日本臨牀 別冊 血液症候群(第3版)II

出版社: 日本臨牀社
発行日: 2023-10-31
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: 血液症候群(第3版)II―その他の血液疾患を含めて―
電子書籍版: 2023-10-31 (第3版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

19,800 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

19,800 円(税込)

目次

  • 特集 血液症候群(第3版)II
       ―その他の血液疾患を含めて―

    III.白血球(顆粒球)の異常(悪性腫瘍を除く)
     1.類白血病反応
      (1)類白血病反応
      (2)一過性骨髄異常増殖症
     2.好中球の異常
      (1)好中球増加症
        1)遺伝性好中球増加症
        2)慢性特発性好中球増加症
        3)偽性好中球増加症
        4)副腎皮質ステロイドによる好中球増加症
        5)妊娠性白血球増加症
        6)CSF産生腫瘍
      (2)好中球減少症
        1)無顆粒球症
        2)慢性特発性好中球減少症
        3)重症先天性好中球減少症
        4)Shwachman症候群
        5)同種免疫性好中球減少症
        6)自己免疫性好中球減少症
        (7)周期性好中球減少症
      (3)好中球機能異常症
        1)先天性好中球機能異常症
         (1)Pelger-Huët anomaly
         (2)MYH(9)異常症(May-Hegglin異常)
         (3)Alder-Reilly anomaly
         (4)チェディアック・東症候群
         (5)ミエロペルオキシダーゼ欠損症
         (6)好中球二次顆粒欠損症
         (7)好中球アクチン機能異常症
         (8)Job症候群
         (9)なまけもの白血球症候群
         (10)慢性肉芽腫症
         (11)Jordans異常(中性脂肪蓄積心筋血管症を中心に)
        2)後天性好中球機能異常症
         (1)偽Pelger-Huët核異常
         (2)Dohle小体
     3.好酸球の異常
      (1)好酸球増加症
        1)PIE症候群
         (1)Löffler症候群
         (2)遷延性肺好酸球(増加)症
         (3)アレルギー性気管支肺アスペルギルス/真菌症(ABPA/M)
         (4)好酸球性多発血管炎性肉芽腫症
           (旧名称:アレルギー性肉芽腫性血管炎, Churg-Strauss 症候群
         (5)多発血管炎性肉芽腫症
         (6)結節性動脈周囲炎、結節性多発動脈炎
        2)特発性好酸球増加症候群
        3)好酸球性血管性浮腫
        4)好酸球性胃腸炎
        5)寄生虫感染による好酸球増加症
     4.好塩基球の異常
      (1)好塩基球増加症
      (2)好塩基球減少症
     5.単球の異常
      (1)単球増加症
      (2)単球性類白血病反応
      (3)単球減少症
         1)大理石骨病
     6.肥満細胞の異常
      (1)全身性肥満細胞症

    IV.リンパ球の異常
     1.リンパ球増加症
      (1)移植後リンパ球増殖症
      (2)特発性顆粒リンパ球増加性リンパ増殖性疾患
      (3)性染色体連鎖リンパ球増加症
      (4)リンパ球性類白血病反応
     2.リンパ球減少症
      (1)リンパ球減少症
        1)先天性リンパ球減少症
        2)後天性リンパ球減少症
      (2)特発性CD4リンパ球減少症
     3.伝染性単核症
      (1)Epstein-Barr ウイルスによる伝染性単核球症
      (2)サイトメガロウイルスによる伝染性単核球症
     4.リンパ球機能異常と類縁疾患
      (1)原発性免疫不全症候群
        1)乳児一過性低ガンマグロブリン血症
        2)X連鎖無ガンマグロブリン血症
        3)分類不能型免疫不全症
        4)免疫グロブリンクラススイッチ異常症(高IgM症候群)
        5)選択的IgA欠損症
        6)IgM単独(選択的)欠損症
        (7))単独IgGサブクラス欠損症
        (8))DiGeorge 症候群
        (9))プリンヌクレオシド・ホスホリラーゼ欠損症
        10)ビオチン依存性カルボキシラーゼ欠損症
        11)複合免疫不全症(CID)
         (1)重症複合免疫不全症
         (2)アデノシン・デアミナーゼ欠損症
         (3)細網異形成症
        12)MHCクラスI/II欠損症
        13)Ataxia-telangiectasia
        14)Wiskott-Aldrich症候群
        15)Bloom(ブルーム)症候群
        16)Good症候群(免疫不全症を伴う胸腺腫)
        1(7))Job症候群 (高IgE症候群-反復感染症候群)
        1(8))補体異常症
      (2)二次性免疫不全症候群
        1)後天性免疫不全症候群
        2)その他の二次性免疫不全症候群

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

III 白血球 ( 顆粒球 ) の異常 ( 悪性腫瘍を除く )

P.9 掲載の参考文献
2) 中尾喜久, 三好和夫 : 類白血病性反応に就て-臨牀方面-. 日本血液学会雑誌 14 (補冊) : 290-309, 1951.
3) Halkes CJ, Dijstelbloem HM, Eelkman Rooda SJ, et al : Extreme leucocytosis : not always leukaemia. Neth J Med 65 : 248-251, 2007.
4) Sakka V, Tsiodras S, Giamarellos-Bourboulis EJ, et al : An update on the etiology and diagnostic evaluation of a leukemoid reaction. Eur J Intern Med 17 : 394-398, 2006.
5) Roberts AW : G-CSF : a key regulator of neutrophil production, but that's not all! Growth Factors 23 : 33-41, 2005.
6) Nimieri HS, Makoni SN, Madziwa FH, et al : Leukemoid reaction response to chemotherapy and radiotherapy in a patient with cervical carcinoma. Ann Hematol 82 : 316-317, 2003.
7) Abukhiran IA, Jasser J, Syrbu S : Paraneoplastic leukemoid reactions induced by cytokinesecreting tumours. J Clin Pathol 73 : 310-313, 2020.
8) Gabrilovich DI, Bronte V, Chen SH, et al : The terminology issue for myeloid-derived suppressor cells. Cancer Res 67 : 425 ; author reply 426, 2007.
9) Gabrilovich DI, Nagaraj S : Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9 : 162-174, 2009.
10) Potasman I, Grupper M : Leukemoid Reaction : Spectrum and Prognosis of 173 Adult Patients. Clin Infect Dis 57 : e177-181, 2013.
P.13 掲載の参考文献
2) Khoury JD, Solary E, Abla O, et al : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours : Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36 : 1703-1719, 2022.
3) Sandoval C, Pine SR, Guo Q, et al : Tetrasomy 21 transient leukemia with a GATA1 mutation in a phenotypically normal trisomy 21 mosaic infant : case report and review of the literature. Pediatr Blood Cancer 44 : 85-91, 2005.
4) Wechsler J, Greene M, McDevitt MA, et al : Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32 : 148-152, 2002.
5) Shimada A, Xu G, Toki T, et al : Fetal origin of the GATA1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Blood 103 : 366, 2004.
6) Banno K, Omori S, Hirata K, et al : Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities. Cell Rep 15 : 1228-1241, 2016.
