
11) Ikeda D, Terao T, Miura D, et al. Impaired antibody response following the second dose of the BNT162b2 vaccine in patients with myeloproliferative neoplasms receiving ruxolitinib. Front Med. 2022 ; 9 : 1-6.
12) Einarsdottir S, Martner A, Waldenstrom J, et al. Deficiency of SARS-CoV-2 T-cell responses after vaccination in long-term allo-HSCT survivors translates into abated humoral immunity. Blood Adv. 2022. doi : 10.1182/bloodadvances.2021006937.
13) Song Q, Bates B, Shao YR, et al. Risk and outcome of breakthrough COVID-19 infections in vaccinated patients with cancer : real-world evidence from the National COVID Cohort Collaborative. J Clin Oncol. 2022 ; JCO.21.02419.
14) Lee EJ, Cines DB, Gernsheimer T, et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol. 2021 ; 96 : 534-7.
15) Kuter DJ. Exacerbation of immune thrombocytopenia following COVID-19 vaccination. Br J Haematol. 2021 ; 195 : 365-70.
16) Gerber GF, Yuan X, Yu J, et al. COVID-19 vaccines induce severe hemolysis in paroxysmal nocturnal hemoglobinuria. Blood. 2021 ; 137 : 3670-73.
17) Kamura Y, Sakamoto T, Yokoyama Y, et al. Hemolysis induced by SARS-CoV-2 mRNA vaccination in patients with paroxysmal nocturnal hemoglobinuria. Int J Hematol. 2022 ; 116 : 55-9.
P.13 掲載の参考文献
1) Spyropoulos AC, Levy JH, Ageno W, et al. Subcommittee on perioperative, critical care thrombosis, haemostasis of the scientific, standardization committee of the international society on thrombosis and haemostasis. scientific and standardization committee communication : Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020 ; 18 : 1859-65.
2) Piazza G, Campia U, Hurwitz S, et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J Am Coll Cardiol. 2020 ; 76 : 2060-72.
3) Horiuchi H, Morishita E, Urano T, et al. COVID-19-related thrombosis in Japan : Final report of a Questionnaire-based survey in 2020. J Atheroscler Thromb. 2021 ; 28 : 406-16.
4) Katsoularis I, Fonseca-Rodriguez O, Farrington P, et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19 : nationwide self-controlled cases series and matched cohort study. BMJ. 2022 ; 377 : e069590.
5) Datta PK, Liu F, Fischer T, et al. SARS-CoV-2 pandemic and research gaps : understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics. 2020 ; 10 : 7448-64.
6) Zheng Y, Zhao J, Li J, et al. SARS-CoV-2 spike protein causes blood coagulation and thrombosis by competitive binding to heparan sulfate. Int J Biol Macromol. 2021 ; 193 : 1124-9.
7) Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021 ; 384 : 2202-11.
8) Klein NP, Lewis N, Goddard K, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021 ; 326 : 1390-9.

II. 赤血球系疾患

P.19 掲載の参考文献
1) Young NS. Aplastic Anemia. N Engl J Med. 2018 ; 379 : 1643-56.
4) Mizumaki H, Hosomichi K, Hosokawa K, et al. A frequent nonsense mutation in exon 1 across certain HLA-A and-B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica. 2021 ; 106 : 1581-90.
5) Zaimoku Y, Patel BA, Adams SD, et al. HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia. Blood. 2021 ; 138 : 2799-809.
6) Savage SA, Viard M, O'hUigin C, et al. Genome-wide association study identifies HLA-DPB1 as a significant risk factor for severe aplastic anemia. Am J Hum Genet. 2020 ; 106 : 264-71.
7) Pagliuca S, Gurnari C, Awada H, et al. The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood. 2021 ; 138 : 2781-98.
P.24 掲載の参考文献
2) Desmond R, Townsley DM, Dumitriu B, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014 ; 123 : 1818-25.
3) Winkler T, Fan X, Cooper J, et al. Treatment optimization and genomic outcomes in refractory severe aplastic anemia treated with eltrombopag. Blood. 2019 ; 133 : 2575-85.
4) Yamazaki H, Ohta K, Iida H, et al. Hematologic recovery induced by eltrombopag in Japanese patients with aplastic anemia refractory or intolerant to immunosuppressive therapy. Int J Hematol. 2019 ; 110 : 187-96.
5) Jang JH, Tomiyama Y, Miyazaki K, et al. Efficacy and safety of romiplostim in refractory aplastic anaemia : a Phase II/III, multicentre, open-label study. Br J Haematol. 2021 ; 192 : 190-9.
6) Ise M, Iizuka H, Kamoda Y, et al. Romiplostim is effective for eltrombopag-refractory aplastic anemia : results of a retrospective study. Int J Hematol. 2020 ; 112 : 787-94.
7) Hosokawa K, Yamazaki H, Tanabe M, et al. High-dose romiplostim accelerates hematologic recovery in patients with aplastic anemia refractory to eltrombopag. Leukemia. 2021 ; 35 : 906-9.
8) Peffault de Latour R, Kulasekararaj A, Iacobelli S, et al. Eltrombopag added to immunosuppression in severe aplastic anemia. N Engl J Med. 2022 ; 386 : 11-23.
9) Patel BA, Groarke EM, Lotter J, et al. Long-term outcomes in patients with severe aplastic anemia treated with immunosuppression and eltrombopag : a phase 2 study. Blood. 2022 ; 139 : 34-43.
11) Goronkova O, Novichkova G, Salimova T, et al. Efficacy of combined immunosuppression with or without eltrombopag in children with newly diagnosed aplastic anemia. Blood Adv. 2022 Apr 21. Online ahead of print.
12) Zaimoku Y, Patel BA, Shalhoub R, et al. Predicting response of severe aplastic anemia to immunosuppression combined with eltrombopag. Haematologica. 2022 ; 107 : 126-33.
P.29 掲載の参考文献
1) Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood. 2012 ; 120 : 1185-96.
2) Bacigalupo A. How I treat acquired aplastic anemia. Blood. 2017 ; 129 : 1428-36.
3) Killick SB, Bown N, Cavenagh J, et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br J Haematol. 2016 ; 172 : 187-207.
4) Yamamoto H, Kato D, Uchida N, et al. Successful sustained engraftment after reduced-intensity umbilical cord blood transplantation for adult patients with severe aplastic anemia. Blood. 2011 ; 117 : 3240-2.
5) Peffault de Latour R, Chevret S, Jubert C, et al. Unrelated cord blood transplantation in patients with idiopathic refractory severe aplastic anemia : a nationwide phase 2 study. Blood. 2018 ; 132 : 750-4.
6) Ochi T, Onishi Y, Nasu K, et al. Umbilical cord blood transplantation using reduced-intensity conditioning without antithymocyte globulin in adult patients with severe aplastic anemia. Biol Blood Marrow Transplant. 2019 ; 25 : e55-9.
7) DeZern AE, Zahurak M, Symons H, et al. Alternative donor transplantation with high-dose post-transplantation cyclophosphamide for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2017 ; 23 : 498-504.
8) Prata PH, Eikema DJ, Afansyev B, et al. Haploidentical transplantation and posttransplant cyclophosphamide for treating aplastic anemia patients : a report from the EBMT Severe Aplastic Anemia Working Party. Bone Marrow Transplant. 2020 ; 55 : 1050-8.
9) DeZern AE, Zahurak ML, Symons HJ, et al. Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Adv. 2020 ; 4 : 1770-9.
10) Yoshimi A, Kojima S, Taniguchi S, et al. Unrelated cord blood transplantation for severe aplastic anemia. Biol Blood Marrow Transplant. 2008 ; 14 : 1057-63.
11) Hiramoto N, Yamazaki H, Nakamura Y, et al. Total body irradiation-containing conditioning regimens without antithymocyte globulin in adults with aplastic anemia undergoing umbilical cord blood transplantation. Ann Hematol. 2022 ; 101 : 165-75.
12) Kuwatsuka Y, Kanda J, Yamazaki H, et al. A comparison of outcomes for cord blood transplantation and unrelated bone marrow transplantation in adult aplastic anemia. Biol Blood Marrow Transplant. 2016 ; 22 : 1836-43.
13) Onishi Y, Mori T, Kako S, et al. Outcome of second transplantation using umbilical cord blood for graft failure after allogeneic hematopoietic stem cell transplantation for aplastic anemia. Biol Blood Marrow Transplant. 2017 ; 23 : 2137-42.
P.33 掲載の参考文献
1) Means RT Jr. Pure red cell aplasia. Blood. 2016 ; 128 : 2504-9.
2) Gurnari C, Maciejewski JP. How I manage acquired pure red cell aplasia in adults. Blood. 2021 ; 137 : 2001-9.
3) 廣川誠, 藤島直仁, 澤田賢一, 他. 赤芽球癆診療の参照ガイド 令和1年改訂版 (第6版) 2020. [Available from : http://zoketsushogaihan.umin.jp/file/2020/03.pdf]
4) Sawada K, Hirokawa M, Fujishima N, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA collaborative study group. Haematologica. 2007 ; 92 : 1021-8.
5) Hirokawa M, Sawada K, Fujishima N, et al. Long-term response and outcome following immunosuppressive therapy in thymoma-associated pure red cell aplasia : a nationwide cohort study in Japan by the PRCA collaborative study group. Haematologica. 2008 ; 93 : 27-33.
6) Hirokawa M, Sawada K, Fujishima N, et al. Long-term outcome of patients with acquired chronic pure red cell aplasia (PRCA) following immunosuppressive therapy : a final report of the nationwide cohort study in 2004/2006 by the Japan PRCA collaborative study group. Br J Haematol. 2015 ; 169 : 879-86.
7) Halkes C, de Wreede LC, Knol C, et al. Allogeneic stem cell transplantation for acquired pure red cell aplasia. Am J Hematol. 2019 ; 94 : E294-6.
8) Balasubramanian SK, Sadaps M, Thota S, et al. Rational management approach to pure red cell aplasia. Haematologica. 2018 ; 103 : 221-30.
P.40 掲載の参考文献
2) Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011 ; 365 : 1384-95.
4) Meggendorfer M, Roller A, Haferlach T, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012 ; 120 : 3080-8.
5) Makishima H, Visconte V, Sakaguchi H, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 2012 ; 119 : 3203-10.
6) Beck DB, Ferrada MA, Sikora KA, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020 ; 383 : 2628-38.
7) Makishima H, Maciejewski JP. Pathogenesis and consequences of uniparental disomy in cancer. Clin Cancer Res. 2011 ; 17 : 3913-23.
8) Shiozawa Y, Malcovati L, Galli A, et al. Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun. 2018 ; 9 : 3649.
11) Malcovati L, Hellstrom-Lindberg E, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults : recommendations from the European LeukemiaNet. Blood. 2013 ; 122 : 2943-64.
12) Heiblig M, Patel, BA, Groarke EM, et al. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021 ; 58 : 239-46.
15) Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020 ; 26 : 1549-56.
16) Balasubramanian SK, Aly M, Nagata Y, et al. Distinct clinical and biological implications of various DNMT3A mutations in myeloid neoplasms. Leukemia. 2018 ; 32 : 550-3.
17) Awada H, Nagata Y, Goyal A, et al. Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia. Blood Adv. 2019 ; 3 : 339-49.
18) Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010 ; 363 : 2424-33.
19) Jankowska AM, Makishima H, Tiu RV, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation : UTX, EZH2, and DNMT3A. Blood. 2011 ; 118 : 3932-41.
20) Saiki R, Momozawa Y, Nannya Y, et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med. 2021 ; 27 : 1239-49.
23) Negoro E, Nagata Y, Clemente MJ, et al. Origins of myelodysplastic syndromes after aplastic anemia. Blood. 2017 ; 130 : 1953-7.
24) Abelson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018 ; 559 : 400-4.
26) Nagata Y, Zhao R, Awada H, et al. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood. 2020 ; 136 : 2249-62.
27) Mori J, Kaji S, Kawai H, et al. Assessment of dysplasia in bone marrow smear with convolutional neural network. Sci Rep. 2020 ; 10 : 14734.
28) Nazha A, Sekeres MA, Bejar R, et al. Genomic biomarkers to predict resistance to hypomethylating agents in patients with myelodysplastic syndromes using artificial intelligence. JCO Precis Oncol. 2019 ; 3 : PO.19.00119.
29) Ko BS, Wang YF, Li JL, et al. Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine. 2018 ; 37 : 91-100.
30) Naqvi K, Jabbour E, Bueso-Ramos C, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood. 2011 ; 118 : 4690-3.
P.46 掲載の参考文献
2) Nazha A, Komrokji R, Meggendorfer M, et al. Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol. 2021 ; 39 : 3737-46.
3) Bernard E, Tuechler H, Greenberg PL, et al. Molecular International Prognostic Scoring System for Myelodysplastic syndromes. NEJM Evid. 2022 ; 1 (7). doi : https://doi.org/10.1056/EVIDoa2200008
4) Scheid C, de Wreede L, van Biezen A, et al. Validation of the revised IPSS at transplant in patients with myelodysplastic syndrome/transformed acute myelogenous leukemia receiving allogeneic stem cell transplantation : a retrospective analysis of the EBMT chronic malignancies working party. Bone Marrow Transplant. 2017 ; 52 : 1519-25.
5) Kuendgen A, Nomdedeu M, Tuechler H, et al. Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification-an approach to classification of patients with t-MDS. Leukemia. 2021 ; 35 : 835-49.
6) Pfeilstocker M, Tuechler H, Sanz G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016 ; 128 : 902-10.