7) Yoshida K, Toki T, Okuno Y, et al : The landscape of somatic mutations in Down syndromerelated myeloid disorders. Nat Genet 45 : 1293-1299, 2013.
8) Massey GV, Zipursky A, Chang MN, et al : A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS) : Children's Oncology Group (COG) study POG-9481. Blood 107 : 4606-4613, 2006.
9) Klusmann JH, Creutzig U, Zimmermann M, et al : Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood 111 : 2991-2998, 2008.
10) Muramatsu H, Kato K, Watanabe N, et al : Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br J Haematol 142 : 610-615, 2008.
11) Gamis AS, Alonzo TA, Gerbing RB, et al : Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates : a report from the Children' s Oncology Group Study A2971. Blood 118 : 6752-6996, 2011.
12) Hattori H, Matsuzaki A, Suminoe A, et al : High expression of platelet-derived growth factor and transforming growth factor-β1 in blast cells from patients with Down Syndrome suffering from transient myeloproliferative disorder and organ fibrosis. Br J Haematol 115 : 472-475, 2001.
13) Shitara Y, Takahashi N, Aoki Y, et al : Cytokine Profiles in Pericardial Effusion in a Down Syndrome Infant with Transient Abnormal Myelopoiesis. Tohoku J Exp Med 241 : 149-153, 2017.
14) Flasinski M, Scheibke K, Zimmermann M, et al : Low-dose cytarabine to prevent myeloid leukemia in children with Down syndrome : TMD Prevention 2007 study. Blood Adv 2 : 1532-1540, 2018.
15) Muramatsu H, Watanabe T, Hasegawa D, et al : Prospective study of 168 infants with transient abnormal myelopoiesis with Down syndrome : Japan Pediatric Leukemia/Lymphoma Study Group, TAM-10 Study. Blood 126 : 1311, 2015.
P.16 掲載の参考文献
1) Herring WB, Smith LG, Walker RI, et al : Hereditary neutrophilia. Am J Med 56 : 729-734, 1974.
2) Plo I, Zhang Y, Le Couedic JP, et al : An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. J Exp Med 206 : 1701-1707, 2009.
3) Otieno SB, Altahan A, Karri S, et al : CIN or not : An approach to the evaluation and management of chronic idiopathic neutrophilia. Blood Rev 46 : 100739, 2021.
4) Szuber N, Elliott M, Tefferi A : Chronic neutrophilic leukemia : 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 97 : 491-505, 2022.
P.18 掲載の参考文献
2) Arteta-Bulos R, Weir AB, Lewis J : Chronic idiopathic neutrophilia : retrospective analysis of causes and consequences. Blood 116 : 4717, 2010.
3) Weir AB, Lewis JB Jr, Arteta-Bulos R : Chronic idiopathic neutrophilia : experience and recommendations. South Med J 104 : 499-504, 2011.
4) Otieno SB, Altahan A, Karri S, et al : CIN or not : An approach to the evaluation and management of chronic idiopathic neutrophilia. Blood Rev 46 : 100739, 2021.
5) Szuber N, Elliott M, Tefferi A : Chronic neutrophilic leukemia : 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 97 : 491-505, 2022.
P.20 掲載の参考文献
1) 北川誠一 : 白血球. 標準生理学 第8版 (小澤瀞司, 福田康一郎監), p525-531, 医学書院, 2014.
2) Athens JW, Haab OP, Raab SO, et al : Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40 : 989-995, 1961.
3) Boxer LA, Allen JM, Baehner RL : Diminished polymorphonuclear leukocyte adherence. Function dependent on release of cyclic AMP by endothelial cells after stimulation of beta-receptors by epinephrine. J Clin Invest 66 : 268-274, 1980.
4) Dale DC : Neutropenia and neutrophilia. In : Williams Hematology, 7th ed (ed by Lichtman MA, Beutler E, Kipps TJ, et al), p907-919, McGraw-Hill, New York, 2006.
5) Patel KJ, Hughes CG, Parapia LA : Pseudoleucocytosis and pseudothrombocytosis due to cryoglobulinaemia. J Clin Pathol 40 : 120-121, 1987.
6) Lombarts AJ, de Kieviet W : Recognition and prevention of pseudothrombocytopenia and concomitant pseudoleukocytosis. Am J Clin Pathol 89 : 634-639, 1988.
P.22 掲載の参考文献
1) Dale DC, Fauci AS, Wolff SM : Alternate-day prednisone. Leukocyte kinetics and susceptibility to infections. N Engl J Med 291 : 1154-1158, 1974.
2) Fauci AS, Dale DC, Balow JE : Glucocorticosteroid therapy : mechanisms of action and clinical considerations. Ann Intern Med 84 : 304-315, 1976.
3) MacGregor RR, Spagnuolo PJ, Lentnek AL : Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. N Engl J Med 291 : 642-646, 1974.
4) Shezen E, Shirman M, Goldman R : Opposing effects of dexamethasone on the clonal growth of granulocyte and macrophage progenitor cells and on the phagocytic capability of mononuclear phagocytes at different stages of differentiation. J Cell Physiol 124 : 545-553, 1985.
5) Cox G : Glucocorticoid treatment inhibits apoptosis in human neutrophils. Separation of survival and activation outcomes. J Immunol 154 : 4719-4725, 1995.
P.24 掲載の参考文献
2) Bailie KE, Irvine AE, Bridges JM, et al : Granulocyte and granulocyte-macrophage colony-stimulating factors in cord and maternal serum at delivery. Pediatr Res 35 : 164-168, 1994.
3) Cincotta R, Balloch A, Metz J, et al : Physiological neutrophilia of pregnancy is not associated with a rise in plasma granulocyte colony-stimulating factor (G-CSF). Am J Hematol 48 : 288, 1995.
4) Uzumaki H, Okabe T, Sasaki N, et al : Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci USA 86 : 9323-9326, 1989.
5) Dockree S, Shine B, Pavord S, et al : White blood cells in pregnancy : reference intervals for before and after delivery. EBioMedicine 74 : 103715, 2021.
P.27 掲載の参考文献
1) Suzuki A, Takahashi T, Okuno Y, et al : Liver damage in patients with colony-stimulating factor-producing tumors. Am J Med 94 : 125-132, 1993.
2) 佐藤勉, 山内尚文, 小林大介, ほか : Granulocyte colony stimulating factor (G-CSF) 産生腎癌. 臨床血液 38 : 1189-1193, 1997.
3) Sato K, Terada K, Sugiyama T, et al : Granulocyte colony-stimulating factor produced by bladder carcinoma of a patient with leukemoid reaction did not affect proliferation of the tumor cells. J Urol 151 : 1687-1690, 1994.
4) 竹山脩平, 木村潤, 三浦知晃, ほか : 好酸球増多を呈したGM-CSF産生膵腺房細胞癌の1例. 日本内科学会雑誌 107 : 276-283, 2018.
5) Sawyers CL, Golde DW, Quan S, et al : Production of granulocyte-macrophage colony-stimulating factor in two patients with lung cancer, leukocytosis, and eosinophilia. Cancer 69 : 1342-1346, 1992.
6) Ohsaka A, Saionji K, Endo K, et al : Alterations of effector cell molecule expression on neutrophils in granulocyte colony-stimulating factor-producing tumour. Br J Haematol 91 : 571-574, 1995.
7) Yuo A, Kitagawa S, Ohsaka A, et al : Recombinant human granulocyte colony-stimulating factor as an activator of human granulocytes : potentiation of responses triggered by receptor-mediated agonists and stimulation of C3bi receptor expression and adherence. Blood 74 : 2144-2149, 1989.
8) Kawakami M, Tsutsumi H, Kumakawa T, et al : Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76 : 1962-1964, 1990.
P.31 掲載の参考文献
1) 横山泰久, 高見昭良, 森康雄, ほか : 成人慢性好中球減少症診療の参照ガイド. 臨床血液 59 : 845-857, 2018.
2) 高見昭良 : 無顆粒球症 (顆粒球減少症, 好中球減少症). 日本臨牀 77 (増刊 : 医薬品副作用学 (第3版) (下)) : 176-180, 2019.
3) Johnston A, Uetrecht J : Current understanding of the mechanisms of idiosyncratic drug-induced agranulocytosis. Expert Opin Drug Metab Toxicol 11 : 243-257, 2015.
5) Tamai H, Sudo T, Kimura A, et al : Association between the DRB1*08032 histocompatibility antigen and methimazole-induced agranulocytosis in Japanese patients with Graves disease. Ann Intern Med 124 : 490-494, 1996.
6) Freifeld AG, Bow EJ, Sepkowitz KA, et al : Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer : 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 52 : e56-e93, 2011.
7) Andres E, Kurtz JE, Martin-Hunyadi C, et al : Nonchemotherapy drug-induced agranulocytosis in elderly patients : the effects of granulocyte colony-stimulating factor. Am J Med 112 : 460-464, 2002.
8) Sicre de Fontbrune F, Moignet A, Beaupain B, et al : Severe chronic primary neutropenia in adults : report on a series of 108 patients. Blood 126 : 1643-1650, 2015.
P.34 掲載の参考文献
1) 横山泰久, 高見昭良, 森康雄, ほか : 成人慢性好中球減少症診療の参照ガイド. 臨床血液 59 : 845-857, 2018.
2) Hsieh MM, Everhart JE, Byrd-Holt DD, et al : Prevalence of neutropenia in the U.S. population : age, sex, smoking status, and ethnic differences. Ann Intern Med 146 : 486-492, 2007.
3) Kweon OJ, Lee MK, Kim HJ, et al : Neutropenia and neutrophil-to-lymphocyte ratio in a healthy Korean population : race and sex should be considered. Int J Lab Hematol 38 : 308-318, 2016.
4) Andersen CL, Tesfa D, Siersma VD, et al : Prevalence and clinical significance of neutropenia discovered in routine complete blood cell counts : a longitudinal study. J Intern Med 279 : 566-575, 2016.
5) Papadaki HA, Xylouri I, Coulocheri S, et al : Prevalence of chronic idiopathic neutropenia of adults among an apparently healthy population living on the island of Crete. Ann Hematol 78 : 293-297, 1999.
6) Dale DC, Bolyard AA, Schwinzer BG, et al : The Severe Chronic Neutropenia International Registry : 10-Year Follow-up Report. Support Cancer Ther 3 : 220-231, 2006.
7) Sicre de Fontbrune F, Moignet A, Beaupain B, et al : Severe chronic primary neutropenia in adults : report on a series of 108 patients. Blood 126 : 1643-1650, 2015.
8) Rappoport N, Simon AJ, Lev A, et al : Correlation between 'ACKR1/DARC null' polymorphism and benign neutropenia in Yemenite Jews. Br J Haematol 170 : 892-895, 2015.
9) Papadaki HA, Giouremou K, Eliopoulos GD : Low frequency of myeloid progenitor cells in chronic idiopathic neutropenia of adults may be related to increased production of TGF-β1 by bone marrow stromal cells. Eur J Haematol 63 : 154-162, 1999.
10) Papadaki HA, Coulocheri S, Eliopoulos GD : Patients with chronic idiopathic neutropenia of adults have increased serum concentrations of inflammatory cytokines and chemokines. Am J Hematol 65 : 271-277, 2000.
11) Hirayama Y, Sakamaki S, Tsuji Y, et al : Recovery of neutrophil count by ganciclovir in patients with chronic idiopathic neutropenia associated with cytomegalovirus infection in bone marrow stromal cells. Int J Hematol 79 : 337-339, 2004.
12) Tsaknakis G, Galli A, Papadakis S, et al : Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood 138 : 1249-1257, 2021.
13) Fattizzo B, Zaninoni A, Consonni D, et al : Is chronic neutropenia always a benign disease? Evidences from a 5-year prospective study. Eur J Intern Med 26 : 611-615, 2015.
P.40 掲載の参考文献
1) Donadieu J, Fenneteau O, Beaupain B, et al : Congenital neutropenia : diagnosis, molecular bases and patient management. Orphanet J Rare Dis 6 : 26, 2011.
3) Skokowa J, Dale DC, Touw IP, et al : Severe congenital neutropenias. Nat Rev Dis Primers 3 : 17032, 2017.
4) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
5) Dokal I, Tummala H, Vulliamy T : Inherited bone marrow failure in the pediatric patient. Blood 140 : 556-570, 2022.
6) Fioredda F, Skokowa J, Tamary H, et al : The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children : A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 7 : e872, 2023.
7) Horwitz MS, Duan Z, Korkmaz B, et al : Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109 : 1817-1824, 2007.
8) Benson KF, Li FQ, Person RE, et al : Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 35 : 90-96, 2003.
9) Kollner I, Sodeik B, Schreek S, et al : Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 108 : 493-500, 2006.
10) Klein C, Grudzien M, Appaswamy G, et al : HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39 : 86-92, 2007.
11) Dale DC, Bolyard AA, Shannon JA, et al : Outcomes for patients with severe chronic neutropenia treated with granulocyte colony-stimulating factor. Blood Adv 6 : 3861-3869, 2022.
12) Rosenberg PS, Alter BP, Bolyard AA, et al : The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107 : 4628-4635, 2006.
13) Warren JT, Link DC : Impaired myelopoiesis in congenital neutropenia : insights into clonal and malignant hematopoiesis. Hematology Am Soc Hematol Educ Program 2021 : 514-520, 2021.
14) Rotulo GA, Beaupain B, Rialland F, et al : HSCT may lower leukemia risk in ELANE neutropenia : a before-after study from the French Severe Congenital Neutropenia Registry. Bone Marrow Transplant 55 : 1614-1622, 2020.
15) Fioredda F, Iacobelli S, van Biezen A, et al : Stem cell transplantation in severe congenital neutropenia : an analysis from the European Society for Blood and Marrow Transplantation. Blood 126 : 1885-1970, 2015.
P.45 掲載の参考文献
1) Shwachman H, Diamond LK, Oski FA, et al : The Syndrome of Pancreatic Insufficiency and Bone Marrow Dysfunction. J Pediatr 65 : 645-663, 1964.
3) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
4) Thompson AS, Giri N, Gianferante DM, et al : Shwachman Diamond syndrome : narrow genotypic spectrum and variable clinical features. Pediatr Res 92 : 1671-1680, 2022.
5) Kim HY, Kim HJ, KimSH : Genetics and genomics of bone marrow failure syndrome. Blood Res 57 (S1) : 86-92, 2022.
6) Kawashima N, Oyarbide U, Cipolli M, et al : Shwachman-Diamond syndromes : clinical, genetic, and biochemical insights from the rare variants. Haematologica, 2023. (DOI : 10.3324/haematol.2023.282949)
7) Dror Y, Donadieu J, Koglmeier J, et al : Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann NY Acad Sci 1242 : 40-55, 2011.
10) Reilly CR, Shimamura A : Predisposition to myeloid malignancies in Shwachman-Diamond syndrome : biological insights and clinical advances. Blood 141 : 1513-1523, 2023.
11) Warren JT, Link DC : Impaired myelopoiesis in congenital neutropenia : insights into clonal and malignant hematopoiesis. Hematology Am Soc Hematol Educ Program 2021 : 514-520, 2021.
13) Cesaro S, Pillon M, Sauer M, et al : Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman-Diamond syndrome : a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation (SAAWP-EBMT). Bone Marrow Transplant 55 : 1796-1809, 2020.
P.50 掲載の参考文献
2) Maheshwari A, Christensen RD, Calhoun DA : Immune neutropenia in the neonate. Adv Pediatr 49 : 317-339, 2002.
3) Han TH, Chey MJ, Han KS : Granulocyte antibodies in Korean neonates with neutropenia. J Korean Med Sci 21 : 627-632, 2006.
4) Abbas SA, Lopes LB, Moritz E, et al : Serologic and molecular studies to identify neonatal alloimmune neutropenia in a cohort of 10,000 neonates. Br J Haematol 192 : 778-784, 2021.
5) Zupanska B, Uhrynowska M, Guz K, et al : The risk of antibody formation against HNA1a and HNA1b granulocyte antigens during pregnancy and its relation to neonatal neutropenia. Transfus Med 11 : 377-382, 2001.
6) Flesch BK, Curtis BR, de Haas M, et al : Update on the nomenclature of human neutrophil antigens and alleles. Transfusion 56 : 1477-1479, 2016.
7) Matsuhashi M, Tsuno NH, Kawabata M, et al : The frequencies of human neutrophil alloantigens among the Japanese population. Tissue Antigens 80 : 336-340, 2012.
8) 小林正夫 : 小児好中球減少症. 日本小児科学会雑誌 109 : 614-622, 2005.
9) Porcelijn L, de Haas M : Neonatal Alloimmune Neutropenia. Transfus Med Hemother 45 : 311-316, 2018.
10) 中村和洋, 佐藤貴, 小林正夫 : 抗好中球抗体と乳幼児自己免疫性好中球減少症. 日本小児血液学会雑誌 18 : 17-22, 2004.
11) Flesch BK, Reil A : Molecular Genetics of the Human Neutrophil Antigens. Transfus Med Hemother 45 : 300-309, 2018.
12) Tomicic M, Starcevic M, Zach V, et al : Alloimmune neonatal neutropenia due to anti-HNA-2a alloimmunization with severe and prolonged neutropenia but mild clinical course : two case reports. Arch Med Res 38 : 792-796, 2007.
13) Fung YL, Pitcher LA, Willett JE, et al : Alloimmune neonatal neutropenia linked to anti-HNA-4a. Transfus Med 13 : 49-52, 2003.
14) Porcelijn L, Abbink F, Terraneo L, et al : Neonatal alloimmune neutropenia due to immunoglobulin G antibodies against human neutrophil antigen-5a. Transfusion 51 : 574-577, 2011.
15) Hagimoto R, Koike K, Sakashita K, et al : A possible role for maternal HLA antibody in a case of alloimmune neonatal neutropenia. Transfusion 41 : 615-620, 2001.
16) 中村和洋, 小林正夫 : 新生児の好中球減少症. 日本産婦人科・新生児血液学会誌 18 : 149-153, 2009.
17) Maheshwari A, Christensen RD, Calhoun DA : Resistance to recombinant human granulocyte colony-stimulating factor in neonatal alloimmune neutropenia associated with anti-human neutrophil antigen-2a (NB1) antibodies. Pediatrics 109 : e64, 2002.
18) Desenfants A, Jeziorski E, Plan O, et al : Intravenous immunoglobulins for neonatal alloimmune neutropenia refractory to recombinant human granulocyte colony-stimulating factor. Am J Perinatol 28 : 461-466, 2011.
P.55 掲載の参考文献
1) Capsoni F, Sarzi-Puttini P, Zanella A : Primary and secondary autoimmune neutropenia. Arthritis Res Ther 7 : 208-214, 2005.
2) Nakamura K, Miki M, Mizoguchi Y, et al : Deficiency of regulatory T cells in children with autoimmune neutropenia. Br J Haematol 145 : 642-647, 2009.
4) Bux J : Nomenclature of granulocyte alloantigens. ISBT Working Party on Platelet and Granulocyte Serology, Granulocyte Antigen Working Party. International Society of Blood Transfusion. Transfusion 39 : 662-663, 1999.
5) Bux J : Molecular genetics of granulocyte polymorphisms. Vox Sang 78 (Suppl 2) : 125-130, 2000.
6) Bux J, Behrens G, Jaeger G, et al : Diagnosis and clinical course of autoimmune neutropenia in infancy : analysis of 240 cases. Blood 91 : 181-186, 1998.
7) Audrain M, Martin J, Fromont P, et al : Autoimmune neutropenia in children : analysis of 116 cases. Pediatr Allergy Immunol 22 : 494-496, 2011.
9) Bux J, Kober B, Kiefel V, et al : Analysis of granulocyte-reactive antibodies using an immunoassay based upon monoclonal-antibody-specific immobilization of granulocyte antigens. Transfus Med 3 : 157-162, 1993.
10) Farruggia P, Fioredda F, Puccio G, et al : Autoimmune neutropenia of infancy : Data from the Italian neutropenia registry. Am J Hematol 90 : E221-E222, 2015.
11) Kobayashi M, Sato T, Kawaguchi H, et al : Efficacy of prophylactic use of trimethoprim-sulfamethoxazole in autoimmune neutropenia in infancy. J Pediatr Hematol Oncol 25 : 553-557, 2003.
P.60 掲載の参考文献
1) Horwitz M, Benson KF, Person RE, et al : Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23 : 433-436, 1999.
3) Cipe FE, Celiksoy MH, Erturk B, et al : Cyclic manner of neutropenia in a patient with HAX-1 mutation. Pediatr Hematol Oncol 35 : 181-185, 2018.
4) Tayal A, Meena JP, Kaur R, et al : A Novel Homozygous HAX1 Mutation in a Child With Cyclic Neutropenia : A Case Report and Review. J Pediatr Hematol Oncol 44 : e420-e423, 2022.