P.55 掲載の参考文献
1) 日本血液学会. 造血器腫瘍診療ガイドライン 第2版補訂版. (造血器腫瘍診療ガイドライン 2018年版補訂版. 日本血液学会 (jshem.or.jp) ; 2020)
2) 日本血液学会. 造血器腫瘍ゲノム検査ガイドライン (2021年度一部改訂版). (造血器腫瘍ゲノム検査ガイドライン. 日本血液学会 (jshem.or.jp) ; 2021)
3) Network NCC. NCCN clinical practice guidelines in oncology, myelodysplastic syndromes, version 3. 2022. mds. pdf (nccn.org). 2022.
4) Fenaux P, Haase D, Santini V, et al. Myelodysplastic syndromes : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021 ; 32 : 142-56.
5) Killick SB, Ingram W, Culligan D, et al. British Society for Haematology guidelines for the management of adult myelodysplastic syndromes. Br J Haematol. 2021 ; 194 : 267-81.
6) Platzbecker U, Symeonidis A, Oliva EN, et al. A phase 3 randomized placebo-controlled trial of darbepoetin alfa in patients with anemia and lower-risk myelodysplastic syndromes. Leukemia. 2017 ; 31 : 1944-50.
7) Fenaux P, Santini V, Spiriti MAA, et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia. 2018 ; 32 : 2648-58.
8) Toma A, Kosmider O, Chevret S, et al. Lenalidomide with or without erythropoietin in transfusion-dependent erythropoiesis-stimulating agent-refractory lower-risk MDS without 5q deletion. Leukemia. 2016 ; 30 : 897-905.
9) List AF, Sun Z, Verma A, et al. Lenalidomide-epoetin alfa versus lenalidomide monotherapy in myelodysplastic syndromes refractory to recombinant erythropoietin. J Clin Oncol. 2021 ; 39 : 1001-9.
10) Stahl M, Bewersdorf JP, Giri S, et al. Use of immunosuppressive therapy for management of myelodysplastic syndromes : a systematic review and meta-analysis. Haematologica. 2020 ; 105 : 102-11.
11) Angelucci E, Li J, Greenberg P, et al. Iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes : a randomized trial. Ann Intern Med. 2020 ; 172 : 513-22.
12) Hoeks M, Yu G, Langemeijer S, et al. Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry. Haematologica. 2020 ; 105 : 640-51.
13) Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020 ; 382 : 140-51.
14) Henry DH, Glaspy J, Harrup R, et al. Roxadustat for the treatment of anemia in patients with lower-risk myelodysplastic syndrome : open-label, dose-selection, lead-in stage of a phase 3 study. Am J Hematol. 2022 ; 97 : 174-84.
15) Garcia-Manero G, Santini V, Almeida A, et al. Phase III, randomized, placebo-controlled trial of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2021 ; 39 : 1426-36.
16) Steensma DP, Fenaux P, Van Eygen K, et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion-burden patients with lower-risk myelodysplastic syndromes in a phase II study. J Clin Oncol. 2021 ; 39 : 48-56.
17) Greenberg PL, Sun Z, Miller KB, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor : results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009 ; 114 : 2393-400.
18) Jabbour E, Short NJ, Montalban-Bravo G, et al. Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood. 2017 ; 130 : 1514-22.
19) Park S, Hamel JF, Toma A, et al. Outcome of lower-risk patients with myelodysplastic syndromes without 5q deletion after failure of erythropoiesis-stimulating agents. J Clin Oncol. 2017 ; 35 : 1591-97.
20) Bernard E Tuechler H, Greenberg PL, et al. Molecular international prognosis scoring system for myelodysplastic syndromes. ASH annual meeting ; 2021.
P.61 掲載の参考文献
1) Heidenreich S, Ziagkos D, de Wreede LC, et al. Allogeneic stem cell transplantation for patients age > 70 years with myelodysplastic syndrome : A retrospective study of the MDS subcommittee of the chronic malignancies working party of the EBMT. Biol Blood Marrow Transplant. 2017 ; 23 : 44-52.
2) Nakaya A, Mori T, Tanaka M, et al. Does the hematopoietic cell transplantation specific comorbidity index (HCT-CI) predict transplantation outcomes? A prospective multicenter validation study of the Kanto Study Group for Cell Therapy. Biol Blood Marrow Transplant. 2014 ; 20 : 1553-9.
3) Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised International Prognostic Scoring System. Leukemia. 2017 ; 31 : 2449-57.
4) Kroger N, Iacobelli S, Franke GN, et al. Dose-reduced versus standard conditioning followed by allogeneic stem-cell transplantation for patients with myelodysplastic syndrome : A prospective randomized phase III study of the EBMT (RICMAC Trial). J Clin Oncol. 2017 ; 35 : 2157-64.
8) Nazha A. The MDS genomics-prognosis symbiosis. Am Soc Hematol Educ Program. 2018 ; 2018 : 270-6.
9) Voso MT, Leone G, Piciocchi A, et al. Feasibility of allogeneic stem-cell transplantation after azacitidine bridge in higher-risk myelodysplastic syndromes and low blast count acute myeloid leukemia : results of the BMT-AZA prospective study. Ann Oncol. 2017 ; 28 : 1547-53.
10) Oran B, de Lima M, Garcia-Manero G, et al. A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients. Blood Adv. 2020 ; 4 : 5580-8.
11) Ades L, Boehrer S, Prebet T, et al. Efficacy and safety of lenalidomide in intermediate-2 or high-risk myelodysplastic syndromes with 5q deletion : results of a phase 2 study. Blood. 2009 ; 113 : 3947-52.
13) Prebet T, Gore SD, Esterni B, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011 ; 29 : 3322-7.
14) Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes : a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012 ; 30 : 4533-40.
15) Nakamura R, Saber W, Martens MJ, et al. Biologic assignment trial of reduced-intensity hematopoietic cell transplantation based on donor availability in patients 50-75 years of age with advanced myelodysplastic syndrome. J Clin Oncol. 2021 ; 39 : 3328-39.
16) Bacigalupo A, Ballen K, Rizzo D, et al. Defining the intensity of conditioning regimens : working definitions. Biol Blood Marrow Transplant. 2009 ; 15 : 1628-33.
17) Grunwald MR, Zhang MJ, Elmariah H, et al. Alternative donor transplantation for myelodysplastic syndromes : haploidentical relative and matched unrelated donors. Blood Adv. 2021 ; 5 : 975-83.
18) Ossenkoppele GJ, Breems DA, Stuessi G, et al. Lenalidomide added to standard intensive treatment for older patients with AML and high-risk MDS. Leukemia. 2020 ; 34 : 1751-9.
20) Nazha A, Hu ZH, Wang T, et al. A personalized prediction model for outcomes after allogeneic hematopoietic cell transplant in patients with myelodysplastic syndromes. Biol Blood Marrow Transplant. 2020 ; 26 : 2139-46.
21) Drug Approval Package : INQOVI [multi-discipline review]. Available from : https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/212576Orig1s000MultidisciplineR.pdf
22) Garcia-Manero G, Gore SD, Cogle C, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011 ; 29 : 2521-7.
23) Garcia-Manero G, Roboz G, Walsh K, et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes : phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019 ; 6 : e317-27.
24) Jones CL, Stevens BM, D'Alessandro A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018 ; 34 : 724-40.e4.
25) Cluzeau T, Sebert M, Rahme R, et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia : A phase II study by the Groupe Francophone des Myelodysplasies (GFM). J Clin Oncol. 2021 ; 39 : 1575-83.
26) Sekeres MA, Watts J, Radinoff A, et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021 ; 35 : 2119-24.
P.67 掲載の参考文献
1) Hirschhorn R, Yang DR, Israni A, et al. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery. Am J Hum Genet. 1994 ; 55 : 59-68.
2) Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet. 2019 ; 20 : 582-98.
3) Pollard JA, Furutani E, Liu S, et al. Metformin for treatment of cytopenias in children and young adults with Fanconi anemia. Blood Adv. 2022 ; 6 : 3803-11.
4) Tan S, Kermasson L, Hilcenko C, et al. Somatic genetic rescue of a germline ribosome assembly defect. Nat Commun. 2021 ; 12 : 5044.
P.71 掲載の参考文献
1) Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018 ; 9 : 1911.
2) Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021 ; 384 : 252-60.
3) Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017 ; 9 : eaaj2013.
4) Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021 ; 385 : 493-502.
P.75 掲載の参考文献
1) Jager U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults : Recommendations from the first consensus meeting. Blood Reviews. 2020 ; 41 : 100648.
2) Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia : a GIMEMA study of 308 patients. Blood. 2014 ; 124 : 2930-6.
3) 上田恭典. 自己免疫性溶血性貧血に対する輸血療法. 臨床血液. 2018 ; 59 : 2354-61.
4) Salama A, Berghofer H, Mueller-Eckhardt C. Red blood cell transfusion in warm-type autoimmune haemolytic anaemia. Lancet. 1992 ; 340 : 1515-7.
5) Park SH, Choe W-H, Kwon S-W. Red blood cell transfusion in patients with autoantibodies : Is it effective and safe without increasing hemolysis risk? Ann Lab Med. 2015 ; 35 : 436-44.
6) Chen C, Wang L, Han B, et al. Autoimmune hemolytic anemia in hospitalized patients 450 patients and their red blood cell transfusions. Medicine (Baltimore). 2020 ; 99 : e18739.
7) Pirofsky B. Immune haemolytic disease : the autoimmune haemolytic anaemias. Clin Haematol. 1975 ; 4 : 167-80.
8) Petz LD, Garratty G. Immune Hemolytic Anemias. 2nd ed. Philadelphia : Churchill Livingstone ; 2004.
9) Voulgaridou A, Kalfa TA. Autoimmune hemolytic anemia in the pediatric setting. J Clin Med. 2021 ; 10 : 216.
10) Murphy S, LoBuglio AF. Drug therapy of autoimmune hemolytic anemia. Semin Hematol. 1976 ; 13 : 323-34.
11) Lechner K, Jager U. How I treat autoimmune hemolytic anemias in adults. Blood. 2010 ; 116 : 1831-8.
12) Dussadee K, Taka O, Thedsawad A, et al. Incidence and risk factors of relapses in idiopathic autoimmune hemolytic anemia. J Med Assoc Thai. 2010 ; 93 (Suppl. 1) : S165-70.
13) Roumier M, Loustau V, Guillaud C, et al. Characteristics and outcome of warm antibody autoimmune hemolytic anemia in adults : new insights based on single-center experience with 60 patients. Am J Hematol. 2014 ; 89 : E150-5.
14) Birgens H, Frederiksen H, Hasselbalch HC, et al. A phase III randomized trial comparing glucocorticoid monotherapy versus glucocorticoid and rituximab in patients with autoimmune haemolytic anaemia. Br J Haematol. 2013 ; 163 : 393-9.
15) Nakasone H, Kako S, Endo H, et al. Diabetes mellitus is associated with high early-mortality and poor prognosis in patients with autoimmune hemolytic anemia. Hematology. 2009 ; 14 : 361-5.
16) 和田秀穂. 難治性自己免疫性溶血性貧血 (AIHA) の治療. In : 金倉譲, 監修. EBM血液疾患の治療 2021-2022. 東京 : 中外医学社 ; 2018. p.66-73.
17) Branch DR, Petz LD. Detecting alloantibodies in patients with autoantibodies. Transfusion. 1999 ; 39 : 6-10.
18) Barcellini W, Zaninoni A, Alessandro J, et al. New insights in autoimmune hemolytic anemia : from pathogenesis to therapy. J Clin Med. 2020 ; 9 : 3859.
19) Ness PM. How do I encourage clinicians to transfuse mismatched blood to patients with autoimmune hemolytic anemia in urgent situations? Transfusion. 2006 ; 46 : 1859-62.
20) Reardon JE, Marques MB. Laboratory evaluation and transfusion support of patients with autoimmune hemolytic anemia. Am J Clin Pathol. 2006 ; 125 Suppl : S71-7.
21) King KE, Ness PM. Treatment of autoimmune hemolytic anemia. Semin Hematol. 2005 ; 42 : 131-6.
22) Petz LD. "Least incompatible" units for transfusion in autoimmune hemolytic anemia : Should we liminatethis meaningless term? A commentary for clinicians and transfusion medicine professionals. Transfusion. 2003 ; 43 : 1503-7.
23) 廣瀬匡, 徳永博俊, 清水里紗, 他. クームス陽性自己免疫性溶血性貧血と悪性腫瘍に関する後方視的検討. 臨床血液. 2019 ; 60 : 1418-24.
24) 小峰光博, 梶井英治, 亀崎豊実, 他. 自己免疫性溶血性貧血診療の参照ガイド. 臨床血液. 2006 ; 47 : 116-36.
25) Kawamoto S, Kamesaki T, Masutani R, et al. Ectopic expression of band 3 anion transport protein in colorectal cancer revealed in an autoimmune hemolytic anemia patient. Hum Pathol. 2019 ; 83 : 193-8.
26) Kitao A, Kawamoto S, Kurata K, et al. Band 3 ectopic expression in colorectal cancer induces an increase in erythrocyte membrane-bound IgG and may cause immune-related anemia. Int J Hematol. 2020 ; 111 : 657-66.
27) Matsuyama Y, Hosoi H, Horitani R, et al. Management of warm autoimmune hemolytic anemia related to band 3-positive colon carcinoma. Ann Hematol. 2022 ; 101 : 1343-4.
28) Takahashi N, Kameoka J, Takahashi N, et al. Causes of macrocytic anemia among 628 patients : mean corpuscular volumes of 114 and 130 fL as critical markers for categorization. Int J Hematol. 2016 ; 104 : 344-57.
P.80 掲載の参考文献
1) Berentsen S, Barcellini W, D'Sa S, et al. Cold agglutinin disease revisited : a multinational, observational study of 232 patients. Blood. 2020 ; 136 : 480-8.
2) 張替秀郎, 西村純一, 植田康敬, 他. 自己免疫性溶血性貧血 診療の参照ガイド 令和1年改訂版.
3) Berentsen S, Ulvestad E, Langholm R, et al. Primary chronic cold agglutinin disease : a population based clinical study of 86 patients. Haematologica. 2006 ; 91 : 460-6.
4) Lahav M, Rosenberg I, Wysenbeek AJ. Steroid-responsive idiopathic cold agglutinin disease : a case report. Acta Haematol. 1989 ; 81 : 166-8.
5) Berentsen S, Ulvestad E, Gjertsen BT, et al. Rituximab for primary chronic cold agglutinin disease : a prospective study of 37 courses of therapy in 27 patients. Blood. 2004 ; 103 : 2925-8.
6) Roth A, Barcellini W, D'Sa S, et al. Sutimlimab in cold agglutinin disease. N Engl J Med. 2021 ; 384 : 1323-34.
7) Roeth A, Berentsen S, Barcellini W, et al. Inhibition of complement C1s by sutimlimab in patients with cold agglutinin disease (CAD) : Efficacy and safety results from the randomized, placebo-controlled phase 3 CADENZA study. Blood. 2021 ; 138 (Supplement 1) : 349-51.
8) Roth A, Bommer M, Huttmann A, et al. Eculizumab in cold agglutinin disease (DECADE) : an open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018 ; 2 : 2543-9.
9) Berentsen S. How I treat cold agglutinin disease. Blood. 2021 ; 137 : 1295-303.
P.84 掲載の参考文献
1) Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal 5 ; 106 : 3699-709.
2) Risitano AM, Notaro R, Marando L, et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood. 2009 ; 113 : 4094-100.
3) Hill A, Rother RP, Arnold L, et al. Eculizumab prevents intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria and unmasks low-level extravascular hemolysis occurring through C3 opsonization. Haematologica. 2010 ; 95 : 567-73.
4) 三谷絹子. 発作性夜間ヘモグロビン尿症診療の参照ガイド 令和1年改訂版. 厚生労働科学研究費補助金 難治性疾患克服研究事業 特発性造血障害に関する調査研究班. 2020.
5) Kulasekararaj AG, Griffin M, Langemeijer S, et al. Long-term safety and efficacy of ravulizumab in patients with paroxysmal nocturnal hemoglobinuria : 2-year results from two pivotal phase 3 studies. Eur J Haematol. 2022.
6) Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors : the 301 study. Blood. 2019 ; 133 : 530-9.
7) Kulasekararaj AG, Hill A, Rottinghaus ST, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH : the 302 study. Blood. 2019 ; 133 : 540-9.
8) Roth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood. 2020 ; 135 : 912-20.
9) Kulasekararaj AG, Risitano AM, Maciejewski JP, et al. Phase 2 study of danicopan in patients with paroxysmal nocturnal hemoglobinuria with an inadequate response to eculizumab. Blood. 2021 ; 138 : 1928-38.
10) Jang JH, Wong Lee Lee L, Ko BS, et al. Iptacopan monotherapy in patients with paroxysmal nocturnal hemoglobinuria : a 2-cohort open-label proof-of-concept study. Blood Adv. 2022.
11) Hillmen P, Szer J, Weitz I, et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2021 ; 384 : 1028-37.
12) 三谷絹子. PNH 妊娠の参照ガイド (付記) 令和1年改訂版. 厚生労働科学研究費補助金 難治性疾患等政策研究事業 特発性造血障害に関する調査研究班. 2020.
13) Ueda Y, Takamori H, Nishimura JI. Pegcetacoplan versus eculizumab in PNH. N Engl J Med. 2021 ; 385 : 1723-4.
P.87 掲載の参考文献
2) Risitano AM, Notaro R, Marando L, et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood. 2009 ; 113 : 4094-100.
3) Risitano AM, Marotta S. Therapeutic complement inhibition in complement-mediated hemolytic anemias : Past, present and future. Semin Immunol. 2016 ; 28 : 223-40.
4) Nishimura JI, Usuki K, Ramos J, et al. Crovalimab for treatment of patients with paroxysmal nocturnal haemoglobinuria and complement C5 polymorphism : Subanalysis of the phase 1/2 COMPOSER study. Br J Haematol. 2022 ; 198 : e46-e50.
5) Hillmen P, Szer J, Weitz I, et al. Pegcetacoplan versus eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2021 ; 384 : 1028-37.
6) Ueda Y, Takamori H, Nishimura JI. Pegcetacoplan versus eculizumab in PNH. N Engl J Med. 2021 ; 385 : 1723-4.
7) Kulasekararaj AG, Risitano AM, Maciejewski JP, et al. Phase 2 study of danicopan in patients with paroxysmal nocturnal hemoglobinuria with an inadequate response to eculizumab. Blood. 2021 ; 138 : 1928-38.
8) Jang JH, Wong Lee Lee L, Ko BS, et al. Iptacopan monotherapy in patients with paroxysmal nocturnal hemoglobinuria : a 2-cohort open-label proof-of-concept study. Blood Adv. 2022 ; 6 : 4450-60.
9) Risitano AM, Peffault de Latour R. How we ('ll) treat paroxysmal nocturnal haemoglobinuria : diving into the future. Br J Haematol. 2022 ; 196 : 288-303.
10) Brodsky RA, Lee JW, Nishimura JI, et al. Lactate dehydrogenase versus haemoglobin : which one is the better marker in paroxysmal nocturnal haemoglobinuria? Br J Haematol. 2022 ; 196 : 264-5.
P.93 掲載の参考文献
2) 内田啓子, 南学正臣, 阿部雅紀, 他. HIF-PH阻害薬適正使用に関するrecommendation. 日本腎臓学会誌. 2020 ; 62 : 711-6.
3) Yap DYH, McMahon LP, Hao CM, et al. Recommendations by the Asian Pacific society of nephrology (APSN) on the appropriate use of HIF-PH inhibitors. Nephrology. 2021 ; 26 : 105-18.
4) Chertow GM, Pergola PE, Farag YMK, et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N Engl J Med. 2021 ; 384 : 1589-600.
5) Eckardt KU, Agarwal R, Aswad A, et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N Engl J Med. 2021 ; 384 : 1601-12.
6) Provenzano R, Szczech L, Leong R, et al. Efficacy and cardiovascular safety of roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD pooled results of three randomized clinical trials. Clin J Am Soc Nephrol. 2021 ; 16 : 1190-200.
7) Barratt J, Sulowicz W, Schomig M, et al. Efficacy and cardiovascular safety of roxadustat in dialysis-dependent chronic kidney disease : pooled analysis of four phase 3 studies. Adv Ther. 2021 ; 38 : 5345-60.
8) Singh AK, Carroll K, McMurray JJV, et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N Engl J Med. 2021 ; 385 : 2313-24.
9) Singh AK, Carroll K, Perkovic V, et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N Engl J Med. 2021 ; 385 : 2325-35.
10) Csiky B, Schomig M, Esposito C, et al. Roxadustat for the maintenance treatment of anemia in patients with end-stage kidney disease on stable dialysis : a European phase 3, randomized, open-label, active-controlled study (PYRENEES). Adv Ther. 2021 ; 38 : 5361-80.
P.96 掲載の参考文献
1) Gondek LP. CHIP : is clonal hematopoiesis a surrogate for aging and other disease? Hematology. 2021 ; 2021 : 384-9.
4) Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014 ; 20 : 1472-8.
5) Challen GA, Goodell MA : Clonal hematopoiesis : mechanisms driving dominance of stem cell clones. Blood. 2020 ; 136 : 1590-8.
7) Coombs CC, Zehir A, Devlin SM, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017 ; 21 : 374-82.e4.
8) King KY, Huang Y, Nakada D, et al. Environmental influences on clonal hematopoiesis. Exp Hematol. 2020 ; 83 : 66-73.
9) Silver AJ, Bick AG, Savona MR. Germline risk of clonal haematopoiesis. Nat Rev Genet. 2021 ; 22 : 603-17.
10) Saiki R, Momozawa Y, Nannya Y, et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med. 2021 ; 27 : 1239-49.
11) Abelson S, Collord G, Ng SWK, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018 ; 559 : 400-4.
12) Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018 ; 24 : 1015-23.
15) Niroula A, Sekar A, Murakami MA, et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med. 2021 ; 27 : 1921-7.
16) Frick M, Chan W, Arends CM, et al. Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2019 ; 37 : 375-85.
17) Jaiswal S. Clonal hematopoiesis and nonhematologic disorders. Blood. 2020 ; 136 : 1606-14.
18) Asada S, Kitamura T. Clonal hematopoiesis and associated diseases : A review of recent findings. Cancer Sci. 2021 ; 112 : 3962-71.
19) Kakiuchi N, Ogawa S. Clonal expansion in non-cancer tissues. Nat Rev Cancer. 2021 ; 21 : 239-56.

III. 白血病

P.104 掲載の参考文献
1) 日本血液学会, 編. 造血器腫瘍診療ガイドライン 2018年版. 東京 : 金原出版 ; 2018. p.8-37.
2) National Comprehensive Cancer Network, Inc. The NCCN GuidelinesR for Myelodysplastic Syndromes V.1.2022.2022. (https://www.nccn.org.)
4) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
5) Cherry EM, Abbott D, Amaya M, et al. Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia. Blood Adv. 2021 ; 5 : 5565-73.
6) Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 2684-92.
7) Montesinos P, Recher C, Vives S, et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N Engl J Med. 2022 ; 386 : 1519-31.
8) Wei AH, Dohner H, Pocock C, et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med. 2020 ; 383 : 2526-37.
P.109 掲載の参考文献
1) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
2) Breems DA, Putten W, Huijgens PC, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005 ; 23 : 1969-78.
4) Giles F, Verstovsek S, Garcia-Manero G, et al. Validation of the European Prognostic Index for younger adult patients with acute myeloid leukaemia in first relapse. Br J Haematol. 2006 ; 134 : 58-60.
6) DeWolf S, Tallman MS. How I treat relapsed or refractory AML. Blood. 2020 ; 136 : 1023-32.
7) Herzig RH, Lazarus HM, Wolff SN, et al. High-dose cytosine arabinoside therapy with and without anthracycline antibiotics for remission reinduction of acute nonlymphoblastic leukemia. J Clin Oncol. 1985 ; 3 : 992-7.
8) Karanes C, Kopecky KJ, Head DR, et al. A phase III comparison of high dose ARA-C (HIDAC) versus HIDAC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leukemia Research. 1999 ; 23 : 787-94.
9) Parker JE, Pagliuca A, Mijovic A, et al. Fludarabine, cytarabine, G-CSF and idarubicin (FLAG-IDA) for the treatment of poor-risk myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol. 1997 ; 99 : 939-44.
10) Hatsumi N, Miyawaki S, Yamauchi T, et al. Phase II study of FLAGM (fludarabine+high-dose cytarabine+granulocyte colony-stimulating factor+mitoxantrone) for relapsed or refractory acute myeloid leukemia. Int J Hematol. 2019 ; 109 : 418-25.
11) Amadori S, Arcese W, Isacchi G, et al. Mitoxantrone, etoposide, and intermediate-dose cytarabine : an effective and tolerable regimen for the treatment of refractory acute myeloid leukemia. J Clin Oncol. 1991 ; 9 : 1210-4.
12) Yamamoto C, Ito S, Mashima K, et al. Dose-reduced combination of mitoxantrone, etoposide, and cytarabine (miniMEC) for relapsed and refractory acute leukemia. Leuk Lymphoma. 2016 ; 57 : 2541-7.
13) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
15) Thol F, Heuser M. Treatment for relapsed/refractory acute myeloid leukemia. Hemasphere. 2021 ; 5 : e572.
16) Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018 ; 103 : e404-7.
17) Morsia E, McCullough K, Joshi M, et al. Venetoclax and hypomethylating agents in acute myeloid leukemia : Mayo Clinic series on 86 patients. Am J Hematol. 2020 ; 95 : 1511-21.
18) Stahl M, Menghrajani K, Derkach A, et al. Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML. Blood Advances. 2021 ; 5 : 1552-64.
19) Kharfan-Dabaja MA, Labopin M, Polge E, et al. Association of second allogeneic hematopoietic cell transplant vs donor lymphocyte infusion with overall survival in patients with acute myeloid leukemia relapse. JAMA Oncol. 2018 ; 4 : 1245-53.
20) Walter RB, Buckley SA, Pagel JM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013 ; 122 : 1813-21.
P.115 掲載の参考文献
1) Burnett AK, Hills RK, Russell N. Twenty five years of UK trials in acute myeloid leukaemia : what have we learned? Br J Haematol. 2020 ; 188 : 86-100.
2) Sasaki K, Ravandi F, Kadia TM, et al. De novo acute myeloid leukemia : A population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer. 2021 ; 127 : 2049-61.
3) Sekeres MA, Elson P, Kalaycio ME, et al. Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood. 2009 ; 113 : 28-36.
4) Bertoli S, Berard E, Huguet F, et al. Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia. Blood. 2013 ; 121 : 2618-26.
5) Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia : real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood. 2009 ; 113 : 4179-87.
6) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
7) Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy : a phase 3 randomized placebo-controlled trial. Blood. 2020 ; 135 : 2137-45.
8) Itzykson R, Fournier E, Berthon C, et al. Genetic identification of patients with AML older than 60 years achieving long-term survival with intensive chemotherapy. Blood. 2021 ; 138 : 507-19.
9) Pollyea DA, Winters A, McMahon C, et al. Venetoclax and azacitidine followed by allogeneic transplant results in excellent outcomes and may improve outcomes versus maintenance therapy among newly diagnosed AML patients older than 60. Bone Marrow Transplant. 2022 ; 57 : 160-6.