5) Alangari AA, Alsultan A, Osman ME, et al : A novel homozygous mutation in G6PC3 presenting as cyclic neutropenia and severe congenital neutropenia in the same family. J Clin Immunol 33 : 1403-1406, 2013.
6) Dinca AA, Chien WM, Chin MT : Identification of novel mitochondrial localization signals in human Tafazzin, the cause of the inherited cardiomyopathic disorder Barth syndrome. J Mol Cell Cardiol 114 : 83-92, 2018.
7) Sabbah HN : Elamipretide for Barth syndrome cardiomyopathy : gradual rebuilding of a failed power grid. Heart Fail Rev 27 : 1911-1923, 2022.
8) Carapito R, Konantz M, Paillard C, et al : Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest 127 : 4090-4103, 2017.
9) Lee JH, Bae SH, Yu JJ, et al : A case of Shwachman-Diamond syndrome confirmed with genetic analysis in a Korean child. J Korean Med Sci 23 : 142-145, 2008.
10) Kollner I, Sodeik B, Schreek S, et al : Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 108 : 493-500, 2006.
11) Mir P, Klimiankou M, Findik B, et al : New insights into the pathomechanism of cyclic neutropenia. Ann N Y Acad Sci 1466 : 83-92, 2020.
12) Dale DC, Bolyard A, Marrero T, et al : Long-Term Effects of G-CSF Therapy in Cyclic Neutropenia. N Engl J Med 377 : 2290-2292, 2017.
13) Klimiankou M, Mellor-Heineke S, Klimenkova O, et al : Two cases of cyclic neutropenia with acquired CSF3R mutations, with 1 developing AML. Blood 127 : 2638-2641, 2016.
14) Peacock ME, Arce RM, Cutler CW : Periodontal and other oral manifestations of immunodeficiency diseases. Oral Dis 23 : 866-888, 2017.
P.64 掲載の参考文献
1) Pelger K : Demonstratie van een paar zeldzaam voorkomende typen van bloedlichaapjes en bespreking der patienten. Ned Tijdschr Geneeskd 72 : 1178, 1928.
2) Huet GJ : Uber eine bisher unbekannte familiare anomalie der leukocyten. Klin Wochenschr 2 : 1264-1266, 1932.
4) Hoffmann K, Dreger CK, Olins AL, et al : Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31 : 410-414, 2002.
5) Cunningham JM, Patnaik MM, Hammerschmidt DE, et al : Historical perspective and clinical implications of the Pelger-Huet cell. Am J Hematol 84 : 116-119, 2009.
6) Gravemann S, Schnipper N, Meyer H, et al : Dosage effect of zero to three functional LBR-genes in vivo and in vitro. Nucleus 1 : 179-189, 2010.
7) Haverkamp Begemann N, Van Lookeren Campagne A : Homozygous form of Pelger-Huet's nuclear anomaly in man. Acta Haematol 7 : 295-303, 1952.
8) Constantino BT : Pelger-Huet anomaly-morphology, mechanism, and significance in the peripheral blood film. Lab Med 36 : 103-107, 2005.
9) Oosterwijk JC, Mansour S, van Noort G, et al : Congenital abnormalities reported in Pelger-Huet homozygosity as compared to Greenberg/HEM dysplasia : highly variable expression of allelic phenotypes. J Med Genet 40 : 937-941, 2003.
10) Turner EM, Schlieker C : Pelger-Huet anomaly and Greenberg skeletal dysplasia : LBR-associated diseases of cholesterol metabolism. Rare Dis 4 : e1241363, 2016.
11) Konishi T, Muto H, Sakuma R, et al : Familial case of hereditary Pelger-Huet anomaly. Int J Hematol 110 : 127-128, 2019.
P.69 掲載の参考文献
1) May R : Leukozyteneinschlusse. Dtsch Arch Klin Med 96 : 1-6, 1909.
2) Hegglin R : Simultaneous Constitutional Changes In Neutrophils and Platelets. Helv Med Acta 12 : 439, 1945.
3) Seri M, Cusano R, Gangarossa S, et al : Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 26 : 103-105, 2000.
4) Savoia A, De Rocco D, Panza E, et al : Heavy chain myosin 9-related disease (MYH9-RD) : neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb Haemost 103 : 826-832, 2010.
5) Pecci A, Balduini CL : Inherited thrombocytopenias : an updated guide for clinicians. Blood Rev 48 : 100784, 2021.
6) Heath KE, Campos-Barros A, Toren A, et al : Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias : May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 69 : 1033-1045, 2001.
7) Miyazaki K, Kunishima S, Fujii W, et al : Identification of three in-frame deletion mutations in MYH9 disorders suggesting an important hot spot for small rearrangements in MYH9 exon 24. Eur J Haematol 83 : 230-234, 2009.
8) Dong F, Li S, Pujol-Moix N, et al : Genotype-phenotype correlation in MYH9-related thrombocytopenia. Br J Haematol 130 : 620-627, 2005.
9) Kamata H, Miyazaki K, Komatsu S, et al : Mutation in the tail region of MYH9 inhibits disassembly of nonmuscle myosin IIA. Kitasato Med J 47 : 31-42, 2017.
10) Hu A, Wang F, Sellers JR : Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J Biol Chem 277 : 46512-46517, 2002.
11) 国島伸治 : MYH9 異常症 : 分類と分子病態. 日本血栓止血学会誌 14 : 487-494, 2003.
12) Miyazaki K, Koike Y, Kunishima S, et al : Immature platelet fraction measurement is influenced by platelet size and is a useful parameter for discrimination of macrothrombocytopenia. Hematology 20 : 587-592, 2015.
13) Orsini S, Noris P, Bury L, et al : Bleeding risk of surgery and its prevention in patients with inherited platelet disorders. Haematologica 102 : 1192-1203, 2017.
14) Pecci A, Gresele P, Klersy C, et al : Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood 116 : 5832-5837, 2010.
P.72 掲載の参考文献
1) Alder A : Uber konstitutionell bedingte Granulationsveranderungen der Leukocyten. Dtsch Arch Klin Med 183 : 372-378, 1939.
2) 鈴木康之 : ムコ多糖症の疫学. ムコ多糖症UPDATE (井田博幸, 衞藤義勝, 奥山虎之, ほか編, 折居忠夫総監修), p7-8, イーエヌメディックス, 2011.
3) 濱崎考史 : ムコ多糖症-早期発見のために知っておきたいこと. 医学のあゆみ 264 : 843-849, 2018.
4) Kumar A, Skubitz KM : Qualitative Disorders of Leukocytes. In : Wintrobe's Clinical Hematology, 13th ed (ed by Greer JP, Arber DA, Glader B, et al), p1291, Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, 2014.
5) Leal AF, Nieto WG, Candelo E, et al : Hematological Findings in Lysosomal Storage Disorders : A Perspective from the Medical Laboratory. EJIFCC 33 : 28-42, 2022.
6) Taconet S, Dreux S, Guimiot F, et al : Finding vacuolated lymphocytes in fetal effusions improves the prenatal diagnosis of lysosomal storage diseases. Prenat Diagn 40 : 605-611, 2020.
7) Dechaux-Blanc D, Zerimech F, Guemann AS, et al : When leukocytes bite off more than they can chew. Am J Hematol 95 : 447-448, 2020.
8) Pearson HA, Lorincz AE : A Characteristic Bone Marrow Finding in the Hurler Syndrome. Pediatrics 34 : 280-282, 1964.
9) Bhuyan P, Singh B, Chakrabarty S, et al : Alder-Reilly Anomaly in Hurlers Syndrome in a Neonate : A Rare Case Report. Indian J Hematol Blood Transfus 29 : 184-186, 2013.
10) AlMozain N, Bakshi NA : A Case of Hunter Syndrome and Alder-Reilly Anomaly. J Appl Hematol 8 : 33-35, 2017.
11) Jain R, Khurana U, Bhan BD, et al : Mucopolysaccharidosis : A case report highlighting hematological aspects of the disease. J Lab Physicians 11 : 97-99, 2019.
12) Krishnagiri C, Ajanahalli RR, Kashyap S, et al : Abnormal granulation of blood granulocytes in mucopolysaccharidosis VI-a case report. Ann Diagn Pathol 17 : 137-139, 2013.
13) Pelloso M, Zuin S, Tosato F, et al : Mucopolysaccharidosis type VII diagnosed from a peripheral blood smear. Am J Hematol 96 : 638-639, 2021.
14) Ireland RM : Morphology in mucopolysaccharidosis type III : specific diagnostic features. Blood 127 : 662, 2016.
15) Do L, Pasalic L : Lymphocytes in Sanfilippo syndrome display characteristic Alder-Reilly anomaly. Blood 134 : 1194, 2019.
16) Anderson G, Smith VV, Malone M, et al : Blood film examination for vacuolated lymphocytes in the diagnosis of metabolic disorders ; retrospective experience of more than 2,500 cases from a single centre. J Clin Pathol 58 : 1305-1310, 2005.
17) Teixeira C, Barbot J, Freitas MI : From blood film to the diagnosis of rare hereditary disorders. Br J Haematol 168 : 315, 2015.
18) Piva E, Pelloso M, Ciubotaru D, et al : The role of automated analyzers in detecting abnormal granulation of leucocytes in lysosomal storage diseases : Maroteaux-Lamy disease. Am J Hematol 88 : 527, 2013.
P.76 掲載の参考文献
1) Higashi O : Congenital gigantism of peroxidase granules ; the first case ever reported of qualitative abnormity of peroxidase. Tohoku J Exp Med 59 : 315-332, 1954.
2) Ajitkumar A, Yarrarapu SNS, Ramphul K : Chediak-Higashi Syndrome. In : StatPearls [Internet], StatPearls Publishing, Treasure Island, 2023 Jan. [Last Update : 2023 Feb 13]
3) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
4) Nagai K, Ochi F, Terui K, et al : Clinical characteristics and outcomes of chediak-Higashi syndrome : a nationwide survey of Japan. Pediatr Blood Cancer 60 : 1582-1586, 2013.
5) Barbosa MD, Nguyen QA, Tchernev VT, et al : Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382 : 262-265, 1996.
6) Karim MA, Suzuki K, Fukai K, et al : Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am J Med Genet 108 : 16-22, 2002.
7) Eapen M, DeLaat CA, Baker KS, et al : Hematopoietic cell transplantation for Chediak-Higashi syndrome. Bone Marrow Transplant 39 : 411-415, 2007.
8) Umeda K, Adachi S, Horikoshi Y, et al : Allogeneic hematopoietic stem cell transplantation for Chediak-Higashi syndrome. Pediatr Transplant 20 : 271-275, 2016.
P.81 掲載の参考文献
1) Nauseef WM : Myeloperoxidase in human neutrophil host defence. Cell Microbiol 16 : 1146-1155, 2014.
3) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
4) Nunoi H, Kohi F, Kajiwara H, et al : Prevalence of inherited myeloperoxidase deficiency in Japan. Microbiol Immunol 47 : 527-531, 2003.
5) Persad AS, Kameoka Y, Kanda S, et al : Arginine to cysteine mutation (R499C) found in a Japanese patient with complete myeloperoxidase deficiency. Gene Expr 13 : 67-71, 2006.
6) Nauseef WM, Cogley M, Bock S, et al : Pattern of inheritance in hereditary myeloperoxidase deficiency associated with the R569W missense mutation. J Leukoc Biol 63 : 264-269, 1998.
7) Aratani Y, Kura F, Watanabe H, et al : Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis 182 : 1276-1279, 2000.
8) Aratani Y, Kura F, Watanabe H, et al : Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185 : 1833-1837, 2002.
9) Strzepa A, Pritchard KA, Dittel BN : Myeloperoxidase : A new player in autoimmunity. Cell Immunol 317 : 1-8, 2017.
10) Aratani Y : Myeloperoxidase : Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640 : 47-52, 2018.
11) Haskamp S, Bruns H, Hahn M, et al : Myeloperoxidase Modulates Inflammation in Generalized Pustular Psoriasis and Additional Rare Pustular Skin Diseases. Am J Hum Genet 107 : 527-538, 2020.
12) Lanza F : Clinical manifestation of myeloperoxidase deficiency. J Mol Med (Berl) 76 : 676-681, 1998.
13) Gleghorn DM, Thomas W : Prevalence of myeloperoxidase deficiency determined using an ADVIA 2120i. Int J Lab Hematol 42 : e220-e223, 2020.
14) Milligan KL, Mann D, Rump A, et al : Complete Myeloperoxidase Deficiency : Beware the "False-Positive" Dihydrorhodamine Oxidation. J Pediatr 176 : 204-206, 2016.
15) Kutter D, Devaquet P, Vanderstocken G, et al : Consequences of total and subtotal myeloperoxidase deficiency : risk or benefit ? Acta Haematol 104 : 10-15, 2000.
P.85 掲載の参考文献
1) Wada T, Akagi T : Role of the Leucine Zipper Domain of CCAAT/ Enhancer Binding Protein-Epsilon (C/EBPε) in Neutrophil-Specific Granule Deficiency. Crit Rev Immunol 36 : 349-358, 2016.
2) Lekstrom-Himes JA, Dorman SE, Kopar P, et al : Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 189 : 1847-1852, 1999.
3) Witzel M, Petersheim D, Fan Y, et al : Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 49 : 742-752, 2017.
4) Priam P, Krasteva V, Rousseau P, et al : SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBP? dependent mechanism. Nat Genet 49 : 753-764, 2017.
5) Yucel E, Karakus IS, Krolo A, et al : Novel Frameshift Autosomal Recessive Loss-of-Function Mutation in SMARCD2 Encoding a Chromatin Remodeling Factor Mediates Granulopoiesis. J Clin Immunol 41 : 59-65, 2021.
6) Gombart AF, Shiohara M, Kwok SH, et al : Neutrophil-specific granule deficiency : homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-ε. Blood 97 : 2561-2567, 2001.
7) Wada T, Akagi T, Muraoka M, et al : A Novel In-Frame Deletion in the Leucine Zipper Domain of C/EBPε Leads to Neutrophil-Specific Granule Deficiency. J Immunol 195 : 80-86, 2015.