10) Min GJ, Cho BS, Park SS, et al. Geriatric assessment predicts non-fatal toxicities and survival for intensively treated older adults with AML. Blood. 2022 ; 139 : 1646-58.
11) DiNardo CD, Tiong IS, Quaglieri A, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020 ; 135 : 791-803.
P.120 掲載の参考文献
1) Conneely SE, Stevens AM. Acute myeloid leukemia in children : emerging paradigms in genetics Oncology Reports. 2021 ; 23 : 16.
2) 急性骨髄性白血病. In : 日本小児血液・がん学会, 編. 小児白血病・リンパ腫診療ガイドライン 2016年版, 第3版. 東京 : 金原出版 ; 2016. p.37-54.
4) Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk : results from the randomized phase III Children's Oncology Group Trial AAML0531. J Clin Oncol. 2014 ; 32 : 3021-32.
5) Taga T, Tanaka S, Hasegawa D, et al. Post-induction MRD by FCM and GATA1-PCR are significant prognostic factors for myeloid leukemia of Down syndrome. Leukemia. 2021 ; 35 : 2508-16.
6) Takahashi H, Watanabe T, Kinoshita A, et al. High event-free survival rate with minimum-dose-anthracycline treatment in childhood acute promyelocytic leukaemia : a nationwide prospective study by the Japanese Paediatric Leukaemia/Lymphoma Study Group. Br J Haematol. 2016 ; 174 : 437-43.
7) Yamamoto S, Tomizawa D, Kudo K, et al. Hematopoietic stem cell transplantation for pediatric acute promyelocytic leukemia in Japan. Pediatr Blood Cancer. 2020 ; 67 : e28181.
8) Inaba H, Coustan-Smith E, Cao X, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012 ; 30 : 3625-32.
9) Tierens A, Bjorklund E, Siitonen S, et al. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia ; results of the NOPHO-AML 2004 study. Br J Haematol. 2016 ; 174 : 600-9.
10) Keino D, Kinoshita A, Tomizawa D, et al. Residual disease detected by multidimensional flow cytometry shows prognostic significance in childhood acute myeloid leukemia with intermediate cytogenetics and negative FLT3-ITD : a report from the Tokyo Children's Cancer Study Group. Int J Hematol. 2016 ; 103 : 416-22.
11) Segerink WH, de Haas V, Kaspers GJL. Measurable residual disease in pediatric acute myeloid leukemia : a systematic review. Expert Rev Anticancer Ther. 2021 ; 21 : 451-9.
12) Pollard JA, Guest E, Alonzo TA, et al. Gemtuzumab ozogamicin improves event-free survival and reduces relapse in pediatric KMT2A-rearranged AML : Results from the phase III children's oncology group trial AAML0531. J Clin Oncol. 2021 ; 39 : 3149-60.
13) McCall D, Roth M, Mahadeo KM, et al. Gilteritinib combination therapies in pediatric patients with FLT3-mutated acute myeloid leukemia. Blood Advances. 2021 ; 5 : 5215-9.
14) Karol SE, Alexander TB, Budhraja A, et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia : a phase 1, dose-escalation study. Lancet Oncol. 2020 ; 21 : 551-60.
P.126 掲載の参考文献
1) Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia : current knowledge and future prospects. Int J Hematol. 2011 ; 94 : 126-33.
2) Opatz S, Bamopoulos SA, Metzeler KH, et al. The clinical mutatome of core binding factor leukemia. Leukemia. 2020 ; 34 : 1553-62.
5) Marcucci G, Geyer S, Laumann K, et al. Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia : CALGB 10801. Blood Adv. 2020 ; 4 : 696-705.
6) Arslan S, Zhang J, Dhakal P, et al. Outcomes of therapy with venetoclax combined with a hypomethylating agent in favorable-risk acute myeloid leukemia. Am J Hematol. 2021 ; 96 : E59-63.
7) Ragon BK, Daver N, Garcia-Manero G, et al. Minimal residual disease eradication with epigenetic therapy in core binding factor acute myeloid leukemia. Am J Hematol. 2017 ; 92 : 845-50.
8) Jongen-Lavrencic M, Grob T, Hanekamp D, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018 ; 378 : 1189-99.
P.132 掲載の参考文献
1) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
2) Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for patients with untreated AML ineligible for intensive chemotherapy : phase 3 randomized placebo-controlled trial. Blood. 2020 ; 135 : 2137-45.
3) Burchert A, Bug G, Fritz LV, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN). J Clin Oncol. 2020 ; 38 : 2993-3002.
5) Perl AE, Larson RA, Podoltsev NA, et al. Follow-up of patients with R/R FLT3-mutation-positive AML treated with gilteritinib in the phase 3 ADMIRAL trial. Blood. 2022 ; 139 : 3366-75.
6) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
7) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
8) Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018 ; 103 : e404-7.
9) Kobayashi Y, Tobinai K, Takeshita A, et al. Phase I/II study of humanized anti-CD33 antibody conjugated with calicheamicin, gemtuzumab ozogamicin, in relapsed or refractory acute myeloid leukemia : final results of Japanese multicenter cooperative study. Int J Hematol. 2009 ; 89 : 460-9.
10) Pei S, Pollyea DA, Gustafson A, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020 ; 10 : 536-51.
11) Hosono N, Yokoyama H, Aotsuka N, et al. Gilteritinib versus chemotherapy in Japanese patients with FLT3-mutated relapsed/refractory acute myeloid leukemia. Int J Clin Oncol. 2021 ; 26 : 2131-41.
P.137 掲載の参考文献
2) Salvatore D, Labopin M, Ruggeri A, et al. Outcomes of hematopoietic stem cell transplantation from unmanipulated haploidentical versus matched sibling donor in patients with acute myeloid leukemia in first complete remission with intermediate or high-risk cytogenetics : a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2018 ; 103 : 1317-28.
3) Konuma T, Kanda J, Yamasaki S, et al. Single cord blood transplantation versus unmanipulated haploidentical transplantation for adults with acute myeloid leukemia in complete remission. Transplant Cell Ther. 2021 ; 27 : 334.e1-334.e11.
4) Cho BS, Min GJ, Park S, et al. Haploidentical vs matched unrelated donor transplantation for acute myeloid leukemia in remission : A prospective comparative study. Am J Hematol. 2021 ; 96 : 98-109.
5) Jimenez Jimenez AM, De Lima M, et al. An adapted European LeukemiaNet genetic risk stratification for acute myeloid leukemia patients undergoing allogeneic hematopoietic cell transplant. A CIBMTR analysis. Bone Marrow Transplant. 2021 ; 56 : 3068-77.
7) Fuchs EJ, O'Donnell PV, Eapen M, et al. Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation : the BMT CTN 1101 trial. Blood. 2021 ; 137 : 420-8.
8) Battipaglia G, Galimard JE, Labopin M, et al. Post-transplant cyclophosphamide in one-antigen mismatched unrelated donor transplantation versus haploidentical transplantation in acute myeloid leukemia : a study from the Acute Leukemia Working Party of the EBMT. Bone Marrow Transplant. 2022 ; 57 : 562-71.
P.139 掲載の参考文献
4) Miles LA, Bowman RL, Merlinsky TR, et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature. 2020 ; 587 : 477-82.
6) Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014 ; 506 : 328-33.
7) Burd A, Levine RL, Ruppert AS, et al. Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling : feasibility and preliminary efficacy of the Beat AML Master Trial. Nat Med. 2020 ; 26 : 1852-8.
8) Duncavage EJ, Schroeder MC, O'Laughlin M, et al. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med. 2021 ; 384 : 924-35.
9) Yasuda T, Sanada M, Nishijima D, et al. Clinical utility of target capture-based panel sequencing in hematological malignancies : A multicenter feasibility study. Cancer Sci. 2020 ; 111 : 3367-78.
P.143 掲載の参考文献
1) Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994 ; 367 : 645-8.
3) Goyama S, Wunderlich M, Mulloy JC. Xenograft models for normal and malignant stem cells. Blood. 2015 ; 125 : 2630-40.
4) Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017 ; 129 : 1577-85.
5) Pollyea DA, Jordan CT. Therapeutic targeting of acute myeloid leukemia stem cells. Blood. 2017 ; 129 : 1627-35.
6) Villatoro A, Konieczny J, Cuminetti V, et al. Leukemia stem cell release from the stem cell niche to treat acute myeloid leukemia. Front Cell Dev Biol. 2020 ; 8 : 607.
7) Long NA, Golla U, Sharma A, et al. Acute myeloid leukemia stem cells : origin, characteristics, and clinical implications. Stem Cell Rev Rep. 2022.
8) Naoe T, Kiyoi H. Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol. 2013 ; 97 : 165-74.
9) Raffel S, Falcone M, Kneisel N, et al. BCAT1 restricts α-KG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017 ; 551 : 384-8.
10) Pollyea DA, Stevens BM, Jones CL, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018 ; 24 : 1859-66.
11) Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell. 2016 ; 19 : 23-37.
12) Jones CL, Stevens BM, D'Alessandro A, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018 ; 34 : 724-40.e724.
13) Jones CL, Stevens BM, Pollyea DA, et al. Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells. Cell Stem Cell. 2020 ; 27 : 748-64.e744.
14) Subedi A, Liu Q, Ayyathan DM, et al. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell. 2021 ; 28 : 1851-67.e1858.
15) Pei S, Minhajuddin M, Adane B, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell. 2018 ; 23 : 86-100.e106.
16) Singh RP, Jeyaraju DV, Voisin V, et al. Disrupting mitochondrial copper distribution inhibits leukemic stem cell self-renewal. Cell Stem Cell. 2020 ; 26 : 926-37.e910.
17) Eagle K, Jiang Y, Shi X, et al. An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell. 2022 ; 29 : 386-99.e7.
18) Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting : integrating immunity's roles in cancer suppression and promotion. Science. 2011 ; 331 : 1565-70.
19) Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest. 2020 ; 130 : 1552-64.
20) Paczulla AM, Rothfelder K, Raffel S, et al. Publisher Correction : Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019 ; 572 : E19.
21) Hayashi Y, Goyama S, Liu X, et al. Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia. Nat Commun. 2019 ; 10 : 4869.
22) Flieswasser T, Van den Eynde A, Van Audenaerde J, et al. The CD70-CD27 axis in oncology : the new kids on the block. J Exp Clin Cancer Res. 2022 ; 41 : 12.
23) Riether C, Schurch CM, Buhrer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017 ; 214 : 359-80.
24) Riether C, Pabst T, Hopner S, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med. 2020 ; 26 : 1459-67.
25) Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015 ; 17 : 341-52.
26) Harcourt EM, Kietrys AM, Kool ET. Chemical and structural effects of base modifications in messenger RNA. Nature. 2017 ; 541 : 339-46.
27) Jiang Q, Crews LA, Holm F, et al. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat Rev Cancer. 2017 ; 17 : 381-92.
28) Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017 ; 169 : 1187-200.
29) Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell. 2017 ; 31 : 127-41.
30) Shen C, Sheng Y, Zhu AC, et al. RNA Demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 2020 ; 27 : 64-80.e69.
31) Wang J, Li Y, Wang P, et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell. 2020 ; 27 : 81-97.e88.
32) Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020 ; 38 : 79-96.e11.
33) Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019 ; 35 : 677-91.e610.
34) Paris J, Morgan M, Campos J, et al. Targeting the RNA m6A Reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019 ; 25 : 137-48.e136.
35) Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005 ; 434 : 843-50.
37) Salik B, Yi H, Hassan N, et al. Targeting RSPO3-LGR4 signaling for leukemia stem cell eradication in acute myeloid leukemia. Cancer Cell. 2020 ; 38 : 263-78.e266.
38) Sheng Y, Yu C, Liu Y, et al. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun. 2020 ; 11 : 928.
39) Jamieson C, Martinelli G, Papayannidis C, et al. Hedgehog pathway inhibitors : a new therapeutic class for the treatment of acute myeloid leukemia. Blood Cancer Discov. 2020 ; 1 : 134-45.
P.148 掲載の参考文献
1) Sanz MA, Lo Coco F, Martin G, et al. Definition of relapse risk and role of nonanthracycline drags for consolidation in patients with acute promyelocytic leukemia : A joint study of the PETHEMA and GIMEMA cooperative groups. Blood. 2000 ; 96 : 1247-53.
2) Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia : updated recommendations from an expert panel of the European LeukemiaNet. Blood [Internet]. 2019 ; 133 : blood-2019-01-894980. Available from : http://www.bloodjournal.org/lookup/doi/10.1182/blood-2019-01-894980
3) Yokoyama H, Takahashi N, Katsuoka Y, et al. Evaluation of the safety and efficacy of recombinant soluble thrombomodulin for patients with disseminated intravascular coagulation associated with acute leukemia : multicenter prospective study by the Tohoku Hematology Forum. Int J Hematol. 2017 ; 105 : 606-13.
4) Stahl M, Tallman MS. Differentiation syndrome in acute promyelocytic leukaemia. Br J Haematol. 2019 ; 187 : 157-62.
5) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017 ; 35 : 605-12.
6) Burnett AK, Russell NH, Hills RK, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17) : results of a randomised, controlled, phase 3 trial. Lancet Oncol [Internet]. 2015 ; 16 : 1295-305. Available from : http://dx.doi.org/10.1016/S1470-2045(15)00193-X
7) Iland HJ, Collins M, Bradstock K, et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study : A non-randomised phase 2 trial. Lancet Haematol. 2015 ; 2 : e357-66.
8) Takeshita A, Asou N, Atsuta Y, et al. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia : a final result of prospective, randomized, JALSG-APL204 study. Leukemia [Internet]. 2019 ; 33 : 358-70. Available from : http://dx.doi.org/10.1038/s41375-018-0233-7
9) Ades L, Guerci A, Raffoux E, et al. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy : The European APL Group experience. Blood. 2010 ; 115 : 1690-6.