8) Leszcynska M, Patel B, Morrow M, et al : Brain Abscess as Severe Presentation of Specific Granule Deficiency. Front Pediatr 8 : 117, 2020.
9) Banday AZ, Kaur A, Akagi T, et al : A Novel CEBPE Variant Causes Severe Infections and Profound Neutropenia. J Clin Immunol 42 : 1434-1450, 2022.
10) Schim van der Loeff I, Sprenkeler EGG, Tool ATJ, et al : Defective neutrophil development and specific granule deficiency caused by a homozygous splice-site mutation in SMARCD2. J Allergy Clin Immunol 147 : 2381-2385.e2, 2021.
11) Kihtir Z, Celik K, Tayfun Kupesiz F, et al : Specific Granule Deficiency Due To Novel Homozygote SMARCD2 Variant. Pediatr Allergy Immunol Pulmonol 35 : 43-46, 2022.
12) Ibrahim A, Sharathkumar A, McLaughlin H, et al : Congenital Neutropenia with Specific Granulocyte Deficiency Caused by Novel Double Heterozygous SMARCD2 Mutations. Hematol Rep 14 : 270-275, 2022.
13) Shigemura T, Yamazaki T, Shiohara M, et al : Clinical course in a patient with neutrophil-specific granule deficiency and rapid detection of neutrophil granules as a screening test. J Clin Immunol 34 : 780-783, 2014.
14) Shiohara M, Gombart AF, Sekiguchi Y, et al : Phenotypic and functional alterations of peripheral blood monocytes in neutrophil-specific granule deficiency. J Leukoc Biol 75 : 190-197, 2004.
15) Michel BC, Kadoch C : A SMARCD2-containing mSWI/SNF complex is required for granulopoiesis. Nat Genet 49 : 655-657, 2017.
P.90 掲載の参考文献
1) Boxer LA, Hedley-Whyte ET, Stossel TP : Neutrophil actin dysfunction and abnormal neutrophil behavior. N Engl J Med 291 : 1093-1099, 1974.
2) Nunoi H, Yamazaki T, Tsuchiya H, et al : A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci USA 96 : 8693-8698, 1999.
3) Coates TD, Torkildson JC, Torres M, et al : An inherited defect of neutrophil motility and microfilamentous cytoskeleton associated with abnormalities in 47-Kd and 89-Kd proteins. Blood 78 : 1338-1346, 1991.
4) Ambruso DR, Knall C, Abell AN, et al : Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 97 : 4654-4659, 2000.
5) Kurkchubasche AG, Panepinto JA, Tracy TF Jr, et al : Clinical features of a human Rac2 mutation : a complex neutrophil dysfunction disease. J Pediatr 139 : 141-147, 2001.
6) Roos D, Kuijpers TW, Mascart-Lemone F, et al : A novel syndrome of severe neutrophil dysfunction : unresponsiveness confined to chemotaxin-induced functions. Blood 81 : 2735-2743, 1993.
7) Kuhns DB, Fink DL, Choi U, et al : Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128 : 2135-2143, 2016.
8) Record J, Malinova D, Zenner HL, et al : Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homozygous mutation of MKL1. Blood 126 : 1527-1535, 2015.
9) Sprenkeler EGG, Henriet SSV, Tool ATJ, et al : MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. Blood 135 : 2171-2181, 2020.
10) Nishikimi A, Fukuhara H, Su W, et al : Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324 : 384-387, 2009.
11) Drummond DR, Hennessey ES, Sparrow JC : Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet 226 : 70-80, 1991.
12) Howard T, Li Y, Torres M, et al : The 47-kD protein increased in neutrophil actin dysfunction with 47- and 89-kD protein abnormalities is lymphocyte-specific protein. Blood 83 : 231-241, 1994.
13) Packman CH, Lichtman MA : Activation of neutrophils : measurement of actin conformational changes by flow cytometry. Blood Cells 16 : 193-207, 1990.
15) Carulli G, Sbrana S, Minnucci S, et al : Actin polymerization in neutrophils from patients affected by myelodysplastic syndromes-a flow cytometric study. Leuk Res 21 : 513-518, 1997.
P.94 掲載の参考文献
1) Davis SD, Schaller J, Wedgwood RJ : Job's Syndrome. Recurrent, "cold", staphylococcal abscesses. Lancet 1 : 1013-1015, 1966.
2) Buckley RH, Wray BB, Belmaker EZ : Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics 49 : 59-70, 1972.
3) Robinson WS, Arnold SR, Michael CF, et al : Case report of a young child with disseminated histoplasmosis and review of hyper immunoglobulin e syndrome (HIES). Clin Mol Allergy 9 : 14, 2011.
4) Tsilifis C, Freeman AF, Gennery AR : STAT3 Hyper-IgE Syndrome-an Update and Unanswered Questions. J Clin Immunol 41 : 864-880, 2021.
5) Minegishi Y, Saito M, Tsuchiya S, et al : Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448 : 1058-1062, 2007.
6) Holland SM, DeLeo FR, Elloumi HZ, et al : STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357 : 1608-1619, 2007.
7) Milner JD, Brenchley JM, Laurence A, et al : Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452 : 773-776, 2008.
8) Heimall J, Freeman A, Holland SM : Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol 38 : 32-38, 2010.
10) Borges WG, Augustine NH, Hill HR : Defective interleukin-12/interferon-gamma pathway in patients with hyperimmunoglobulinemia E syndrome. J Pediatr 136 : 176-180, 2000.
11) Hsu AP, Davis J, Puck JM, et al : STAT3 Hyper IgE Syndrome. In : GeneReviews(R) [Internet], University of Washington, Seattle ; 1993, 2010 Feb 23. [updated 2020 Mar 26]
12) Szczawinska-Poplonyk A, Kycler Z, Pietrucha B, et al : The hyperimmunoglobulin E syndrome-clinical manifestation diversity in primary immune deficiency. Orphanet J Rare Dis 6 : 76, 2011.
13) Woellner C, Gertz EM, Schaffer AA, et al : Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol 125 : 424-432.e8, 2010.
14) Bousfiha A, Jeddane L, Picard C, et al : Human Inborn Errors of Immunity : 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 40 : 66-81, 2020.
15) Goussetis E, Peristeri I, Kitra V, et al : Successful long-term immunologic reconstitution by allogeneic hematopoietic stem cell transplantation cures patients with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol 126 : 392-394, 2010.
P.99 掲載の参考文献
1) Miller ME, Oski FA, Harris MB : Lazy-leucocyte syndrome. A new disorder of neutrophil function. Lancet 1 : 665-669, 1971.
2) Deubelbeiss KA, Keller HU, Roth P : Neutropenia in disorders of the neutrophil motility. Schweiz Med Wochenschr 105 : 1591-1592, 1975.
3) Constantopoulos A, Karpathios T, Nicolaidou P, et al : Lazy-leukocyte syndrome. A case report. J Pediatr 87 : 945-946, 1975.