10) Osterroos A, Maia T, Eriksson A, et al. A real-world based score to predict early death in acute promyelocytic leukemia. Haematologica. 2022.
P.153 掲載の参考文献
1) Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocyticleukemia. Blood. 1988 ; 72 : 567-72.
2) Shen ZX, Chen GQ, Ni JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL) : II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997 ; 89 : 3354-60.
3) Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 1997 ; 90 : 1014-21.
4) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 ; 110 : 59-66.
6) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017 ; 35 : 605-12.
8) Lengfelder E, Lo-Coco F, Ades L, et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia : registry results from the European LeukemiaNet. Leukemia. 2015 ; 29 : 1084-91.
9) Russell N, Burnett A, Hills R, et al. Attenuated arsenic trioxide plus ATRA therapy for newly diagnosed and relapsed APL : long-term follow-up of the AML17 trial. Blood. 2018 ; 132 : 1452-4.
10) Fouzia NA, Sharma V, Ganesan S, et al. Management of relapse in acute promyelocytic leukaemia treated with up-front arsenic trioxide-based regimens. Br J Haematol. 2021 ; 192 : 292-9.
12) Sanford D, Lo-Coco F, Sanz MA, et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol. 2015 ; 171 : 471-7.
13) de Botton S, Sanz MA, Chevret S, et al. Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia. 2006 ; 20 : 35-41.
14) Tomita A, Kiyoi H, Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O 3) in acute promyelocytic leukemia. Int J Hematol. 2013 ; 97 : 717-25.
15) Iaccarino L, Ottone T, Alfonso V, et al. Mutational landscape of patients with acute promyelocytic leukemia at diagnosis and relapse. Am J Hematol. 2019 ; 94 : 1091-7.
P.159 掲載の参考文献
1) Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011 ; 118 : 6521-28.
2) Sugiura I, Doki N, Hata T, et al. Dasatinib-based 2-step induction for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Adv. 2022 ; 6 : 624-36.
3) Nishiwaki S, Akahoshi Y, Mizuta S, et al. Measurable residual disease affects allogeneic hematopoietic stem cell transplantation in Ph+ALL during both CR1 and CR2. Blood Adv. 2021 ; 5 : 584-92.
4) Sasaki K, Kantarjian HM, Short NJ. Prognostic factors for progression in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer. 2021 ; 127 : 2648-56.
5) Foa R, Bassan R, Vitale A, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020 ; 383 ; 1613-23.
6) Pfeifer H, Raum K, Markovic S, et al. Genomic CDKN2A/2B deletions in adult Ph+ ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018 ; 131 : 1464-75.
7) Arber DA, Orazi A, Hasserjian R.et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 ; 127 : 2391-405.
P.163 掲載の参考文献
1) Dombret H, Cluzeau T, Huguet F, et al. Pediatric-like therapy for adults with ALL. Curr Hematol Malig Rep. 2014 ; 9 : 158-64.
3) Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients : final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008 ; 111 : 1827-33.
4) Dhedin N, Huynh A, Maury S, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015 ; 125 : 2486-96.
5) Wieduwilt MJ, Stock W, Advani A, et al. Correction : Superior survival with pediatric-style chemotherapy compared to myeloablative allogeneic hematopoietic cell transplantation in older adolescents and young adults with Ph-negative acute lymphoblastic leukemia in first complete remission : analysis from CALGB 10403 and the CIBMTR. Leukemia. 2021 ; 35 : 2140.
7) Kako S, Hayakawa F, Imai K, et al. Optimal treatment for Philadelphia-negative acute lymphoblastic leukemia in first remission in the era of high-intensity chemotherapy. Int J Hematol. 2021 ; 114 : 608-19.
P.168 掲載の参考文献
1) Kantarjian H, Thomas D, O'Brien S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004 ; 101 : 2788-801.
2) Oriol A, Vives S, Hernandez-Rivas JM, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010 ; 95 : 589-96.
3) Thomas DA, Kantarjian H, Smith TL, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia : characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999 ; 86 : 1216-30.
6) Cassaday RD, Potts Jr DA, Stevenson PA, et al. Evaluation of allogeneic transplantation in first or later minimal residual disease-negative remission following adult-inspired therapy for acute lymphoblastic leukemia. Leuk Lymphoma. 2016 ; 57 : 2109-18.
7) Theresa Hahn, Donna Wall, Bruce Camitta, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute lymphoblastic leukemia in adults : an evidence-based review. Biol Blood Marrow Transplant. 2006 ; 12 : 1-30.
8) 日本造血細胞移植学会. 造血細胞移植ガイドライン-急性リンパ性白血病 (成人) 第3版. p.3. https://www.jshct.com/uploads/files/guideline/03_01_all03.pdf
9) 日本造血細胞移植学会. 平成30年度全国調査報告書.
10) DiJoseph JF, Armellino DC, Boghaert ER, et al. Antibody-targeted chemotherapy with CMC-544 : a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004 ; 103 : 1807-14.
11) Piccaluga PP, Arpinati M, Candoni A, et al. Surface antigens analysis reveals significant expression of candidate targets for immunotherapy in adult acute lymphoid leukemia. Leuk Lymphoma. 2011 ; 52 : 325-7.
12) Hoffmann P, Hofmeister R, Brischwein K, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005 ; 115 : 98-104.
13) Raponi S, De Propris MS, Intoppa S, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia : analysis of 552 cases. Leuk Lymphoma. 2011 ; 52 : 1098-107.
15) Kantarjian HM, DeAngelo DJ, Advani AS, et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia : results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol. 2017 ; 4 : e387-98.
16) Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia : Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019 ; 125 : 2474-87.
18) Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018 ; 378 : 439-48.
19) Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013 ; 122 : 4129-39.
20) Brudno JN, Somerville RP, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016 ; 34 : 1112-21.
21) 日本造血細胞移植学会ホームページ. https://www.jshct.com/modules/news/index.php?content_id=172
P.173 掲載の参考文献
2) Burke MJ, Devidas M, Chen Z, et al. Outcomes in adolescent and young adult patients (16 to 30 years) compared to younger patients treated for high-risk B-lymphoblastic leukemia : report from Children's Oncology Group Study AALL0232. Leukemia. 2022 ; 36 : 648-55.
3) Greenwood M, Trahair T, Sutton R, et al. An MRD-stratified pediatric protocol is as deliverable in adolescents and young adults as in children with ALL. Blood Adv. 2021 ; 5 : 5574-83.
4) Wieduwilt MJ, Stock W, Advani A, et al. Superior survival with pediatric-style chemotherapy compared to myeloablative allogeneic hematopoietic cell transplantation in older adolescents and young adults with Ph-negative acute lymphoblastic leukemia in first complete remission : analysis from CALGB 10403 and the CIBMTR. Leukemia. 2021 ; 35 : 2076-85.
5) Bhatia S, Landier W, Shangguan M, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia : a report from the children's oncology group. J Clin Oncol. 2012 ; 30 : 2094-101.
P.177 掲載の参考文献
1) National Cancer Institute Surveillance, Epidemiology, and End Results Program. https://seer.cancer.gov/statfacts/html/alyl.html
2) Moorman AV, Chilton L, Wilkinson J, et al. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010 ; 115 : 206-14. Erratum in Blood. 2010 ; 116 : 1017.
3) Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy : results of the Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007 ; 109 : 3676-8.
4) Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016 ; 128 : 774-82.
5) Ottmann O, Pfeifer H, Cayuela JM, et al. Nilotinib (TasignaR) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia : final results of a prospective multicenter trial (EWALL-PH02). Blood. 2018 ; 132 (suppl. 1).
6) Martinelli G, Papayannidis C, Piciocchi A, et al. INCB84344-201 : Ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia. Blood Adv. 2022 ; 6 : 1742-53.
7) Sancho JM, Ribera JM, Xicoy B, et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol. 2007 ; 78 : 102-10.
9) Hunault-Berger M, Leguay T, Thomas X, et al. A randomized study of pegylated liposomal doxorubicin versus continuous-infusion doxorubicin in elderly patients with acute lymphoblastic leukemia : the GRAALL-SA1 study. Haematologica. 2011 ; 96 : 245-52.
10) Sive JI, Buck G, Fielding A, et al. Outcomes in older adults with acute lymphoblastic leukaemia (ALL) : results from the international MRC UKALL XII/ECOG2993 trial. Br J Haematol. 2012 ; 157 : 463-71.
11) Martell MP, Atenafu EG, Minden MD, et al. Treatment of elderly patients with acute lympho-blastic leukaemia using a paediatric-based protocol. Br J Haematol. 2013 ; 163 : 458-64.
12) Ribera JM, Garcia O, Oriol A, et al. Feasibility and results of subtype-oriented protocols in older adults and fit elderly patients with acute lymphoblastic leukemia : Results of three prospective parallel trials from the PETHEMA group. Leuk Res. 2016 ; 41 : 12-20.
13) Advani AS, Moseley A, O'Dwyer KM, et al. SWOG 1318 : A phase II trial of blinatumomab followed by POMP maintenance in older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia. J Clin Oncol. 2022 ; 40 : 1574-82.
14) Jabbour EJ, Sasaki K, Ravandi F, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia : A propensity score analysis. Cancer. 2019 ; 125 : 2579-86.
15) Rosko A, Wang HL, de Lima M, et al. Reduced intensity conditioned allograft yields favorable survival for older adults with B-cell acute lymphoblastic leukemia. Am J Hematol. 2017 ; 92 : 42-9.
16) Mohty M, Labopin M, Volin L, et al. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia : a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010 ; 116 : 4439-43.
P.187 掲載の参考文献
1) Bower H, Bjorkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016 ; 34 : 2851-7.
2) Mughal TI, Radich JP, Deininger MW, et al. Chronic myeloid leukemia : reminiscences and dreams. Haematologica. 2016 ; 101 : 541-58.
3) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
6) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
7) Hanfstein B, Muller MC, Hehlmann R, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012 ; 26 : 2096-102.
8) Hughes TP, Saglio G, Kantarjian HM, et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014 ; 123 : 1353-60.
9) Hehlmann R, Lauseker M, Sausele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia : 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017 ; 31 : 2398-406.
11) Deininger MW, Shah NP, Altman JK, et al. Chronic myeloid leukemia, version 1.2022, NCCN clinical practice guidelines in oncology [. (accessed on 30 August 2021)]. Available online : https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1427.
12) Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib : results from the randomized CML-study IV. J Clin Oncol. 2014 ; 32 : 415-23.
16) Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010 ; 362 : 2251-9.
17) Hughes TP, Saglio G, Kantarjian HM, et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014 ; 123 : 1353-60.
20) Ohnishi K, Nakaseko C, Takeuchi J, et al. Long-term outcome following imatinib therapy for chronic myelogenous leukemia, with assessment of dosage and blood levels : the JALSG CML202 study. Cancer Sci. 2012 ; 103 : 1071-8.
21) Cortes J. How to manage CML patients with comorbidities. Hematology Am Soc Hematol Educ Program. 2020 ; 2020 : 237-42.
22) Kantarjian HM, Hughes TP, Larson RA, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase : ENESTnd 10-year analysis. Leukemia. 2021 ; 35 : 440-53.
P.193 掲載の参考文献
1) How J, Venkataraman V, Hobbs GS. Hematology Am Soc Hematol Educ Program. 2021 ; 2021 : 122-8.
2) CQ5 進行期CML (AP およびBP) の治療はTKIが勧められるか. 4 慢性骨髄性白血病/骨髄増殖性腫瘍 (chronic myeloid leukemia/myeloproliferative neoplasms : CML/MPN). 日本血液学会. 造血器腫瘍診療ガイドライン 2018年版改訂版. 東京 : 金原出版 ; 2020. p.111-2.
3) Fruehauf S, Topaly J, Buss EC, et al. Imatinib combined with mitoxantrone/etoposide and cytarabine is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis. Cancer. 2007 ; 109 : 1543-9.
4) Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia : a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006 ; 24 : 460-6.
5) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
6) Ottmann O, Saglio G, Apperley JF, et al. Long-term efficacy and safety of dasatinib in patients with chronic myeloid leukemia in accelerated phase who are resistant to or intolerant of imatinib. Blood Cancer J. 2018 ; 8 : 88.
7) Cortes JE, Kim DW, Pinilla-Lbarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia : final 5-year results of the phase 2 PACE trial. Blood. 2018 ; 132 : 393-404.
8) Ohanian M, Kantarjian HM, Quintas-Cardama A, et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma Myeloma Leuk. 2014 ; 14 : 155-62.
9) Jain P, Kantarjian H, Chorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era : Cohort study of 477 patients. Cancer. 2017 ; 123 : 4391-402.
10) Khoury HJ, Kukreja M, Goldman JM, et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era : a CIBMTR analysis. Bone Marrow Transplant. 2012 ; 47 : 810-6.
11) Chhabra S, Ahn KW, Hu ZH, et al. Myeloablative vs reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chronic myeloid leukemia. Blood Adv. 2018 ; 2 : 2922-36.
12) DeFilipp Z, Ancheta R, Liu Y et al. Maintenance tyrosine kinase inhibitors following allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia : a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2020 ; 26 : 472-9.
P.197 掲載の参考文献
2) Steegmann JL, Baccarani M, Breccia M, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016 ; 30 : 1648-71.
4) Fujioka I, Takaku T, Iriyama N, et al. Features of vascular adverse events in Japanese patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors : a retrospective study of the CML Cooperative Study Group database. Ann Hematol. 2018 ; 97 : 2081-8.
5) Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019 ; 381 : 2315-26.
6) Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia : a randomized, open-label phase 2 clinical trial. Blood. 2021 ; 138 : 2042-50.
7) Dahlen T, Edgren G, Lambe M, et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia : a population-based cohort study. Ann Intern Med. 2016 ; 165 : 161-6.
P.203 掲載の参考文献
1) Sasaki K, Strom S, O'Brien S, et al. Relative survival in patients with chronic-phase chronic myeloid leukemia in the tyrosine-kinase inhibitor era : analysis of patient data from six prospective clinical trials. Lancet Haematol. 2015 ; 2 : e186-93.
2) Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017 ; 35 : 298-305.
6) Deininger MW, et al. Chronic myeloid leukemia Version 3.2020. NCCN clinical practice guideline in oncology. 2020 [cited ; Available from : https://www.nccn.org/professionals/physician_gls/pdf/cml.pdf]
7) Radich JP, Hochhaus A, Masszi T, et al. Treatment-free remission following frontline nilotinib in patients with chronic phase chronic myeloid leukemia : 5-year update of the ENESTfreedom trial. Leukemia. 2021 ; 35 : 1344-55
8) Kimura S, Imagawa J, Murai K, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial) : a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020 ; 7 : e218-25.
9) Schoenbeck KL, Atallah E, Lin L, et al. Patient-reported functional outcomes in patients with chronic myeloid leukemia after stopping tyrosine kinase inhibitors. J Natl Cancer Inst. 2022 ; 114 : 160-4.
P.207 掲載の参考文献
1) Mughalo TI, Radich JP, Deininger MW, et al. Chronic myeloid leukemia : reminiscences and dreams. Haematologica. 2016 ; 101 : 541-58.
2) Hochhaus A, Larson RA, Francois G, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017 ; 376 : 917-27.
3) Soverini S, Mancini M, Bavaro L, et al. Chronic myeloid leukemia : the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol Cancer. 2018 ; 17 : 49.
4) White DL, Radich J, Soverini S, et al. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica. 2012 ; 97 : 907-14.
5) Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005 ; 353 : 172-87.
6) Valent P. Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia : implications for the biology, management, and therapy of the disease. Br J Haematol. 2008 ; 142 : 361-78.
7) Kim T, Tyndel MS, Kim HJ, et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood. 2017 ; 129 : 38-47.
8) Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004 ; 305 : 399-401.
9) Lombardo LJ, Lee FY, Chen P, et al. Discovery of N- (2-chloro-6-methyl-phenyl) -2- (6- (4- (2-hydroxyethyl) -piperazin-1-yl) -2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004 ; 47 : 6658-61.
10) Tokarski JS, Newitt JA, Chang CYJ, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006 ; 66 : 5790-7.
11) Weisberg E, Manley P, Mestan J, et al. AMN107 (nilotinib) : a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006 ; 94 : 1765-9.
12) Rix LLR, Rix U, Colinge J, et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia. 2009 ; 23 : 477-85.
13) Golas JM, Arndt K, Etienne C, et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 2003 ; 63 : 375-81.
14) Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003 ; 101 : 690-8.
15) Hiwase DK, Saunders V, Hewett D, et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells : therapeutic implications. Clin Cancer Res. 2008 ; 14 : 3881-8.
16) Davies A, Jordanides NE, Giannoudis A, et al. Nilotinib concentration in cell lines and primary CD34 (+) chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009 ; 23 : 1999-2006.
17) Zhou T, Commodore L, Huang WS, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534) : lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des. 2011 ; 77 : 1-11.
18) Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in Chronic Myeloid Leukemia after ABL Kinase Inhibitor Failure. N Engl J Med. 2019 ; 381 : 2315-26.
19) ASH 2020, Late Breaking Abstract (LBA) -4. https://ash.confex.com/ash/2020/webprogram/Paper143816.html
20) Rea D, Mauro MJ, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021 ; 138 : 2031-41.
P.213 掲載の参考文献
2) Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica. 2015 ; 100 : e46-8.
3) Barbui T, Vannucchi AM, Carobbio A, et al. Patterns of presentation and thrombosis outcome in patients with polycythemia vera strictly defined by WHO-criteria and stratified by calendar period of diagnosis. Am J Hematol. 2015 ; 90 : 434-7.
4) Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia : a literature review of incidence and risk factors. Blood Cancer J. 2015 ; 5 : e366.
5) Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014 ; 124 : 2507-13.
7) 日本血液学会, 編. 造血器腫瘍診療ガイドライン 2018年版 (WEB版) 慢性骨髄性白血病/骨髄増殖性腫瘍 アルゴリズム (http://www.jshem.or.jp/gui-hemali/1_4.html#algo) Accessed 2020 April 30.
10) National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Myeloproliferative Neoplasms. Version 2. 2022 (https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf). Accessed 2022 April 30.
11) Landolfi R, Marchioli R, Kutti J, et al ; European Collaboration on Low-Dose Aspirin in Polycythemia Vera Investigators. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004 ; 350 : 114-24.
13) Alessandro M, Vannucchi AM, Kiladjian JJ, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015 ; 372 : 426-35.
15) Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV) : a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020 ; 7 : e196-208.
16) Mascarenhas J, Kosiorek HE, Prchal JT, et al. A randomized, phase 3, trial of interferon-α versus hydroxyurea in polycythemia vera and essential thrombocythemia. Blood. 2022 ; 139 : 2931-41.
17) Barbui T, Vannucchi AM, De Stefano V, et al. Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study) : a multicentre, randomised phase 2 trial. Lancet Haematol. 2021 ; 8 : e175-84.
18) Barbui T, Vannucchi AM, Carobbio A, et al. The effect of arterial hypertension on thrombosis in low-risk polycythemia vera. Am J Hematol. 2017 ; 92 : E5-6.
19) Mancuso S, Santoro M, Accurso V, et al. Cardiovascular risk in polycythemia vera : thrombotic risk and survival : can cytoreductive therapy be useful in patients with low-risk polycythemia vera with cardiovascular risk factors? Oncol Res Treat. 2020 ; 43 : 526-30.
P.219 掲載の参考文献
2) Haider M, Gangat N, Lasho T, et al. Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 Mayo clinic patients. Am. J. Hematol. 2016 ; 91 : 390-4.
3) Edahiro Y, Yasuda H, Gotoh A, et al. Interferon therapy for pregnant patients with essential thrombocythemia in Japan. Int J Hematol. 2021 ; 113 : 106-11.
4) Hashimoto Y, Ito T, Gotoh A, et al. Clinical characteristics, prognostic factors, and outcomes of patients with essential thrombocythemia in Japan : the JSH-MPN-R18 study. Int J Hematol. 2022 ; 115 : 208-21.
5) Edahiro Y, Araki M, Inano T, et al. Clinical and molecular features of patients with prefibrotic primary myelofibrosis previously diagnosed as having essential thrombocythemia in Japan. EJH. 2019 ; 102 : 516-20.
6) Birgegard G, Besses C, Griesshammer M, et al. Treatment of essential thrombocythemia in Europe : a prospective long-term observational study of 3649 high-risk patients in the Evaluation of Anagrelide Efficacy and Long-term Safety study. Haematologica. 2018 ; 103 : 51-60.
7) Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017 ; 31 : 2726-31.
8) Gagelmann N, Eikema DJ, de Wreede LC, et al. Comparison of dynamic international prognostic scoring system and myelofibrosis secondary to PV and ET prognostic model for prediction of outcome in polycythemia vera and essential thrombocythemia myelofibrosis after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : e204-8.
9) Barbui T, De Stefano V, Alvarez-Larran A, et al. Among classic myeloproliferative neoplasms, essential thrombocythemia is associated with the greatest risk of venous thromboembolism during COVID-19. Blood Cancer J. 2021 ; 11 : 21.
10) Kamiunten A, Shide K, Kameda T, et al. Early/prefibrotic primary myelofibrosis in patients who were initially diagnosed with essential thrombocythemia. Int J Hematol. 2018 ; 108 : 411-5.
11) Ito T, Hashimoto Y, Tanaka Y, et al. Efficacy and safety of anagrelide as a first-line drug in cytoreductive treatment-naive essential thrombocythemia patients in a real-world setting. Eur J Haematol. 2019 ; 103 : 116-23.
12) Tefferi A, Szuber N, Vallapureddy RR, et al. Decreased survival and increased rate of fibrotic progression in essential thrombocythemia chronicled after the FDA approval date of anagrelide. Am J Hematol. 2019 ; 94 : 5-9.
13) Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF) : international prospective validation and reliability trial in 402 patients. Blood. 2011 ; 118 : 401-8.
14) Murata M, Suzuki R, Nishida T, et al. Allogeneic hematopoietic stem cell transplantation for post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Intern Med. 2020 ; 59 : 1947-56.
15) Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV) : a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020 ; 7 : e196-208.
16) Edahiro Y, Ohishi K, Gotoh A, et al. Efficacy and safety of ropeginterferon alfa-2b in Japanese patients with polycythemia vera : an open-label, single-arm, phase 2 study. Int J Hematol. 2022 Apr 16. doi : 10.1007/s12185-022-03341-9. Online ahead of print.
17) Barbui T, Vannucchi AM, Alvarez-Larran A, et al. High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib. Leukemia. 2021 ; 35 : 485-93.
P.225 掲載の参考文献
3) 日本血液学会, 編. 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版 ; 2018.
5) Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0 : Mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018 ; 36 : 1769-70.
6) Kroger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis : a consensus process by an EBMT/ELN international working group. Leukemia. 2015 ; 29 : 2126-33.
7) Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis : COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017 ; 10 : 156.
8) Guglielmelli P, Ghirardi A, Carobbio A, et al. Impact of ruxolitinib on survival of patients with myelofibrosis in the real world : update of the ERNEST Study. Blood Adv. 2022 ; 6 : 373-5.
9) Gowin K, Ballen K, Ahn KW, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020 ; 4 : 1965-73.
10) Murata M, Takenaka K, Uchida N, et al. Comparison of outcomes of allogeneic transplantation for primary myelofibrosis among hematopoietic stem cell source groups. Biol Blood Marrow Transplant. 2019 ; 25 : 1536-43.
11) McLornan D, Szydlo R, Koster L, et al. Myeloablative and Reduced-Intensity Conditioned Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis : A Retrospective Study by the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : 2167-71.
12) Kroger N, Sbianchi G, Sirait T, et al. Impact of prior JAK-inhibitor therapy with ruxolitinib on outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis : a study of the CMWP of EBMT. Leukemia. 2021 ; 35 : 3551-60.
P.229 掲載の参考文献
2) Arber DA, Orazi A, Hassrjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 ; 127 : 2391-405.
3) Szuber N, Finke CM, Lasho TL, et al. CSF3R-mutated chronic neutrophilic leukemia : long-term outcome in 19 consecutive patients and risk model for survival. Blood Cancer J. 2018 ; 8 : 21.
4) Dao KT, Gotlib J, Deininger MMN, et al. Efficacy of ruxolitinib in patients with chronic neutrophilic leukemia and atypical chronic myeloid leukemia. J Clin Oncol. 2020 ; 38 ; 1006-18.
5) Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia : 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol. 2022 ; 97 : 491-505.
6) Ruan GJ, Smith CJ, Day C, et al. A population-based study of chronic neutrophilic leukemia in the United States. Blood Cancer J. 2020 ; 10 : 68.
P.233 掲載の参考文献
1) William R. Hardy MD, Robert E, et al. The Hypereosinophilic syndromes. Ann Intern Med. 1968 ; 68 : 1220-9.
2) Chusid MJ, Dale CD, West BC, et al. The hypereosinophilic syndrome : analysis of fourteen cases with review of the literature. Medicine. 1975 ; 54 : 1-27.
3) Schmidt B, Roberts RS, Davis P, et al. A Tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003 ; 348 : 1201-14.
5) Shomali W, Gotlib J. World Health Organization-defined eosinophilic disorders : 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022 ; 97 : 129-48.
6) Khoury P, Abiodun AO, Holland-Thomas N, et al. Hypereosinophilic syndrome subtype predicts responsiveness to glucocorticoids. J Allergy Clin Immunol Pract [Internet]. 2018 ; 6 : 190-5. Available from : https://doi.org/10.1016/j.jaip.2017.06.006
7) Yoon TY, Ahn GB, Chang SH. Complete remission of hypereosinophilic syndrome after interferon-α therapy : Report of a case and literature review. J Dermatol. 2000 ; 27 : 110-5.
8) Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRα- positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007 ; 92 : 1173-9.
9) Cheah CY, Burbury K, Apperley JF, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood. 2014 ; 123 : 3574-7.
10) Roufosse F, Kahn JE, Rothenberg ME, et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome : A phase III, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2020 ; 146 : 1397-405.
11) Kuang FL, Legrand F, Makiya M, et al. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N Engl J Med. 2019 ; 380 : 1336-46.
P.236 掲載の参考文献
1) Williams N, Lee J, Mitchell E, et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature. 2022 ; 602 : 162-8.
2) Sousos N, Ni Leathlobhair M, Simoglou Karali C, et al. In utero origin of myelofibrosis presenting in adult monozygotic twins. Nature Medicine. 2022 ; 28 : 1207-11.
3) Mitchell E, Spencer Chapman M, Williams N, et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022 ; 606 : 343-50.

IV. リンパ系腫瘍

P.241 掲載の参考文献
1) Burger JA. Treatment of Chronic Lymphocytic Leukemia. N Engl J Med. 2020 ; 383 : 460-73.
3) Herling CD, Cymbalista F, Gros-Ophoff-Muller C, et al. Early treatment with FCR versus watch and wait in patients with stage Binet A high-risk chronic lymphocytic leukemia (CLL) : a randomized phase 3 trial. Leukemia 2020 ; 34 : 2038-50.
4) Dighiero G, Maloum K, Desablens B, et al. Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N Engl J Med. 1998 ; 338 : 1506-14.
5) Langerbeins P, Zhang C, Robrecht S, et al. The CLL12 trial : ibrutinib vs placebo in treatment-naive, early-stage chronic lymphocytic leukemia. Blood. 2022 ; 139 : 177-87.
6) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-Rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
7) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
8) Ahn IE, Tian X, Ipe D, et al. Prediction of outcome in patients with chronic lymphocytic leukemia treated with Ibrutinib : development and validation of a four-factor prognostic model. J Clin Oncol. 2021 ; 39 : 576-85.
9) International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI) : a meta-analysis of individual patient data. Lancet Oncol. 2016 ; 17 : 779-90.
10) Ruppert AS, Booth AM, Ding W, et al. Adverse event burden in older patients with CLL receiving bendamustine plus rituximab or ibrutinib regimens : Alliance A041202. Leukemia. 2021 ; 35 : 2854-61.
P.246 掲載の参考文献
1) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
2) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
3) Al-Sawaf O, Zhang C, Tandon M, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14) : follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020 ; 21 : 1188-200.
4) Munir T, Brown JR, O'Brien S, et al. Final analysis from RESONATE : Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019 ; 94 : 1353-63.
5) Ghia P, Pluta A, Wach M, et al. ASCEND : phase III, randomized trial of acalabrutinib versus idelalisib plus rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020 ; 38 : 2849-61.
8) Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia : Results of the first randomized phase III trial. J Clin Oncol. 2021 ; 39 : 3441-52.
9) Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia : 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020 ; 38 : 4042-54.
10) Awan FT, Schuh A, Brown JR, et al. Acalabrutinib monotherapy in patients with chronic lymphocytic leukemia who are intolerant to ibrutinib. Blood Adv. 2019 ; 3 : 1553-62.
P.251 掲載の参考文献
1) 青木定夫. CLL の形態観察における乾燥法の違いについて. 日本検査血液学会雑誌 2014 ; 15 : 396-403.
2) 鈴宮淳司. 慢性リンパ性白血病とその類縁疾患のWHO分類と診断アルゴリズム. 日本臨牀. 2021 ; 79 : 1705-13.
3) Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia : results from the CLL8 trial. Blood. 2014 ; 123 : 3247-54.
4) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
5) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
6) Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019 ; 380 : 2225-36.
7) Wiestner A, Ghia P, Byrd JC, et al. Rarity of B-cell receptor pathway mutations in progression-free patients with chronic lymphocytic leukemia (CLL) during first-line versus relapsed/refractory (R/R) treatment with Ibrutinib. ASH2020 #2225 (abstract) https://ash.confex.com/ash/2020/webprogram/Paper134386.html
8) Yoshino T, Tanaka T, Sato Y. Differential diagnosis of chronic lymphocytic leukemia/small lymphocytic lymphoma and other indolent lymphomas, including mantle cell lymphoma. J Clin Exp Hematop. 2020 ; 60 : 124-9.
9) Thompson PA, Tam CS, O'Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016 ; 127 : 303-9.
10) Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL : Updated results of the CLL8 trial. Blood. 2016 ; 127 : 208-15.
11) Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2021 ; 32 : 23-33.
13) Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations : a phase 2, single-arm trial. Lancet Oncol. 2015 ; 16 : 169-76.
14) Ahn IE, Tian X, Wiestner A. brutinib for chronic lymphocytic leukemia with TP53 alterations. N Engl J Med. 2020 ; 383 : 498-500.
15) Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia : 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020 ; 38 : 4042-54.
17) Tausch E, Schneider C, Robrecht S, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020 ; 135 : 2402-12.
18) Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019 ; 380 : 2225-36.
19) Campo E, Cymbalista F, Ghia P, et al. TP53 aberrations in chronic lymphocytic leukemia : an overview of the clinical implications of improved diagnostics. Haematologica. 2018 ; 103 : 1956-68.
P.256 掲載の参考文献
1) Katushima H, Fukuhara N, Ichikawa S, et al. Non-biased and complete case registration of lymphoid leukemia and lymphoma for five years : a first representative index of Japan from an epidemiologically stable Miyagi Prefecture. Leuk Lymphoma. 2017 ; 58 : 80-8.
2) Sarkozy C, Maurer MJ, Link BK, et al. Cause of death in follicular lymphoma in the first decade of the rituximab era : a pooled analysis of French and US cohorts. J Clin Oncol. 2019 ; 37 : 144-52.
5) Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin's lymphomas. N Engl J Med. 1984 ; 311 : 1471-5.
7) Kahl BS, Hong F, Williams ME, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma : Eastern Cooperative Oncology Group Protocol E4402. J Clin Oncol. 2014 ; 32 : 3096-102.
8) Kahl BS, Hong F, Peterson C, et al. Long term follow up of the resort study (E4402) : a randomized phase III study comparing two different rituximab dosing strategie for low tumor burden follicular lymphoma. Blood. 2021 ; 138, Supple 1 : 815.
P.263 掲載の参考文献
1) Brice P, Bastion Y, Lepage E, et al. Comparsion in low-tumorburden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon a : a randomized study from the Groupe d'Etude des Lymphomes Folliculaires. Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol. 1997 ; 15 : 1110-17.
4) Luminari S, Ferrari A, Manni M, et al. Long-term results of the FOLL05 trial comparing R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage symptomatic follicular lymphoma. J Clin Oncol. 2018 ; 36 : 689-96.
6) Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017 ; 377 : 1331-44.
7) Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018 ; 379 : 934-47.
9) Bachy E, Seymour JF, Feugier P, et al. Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma : long-term results of the PRIMA study. J Clin Oncol. 2019 ; 37 : 2815-24.
10) Luminari S, Manni M, Galimberti S, et al. Response-adapted postinduction strategy in patients with advanced-stage follicular lymphoma : the FOLL12 study. J Clin Oncol. 2022 ; 40 : 729-39.
11) Ohmachi K, Tobinai K, Kinoshita T, et al. Efficacy and safety of obinutuzumab in patients with previously untreated follicular lymphoma : a subgroup analysis of patients enrolled in Japan in the randomized phase III GALLIUM trial. Int J Hematol. 2018 ; 108 : 499-509.
P.269 掲載の参考文献
1) Junlen HR, Peterson S, Kimby E, et al. Follicular lymphoma in Sweden : nationwide improved survival in the rituximab era, particularly in elderly women : a Swedish Lymphoma Registry study. Leukemia. 2015 ; 29 : 668-76.
2) Link BK, Maurer MJ, Nowakowski GS, et al. Rates and outcomes of follicular lymphoma transformation in the immunochemotherapy era : a report from the University of Iowa/Mayo-Clinic Specialized Program of Research Excellence Molecular Epidemiology Resource. J Clin Oncol. 2013 ; 31 : 3272-8.
3) Sarkozy C, Trneny M, Xerri L, et al. Risk factors and outcomes for patients with follicular lymphoma who had histologic transformation after response to first-line immunochemotherapy in the PRIMA trial. J Clin Oncol. 2016 ; 34 : 2575-82.
4) Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN) : a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016 ; 17 : 1081-93.
5) Cheson BD, Chua N, Mayer J, et al. Overall survival benefit in patients with rituximab-refractory indolent non-hodgkin lymphoma who received obinutuzumab plus bendamustine induction and obinutuzumab maintenance in the GADOLIN study. J Clin Oncol. 2018 ; 36 : 2259-66.
6) Matsumoto K, Takayama N, Aisa Y, et al. A phase II study of bendamustine plus rituximab in Japanese patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma previously treated with rituximab : BRB study. Int J Hematol. 2015 ; 101 : 554-62.
7) van Oers MH, Van Glabbeke M, Giurgea L, et al. Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin's lymphoma : long-term outcome of the EORTC 20981 phase III randomized intergroup study. J Clin Oncol. 2010 ; 28 : 2853-8.
8) Leonard JP, Trneny M, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
9) Morschhauser F, Tilly H, Chaidos A, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma : an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 2020 ; 21 : 1433-42.
10) Izutsu K, Ando K, Nishikori M, et al. Phase II study of tazemetostat for relapsed or refractory B-cell non-Hodgkin lymphoma with EZH2 mutation in Japan. Cancer Sci. 2021 ; 112 : 3627-35.
13) Maurer MJ, Bachy E, Ghesquieres H, et al. Early event status informs subsequent outcome in newly diagnosed follicular lymphoma. Am J Hematol. 2016 ; 91 : 1096-101.
14) Jurinovic V, Kridel R, Staiger AM, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood. 2016 ; 128 : 1112-20.
15) Casulo C, Byrtek M, Dawson KL, et al. Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death : an analysis from the National LymphoCare Study. J Clin Oncol. 2015 ; 33 : 2516-22.
16) Casulo C, Friedberg JW, Ahn KW, et al. Autologous transplantation in follicular lymphoma with early therapy failure : A National LymphoCare Study and Center for International Blood and Marrow Transplant Research Analysis. Biol Blood Marrow Transplant. 2018 ; 24 : 1163-71.
17) Smith SM, Godfrey J, Ahn KW, et al. Autologous transplantation versus allogeneic transplantation in patients with follicular lymphoma experiencing early treatment failure. Cancer. 2018 ; 124 : 2541-51.
18) Okamoto A, Fujigaki H, Iriyama C, et al. CD19-positive lymphocyte count is critical for acquisition of anti-SARS-CoV-2 IgG after vaccination in B-cell lymphoma. Blood Adv. 2022.
P.275 掲載の参考文献
1) Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of tumours of haematopoietic and lymphoid tissues, Revised 4th ed. Lyon : IARC Press ; 2017.
2) Broccoli A, Zinzani PL. How do we sequence therapy for marginal zone lymphoma. Hematology Am Soc Hematol Educ Program. 2020 ; 2020 : 295-305.
3) Thieblemont C, Cascione L, Concon A, et al. A MALT lymphoma prognostic index. Blood. 2017 ; 130 : 1409-17.
4) Kastritis E, Morel P, Duhamel A, et al. A revised international prognostic score system for Waldenstrom's macroglobulinemia. Leukemia. 2019 ; 33 : 2654-61.
5) Rossi D, Bertoni F, Zucca E. Marginal-Zone lymphomas. N Engl J Med. 2022 ; 386 : 568-81.
6) Dimopoulos MA, Kastritis E, Owen RG, et al. Treatment recommendations for patients with Waldenstrom macroglobulinemia (WM) and related disorders : IWWM-7 consensus. Blood. 2014 ; 124 : 1404-11.
7) Sekiguchi N, Rai S, Munakata W, et al. A multicenter, open-label, phase II study of tirabrutinib (ONO/GS-4059) in patients with Waldenstrom's macroglobulinemia. Cancer Science. 2020 ; 111 : 3327-37.
8) Sekiguchi N, Rai S, Munakata W, et al. Two-year outcomes of tirabrutinib monotherapy in Waldenstrom's macroglobulinemia. Cancer Sci. 2022 ; 113 : 2085-96.
9) Castillo JJ, Itchaki G, Gustine JN, et al. A matched case-control study comparing features, treatment and outcomes between patients with non-IgM lymphoplasmacytic lymphoma and Waldenstrom macroglobulinemia. Leuk Lymphoma. 2020 ; 61 : 1388-94.
10) Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as_rst-line treatment for patients with indolent and mantle-cell lymphomas : an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013 ; 381 : 1203-10.
11) Walewski J, Paszkiewicz-Kozik E, Michalskiet W, et al. First-line R-CVP versus R-CHOP induction immunochemotherapy for indolent lymphoma with rituximab maintenance. A multicentre, phase III randomized study by the Polish Lymphoma Research Group PLRG4. Br J Haematol. 2020 ; 188 : 898-906.
12) Herold M, Hoster E, Janssens A, et al. Immunochemotherapy and maintenance with obinutuzumab or rituximab in patients with previously untreated marginal zone lymphoma in the randomized GALLIUM trial. Hemasphere. 2022 ; 6 : e699.
13) Leonard JP, Trneny M, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
15) Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017 ; 377 : 1331-44.
16) Castillo JJ, Treon SP. Management of Waldenstrom macroglobulinemia in 2020. Am Soc Hematol Educ Program. 2020 : 372-9.
17) Yamasaki S, Chihara D, Yoshida I, et al. Impact of hematopoietic stem cell transplantation in patients with relapsed or refractory marginal zone lymphoma. Ann Hematol. 2019 ; 98 : 1521-3.
18) Sakurai M, Mori T, Uchiyama H, et al. Outcome of stem cell transplantation for Waldenstrom's macroglobulinemia : analysis of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) Lymphoma Working Group. Ann. Hematol. 2020 ; 99 : 1635-42.
P.281 掲載の参考文献
1) Gerson JN, Handorf E, Villa D, et al. Survival outcomes of younger patients with mantle cell lymphoma treated in the rituximab era. J Clin Oncol. 2019 : 37 : 471-80.
2) Hermine O, Hoster E, Walewski, J, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger) : a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016 ; 388 : 565-75.
3) Ogura M, Yamamoto K, Morishima Y, et al. R-High-CHOP/CHASER/LEED with autologous stem cell transplantation in newly diagnosed mantle cell lymphoma : JCOG0406 STUDY. Cancer Sci. 2018 : 109 : 2830-40.
4) Merryman RW, Edwin N, Redd R, et al. Rituximab/bendamustine and rituximab/cytarabine induction therapy for transplant-eligible mantle cell lymphoma. Blood Adv. 2020 ; 4 : 858-67.
P.287 掲載の参考文献
1) 日本血液学会. 造血器腫瘍診療ガイドライン 2018年版補訂版.
2) Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle cell lymphoma (MCL) : long-term follow-up of the randomized European MCL elderly trial. J Clin Oncol. 2020 ; 38 : 248-56.
5) Robak T, Jin J, Pylypenko H, et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma : final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018 ; 19 : 1449-58.
7) Tisi MC, Nassi L, Patti C, et al. Rituximab plus bendamustine and cytarabine (R-BAC) in elderly patients with newly diagnosed mantle cell lymphoma : long term follow-up and mrd results of a phase 2 study from the fondazione Italiana linfomi. Blood. 2021 ; 138 : 384.
8) Salles G, Wang M, Kumar A, et al. Role of maintenance rituximab after first-line bendamustine+rituximab or R-CHOP in patients with mantle cell lymphoma from a large US real-world cohort. EHA. 2021 ; abstract EP785.
9) Dreyling M, Goy A, Hess G, et al. Long-term outcomes with ibrutinib treatment for patients with relapsed/refractory mantle cell lymphoma : a pooled analysis of 3 clinical trials with nearly 10 years of follow-up. Hemasphere. 2022 ; 6 : e712.
10) Wang ML, Jurczak W, Jerkeman M, et al. Ibrutinib plus bendamustine and rituximab in untreated mantle-cell lymphoma. N Engl J Med. 2022 ; 386 : 2482-94.
11) Flinn IW, van der Jagt R, Kahl B, et al. First-line treatment of patients with indolent non-Hodgkin lymphoma or mantle-cell lymphoma with bendamustine plus rituximab versus R-CHOP or R-CVP : results of the BRIGHT 5-year follow-up study. J Clin Oncol. 2019 ; 37 : 984-91.
12) Fung M, Jacobsen E, Freedman A, et al. Increased risk of infectious complications in older patients with indolent non-Hodgkin lymphoma exposed to bendamustine. Clin Infect Dis. 2019 ; 68 : 247-55.
P.292 掲載の参考文献
1) Miller TP, Dahlberg S, Cassady JR, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin's lymphoma. N Engl J Med. 1998 ; 339 : 21-6.
2) Stephens DM, Li H, LeBlanc ML, et al. Continued risk of relapse independent of treatment modality in limited-stage diffuse large B-cell lymphoma : final and long-term analysis of Southwest Oncology Group Study S8736. J Clin Oncol. 2016 ; 34 : 2997-3004.
3) Poeschel V, Held G, Ziepert M, et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER) : a randomised, phase 3, non-inferiority trial. Lancet. 2019 ; 394 : 2271-81.
4) Persky DO, Li H, Stephens DM, et al. Positron emission tomography-directed therapy for patients with limited-stage diffuse large B-cell lymphoma : results of Intergroup National Clinical Trials Network Study S1001. J Clin Oncol. 2020 ; 38 : 3003-11.
P.297 掲載の参考文献
1) Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020 ; 37 : 551-68 e14.
3) Chiappella A, Martelli M, Angelucci E, et al. Rituximab-dose-dense chemotherapy with or without high-dose chemotherapy plus autologous stem-cell transplantation in high-risk diffuse large B-cell lymphoma (DLCL04) : final results of a multicentre, open-label, randomised, controlled, phase 3 study. Lancet Oncol. 2017 ; 18 : 1076-88.
4) Bartlett NL, Wilson WH, Jung SH, et al. Dose-adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-cell lymphoma : clinical outcomes of the phase III intergroup trial Alliance/CALGB 50303. J Clin Oncol. 2019 ; 37 : 1790-9.
5) Younes A, Sehn LH, Johnson P, et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J Clin Oncol. 2019 ; 37 : 1285-95.
6) Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med. 2022 ; 386 : 351-63.
7) Wilson WH, Wright GW, Huang DW, et al. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell. 2021 ; 39 : 1643-53 e3.
P.302 掲載の参考文献
1) Muto R, Miyoshi H, Sato K, et al. Epidemiology and secular trends of malignant lymphoma in Japan : Analysis of 9426 cases according to the World Health Organization classification. Cancer Med. 2018 ; 7 : 5843-58.
2) Mareschal S, Lanic H, Ruminy P, et al. The proportion of activated B-cell like subtype among de novo diffuse large B-cell lymphoma increases with age. Haematologica. 2011 ; 96 : 1888-90.
3) Wilson WH, Wright GW, Huang DW, et al. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell. 2021 ; 39 : 1643-53.
4) 日本血液学会. 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版 ; 2020.
5) Smith TJ, Bohlke K, Lyman GH, et al. Recommendations for the Use of WBC Growth Factors : American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2015 ; 33 : 3199-212.
9) Oberic L, Peyrade F, Puyade M, et al. Subcutaneous rituximab-miniCHOP compared with subcutaneous rituximab-miniCHOP plus lenalidomide in diffuse large B-cell lymphoma for patients age 80 years or older. J Clin Oncol. 2021 ; 39 : 1203-13.
10) Tilly H, Morschhauser F, Sehn LH, et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N Engl J Med. 2022 ; 386 : 351-63.
P.308 掲載の参考文献
1) Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma : results from the international SCHOLAR-1 study. Blood. 2017 ; 130 : 1800-8.
2) Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med. 1995 ; 333 : 1540-5.
4) Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology Am Soc Hematol Educ Program. 2011 ; 2011 : 498-505.
5) Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019 ; 380 : 45-56.
6) Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017 ; 377 : 2531-44.
7) Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001) : a multicentre seamless design study. Lancet. 2020 ; 396 : 839-52.
8) Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020 ; 38 : 155-65.
9) Salles G, Duell J, Gonzalez Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND) : a multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020 ; 21 : 978-88.
10) Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N Engl J Med. 2022 ; 386 : 640-54.
11) Bishop MR, Dickinson M, Purtill D, et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N Engl J Med. 2022 ; 386 : 629-39.
12) Budde LE, Assouline S, Sehn LH. Single-agent mosunetuzumab shows durable complete responses in patients with relapsed or refractory B-cell lymphomas : Phase I Dose-Escalation Study. J Clin Oncol. 2022 ; 40 : 481-91.
13) Hutchings M, Mous R, Clausen MR, et al. Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma : an open-label, phase 1/2 study. Lancet. 2021 ; 398 : 1157-69.
14) Hutchings M, Morschhauser F, Iacoboni G. Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma : a phase I trial. J Clin Oncol. 2021 ; 39 : 1959-70.
15) Bannerji R, Arnason JE, Advani RH, et al. Odronextamab, a human CD20×CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1) : results from the relapsed or refractory non-Hodgkin lymphoma cohort in a single-arm, multicentre, phase 1 trial. Lancet Haematol. 2022 ; 9 : e327-39.
16) Caimi PF, Ai W, Alderuccio JP, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2) : a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021 ; 22 : 790-800.
P.313 掲載の参考文献
1) Thiel E, Korfel A, Martus P, et al. High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1) : a phase 3, randomised, non-inferiority trial. Lancet Oncol [Internet]. 2010 ; 11 : 1036-47. Available from : http://dx.doi.org/10.1016/S1470-2045 (10) 70229-1
2) Ferreri AJM, Cwynarski K, Pulczynski E, et al. Whole-brain radiotherapy or autologous stem-cell transplantation as consolidation strategies after high-dose methotrexate-based chemoimmunotherapy in patients with primary CNS lymphoma : results of the second randomisation of the International Extranodal L. Lancet Haematol. 2017 ; 4 : e510-23.
3) Ferreri AJM, Cwynarski K, Pulczynski E, et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma : Results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol [Internet]. 2016 May 1 [cited 2020 Jan 7] ; 3 (5) : e217-27. Available from : http://dx.doi.org/10.1016/
4) Houillier C, Taillandier L, Dureau S, et al. Radiotherapy or autologous stem-cell transplantation for primary CNS lymphoma in patients 60 years of age and younger : Results of the intergroup ANOCEF-GOELAMS randomized phase II PRECIS study. J Clin Oncol. 2019 ; 37 : 823-33.
5) Schorb E, Kasenda B, Ihorst G, et al. High-dose chemotherapy and autologous stem cell transplant in elderly patients with primary CNS lymphoma : A pilot study. Blood Adv. 2020 ; 4 : 3378-81.
6) Herrlinger U, Schafer N, Fimmers R, et al. Early whole brain radiotherapy in primary CNS lymphoma : negative impact on quality of life in the randomized G-PCNSL-SG1 trial. J Cancer Res Clin Oncol. 2017 ; 143 : 1815-21.
P.318 掲載の参考文献
1) Shipp MA, Harrington DP. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med. 1993 ; 329 : 987-94.
2) Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U) : a new prognostic model from a retrospective multicentric clinical study. Blood. 2004 ; 103 : 2474-9.
3) Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med. 1993 ; 328 : 1002-6.
4) Horwitz S, O'Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2) : a global, double-blind, randomised, phase 3 trial. Lancet. 2019 ; 393 : 229-40.
5) Horwitz S, O'Connor OA, Pro B, et al. The ECHELON-2 Trial : 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022 ; 33 : 288-98.
6) Bachy E, Camus V, Thieblemont C, et al. Romidepsin plus CHOP versus CHOP in patients with previously untreated peripheral T-cell lymphoma : results of the Ro-CHOP Phase III study (conducted by LYSA). J Clin Oncol. 2022 ; 40 : 242-51.
7) Savage KJ, Horwitz SM, Advani R, et al. Role of stem cell transplant in CD30-positive PTCL following frontline brentuximab vedotin+CHP or CHOP in ECHELON-2. Blood Adv. 2022.
P.322 掲載の参考文献
1) Pileri SA, Weisenburger DD, Sng I, et al. Peripheral T-cell lymphoma, NOS. Swerdlow SH, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon : IARC Press ; 2017. p.403-7.
2) 日本血液学会, 編. 末梢性T細胞リンパ腫 (PTCL). 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版 ; 2020. p.266-72.
3) Zain JM, Hanona P. Aggressive T-cell lymphomas : 2021 Updates on diagnosis, risk stratification and management. Am J Hematol. 2021 ; 96 : 1027-46.
4) Bellei M, Foss FM, Shustov AR, et al. The outcome of peripheral T-cell lymphoma patients failing first-line therapy : a report from the prospective, International T-Cell Project. Haematologica. 2018 ; 103 : 1191-7.
5) Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014 ; 32 : 1157-63.
6) Barta SK, Gong JZ, Porcu P. Brentuximab vedotin in the treatment of CD30+ PTCL. Blood. 2019 ; 134 : 2339-45.
8) O'Connor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma : results from the pivotal PROPEL study. J Clin Oncol. 2011 ; 29 : 1182-9.
9) Coiffier B, Pro B, Prince HM, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012 ; 30 : 631-6.
10) Kawai H, Ando K, Maruyama D, et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 2021 ; 112 : 2426-35.
11) Shi Y, Dong M, Hong X, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015 ; 26 : 1766-71.
12) Luminari S, Skrypets T. What's new in peripheral T-cell lymphomas. Hematol Oncol. 2021 ; 39 Suppl 1 : 52-60.
13) Horwitz SM, Ansell S, Ai WZ, et al. T-Cell Lymphomas, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022 ; 20 : 285-308.
14) d'Amore F, Gaulard P, Trumper L, et al. Peripheral T-cell lymphomas : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015 ; 26 (suppl 5) : v108-15.
15) Ghione P, Faruque P, Mehta-Shah N, et al. T follicular helper phenotype predicts response to histone deacetylase inhibitors in relapsed/refractory peripheral T-cell lymphoma. Blood Adv. 2020 ; 4 : 4640-7.
16) Ohmachi K, Ando K, Ogura M, et al. E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma : A phase I study. Cancer Sci. 2018 ; 109 : 794-802.
17) Falchi L, Ma H, Klein S, et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL : a multicenter phase 2 study. Blood. 2021 ; 137 : 2161-70.
18) Marchi E, Zullo KM, Amengual JE, et al. The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T-cell lymphoma. Br J Haematol. 2015 ; 171 : 215-26.
19) O'Connor OA, Falchi L, Lue JK, et al. Oral 5 azacytidine and romidepsin exhibit marked activity in patients with PTCL : a multicenter phase 1 study. Blood. 2019 ; 134 : 1395-405.
20) O'Connor OA, Ozcan M, Jacobsen ED, et al. Randomized phase III study of alisertib or investigator's choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. J Clin Oncol. 2019 ; 37 : 613-23.
P.332 掲載の参考文献
1) Chan JKC, Quintanilla-Martinez L, Ferry JA. Extranodal NK/T-cell lymphoma, nasal type. Swerdlow SH, Campo E, Harris NK, et al (.eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th ed. Lyon : IARC ; 2017. p.368-71.
2) Yamaguchi M, Oguchi M, Suzuki R. Extranodal NK/T-cell lymphoma : updates in biology and management strategies. Best Pract Res Clin Haematol. 2018 ; 31 : 315-21.
3) Xiong J, Cui B-W, Wang N, et al. Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell. 2020 ; 37 : 403-19.
4) Au W-Y, Weisenburger DD, Inttragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma : a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009 ; 113 : 3931-7.
5) Kim SJ, Yoon DH, Jaccard A, et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment : a multicentre, retrospective analysis. Lancet Oncol. 2016 ; 17 : 389-400.
6) Tao R, Fan L, Song Y, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma : a multicenter, single-arm, phase 2 tria (l ORIENT-4). Signal Transduct Target Ther. 2021 ; 6 : 365.
7) Yamaguchi M, Tobinai K, Oguchi M, et al. Concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma : an updated analysis of the Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol. 2012 ; 30 : 4044-6.
8) Yamaguchi M, Kwong Y-L, Kim WS, et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type : the NK-Cell Tumor Study Group study. J Clin Oncol. 2011 ; 29 : 4410-6.
9) Jaccard A, Gachard N, Marin B, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood. 2011 ;