4) Pinkerton PH, Robinson JB, Senn JS : Lazy leucocyte syndrome-disorder of the granulocyte membrane? J Clin Pathol 31 : 300-308, 1978.
5) Patrone F, Dallegri F, Rebora A, et al : Lazy leukocyte syndrome. Blut 39 : 265-269, 1979.
6) Yoda S, Morosawa H, Komiyama A, et al : Transient 'lazy-leukocyte' syndrome during infancy. Am J Dis Child 134 : 467-469, 1980.
7) Foroozanfar N, Lutterloch MJ, Thomas C, et al : Persistent mandibular infection in three patients with lazy and incompetent phagocyte syndromes. J Maxillofac Surg 11 : 124-127, 1983.
8) Yasui K, Yamazaki M, Miyagawa Y, et al : 3 cases of lazy-leukocyte syndrome. Rinsho Ketsueki 24 : 1086-1091, 1983.
9) Goldman JM, Foroozanfar N, Gazzard BG, et al : Lazy leukocyte syndrome. J R Soc Med 77 : 140-141, 1984.
10) Aggarwal J, Khan AJ, Diamond S, et al : Lazy leukocyte syndrome in a black infant. J Natl Med Assoc 77 : 928-929, 1985.
11) Kuhns DB, Fink DL, Choi U, et al : Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128 : 2135-2143, 2016.
12) Boogaerts MA, Malbrain S, Meeus P, et al : In vitro modulation of normal and diseased human neutrophil function by pentoxifylline. Blut 61 : 60-65, 1990.
13) Standing AS, Malinova D, Hong Y, et al : Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 214 : 59-71, 2017.
14) Pfajfer L, Mair NK, Jimenez-Heredia R, et al : Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 142 : 1589-1604.e11, 2018.
15) Etzioni A, Ochs HD : Lazy Leukocyte Syndrome-an Enigma Finally Solved? J Clin Immunol 40 : 9-12, 2020.
P.105 掲載の参考文献
1) Bridges RA, Berendes H, Good RA : A fatal granulomatous disease of childhood ; the clinical, pathological, and laboratory features of a new syndrome. AMA J Dis Child 97 : 387-408, 1959.
2) Nunoi H, Nakamura H, Nishimura T, et al : Recent topics and advanced therapies in chronic granulomatous disease. Hum Cell 36 : 515-527, 2023.
3) Thomas DC, Clare S, Sowerby JM, et al : Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity. J Exp Med 214 : 1111-1128, 2017.
4) Fuchs TA, Abed U, Goosmann C, et al : Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176 : 231-241, 2007.
5) Fernandez-Boyanapalli RF, Frasch SC, McPhillips K, et al : Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood 113 : 2047-2055, 2009.
6) Magnani A, Brosselin P, Beaute J, et al : Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol 134 : 655-662.e8, 2014.
7) Gallin JI, Alling DW, Malech HL, et al : Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348 : 2416-2422, 2003.
8) Uzel G, Orange JS, Poliak N, et al : Complications of tumor necrosis factor-α blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51 : 1429-1434, 2010.
9) Noel N, Mahlaoui N, Blanche S, et al : Efficacy and safety of thalidomide in patients with inflammatory manifestations of chronic granulomatous disease : a retrospective case series. J Allergy Clin Immunol 132 : 997-1000.e10004, 2013.
10) Kawai T, Watanabe N, Yokoyama M, et al : Thalidomide attenuates excessive inflammation without interrupting lipopolysaccharide-driven inflammatory cytokine production in chronic granulomatous disease. Clin Immunol 147 : 122-128, 2013.
11) Gungor T, Teira P, Slatter M, et al : Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease : a prospective multicentre study. Lancet 383 : 436-448, 2014.
12) Yanagimachi M, Kato K, Iguchi A, et al : Hematopoietic Cell Transplantation for Chronic Granulomatous Disease in Japan. Front Immunol 11 : 1617, 2020.
13) Kang EM, Choi U, Theobald N, et al : Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 115 : 783-791, 2010.
14) Nunoi H, Xie P, Nakamura H, et al : Treatment with Polyethylene Glycol-Conjugated Fungal D-Amino Acid Oxidase Reduces Lung Inflammation in a Mouse Model of Chronic Granulomatous Disease. Inflammation 45 : 1668-1679, 2022.
15) Kuhns DB, Alvord WG, Heller T, et al : Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363 : 2600-2610, 2010.
P.110 掲載の参考文献
1) Jordans GH : The familial occurrence of fat containing vacuoles in the leukocytes diagnosed in two brothers suffering from dystrophia musculorum progressiva (ERB). Acta Med Scand 145 : 419-423, 1953.
2) Elias PM, Williams ML : Neutral lipid storage disease with ichthyosis. Defective lamellar body contents and intracellular dispersion. Arch Dermatol 121 : 1000-1008, 1985.
3) Wessalowski R, Schroten H, Neuen-Jacob E, et al : Multisystem triglyceride storage disorder without ichthyosis in two siblings. Acta Paediatr 83 : 93-98, 1994.
4) Hirano K, Ikeda Y, Zaima N, et al : Triglyceride deposit cardiomyovasculopathy. N Engl J Med 359 : 2396-2398, 2008.
5) Inaba T, Ishizuka K, Suzuki A, et al : Basic utility of Pentra series automated hematology analyzer for screening of Jordans' anomaly. Int J Lab Hematol 39 : e1-e3, 2017.
6) 厚生労働科学研究費補助金難治性疾患政策研究事業「TGCV の診療体制の構築」研究班 : 中性脂肪蓄積心筋血管症成果報告 2020年度版-診断基準 2020・分類・鑑別診断-, 2021. [https://tgcv.org/assets/pdf/report_01.pdf] (2023年8月閲覧)
7) Inaba T, Nomura N, Takahashi M, et al : Characteristic scattergram of white blood cells obtained using the Pentra MS CRP hematology analyzer in a patient with neutral lipid storage disease. Lab Hematol 19 : 22-24, 2013.
8) Missaglia S, Tavian D, Angelini C : Neutral lipid storage disease with myopathy : A 10-year follow-up case report. Eur J Transl Myol 32 : 10645, 2022.
9) Lefevre C, Jobard F, Caux F, et al : Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet 69 : 1002-1012, 2001.
10) Fischer J, Lefevre C, Morava E, et al : The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39 : 28-30, 2007.
11) Hara Y, Ikeda Y, Kimura H, et al : A novel homozygous missense mutation in PNPLA2 in a patient manifesting primary triglyceride deposit cardiomyovasculopathy. Mol Genet Metab Rep 34 : 100960, 2023.
12) 浜田恭子, 高橋功, 中村達, ほか : Jordans' anomaly の1例. 臨床血液 34 : 218-223, 1993.
13) Inaba T, Ishizuka K, Suzuki A, et al : Comparison of neutrophil distribution patterns in Jordans' anomaly among major automated hematology analyzers. Int J Lab Hematol 40 : e78-e81, 2018.
14) Inaba T, Okumura K, Fujita N, et al : Detection of Jordans' anomaly using compact-type automated hematology analyzer. Int J Hematol 110 : 129-130, 2019.
15) Hirano K, Miyauchi H, Nakano Y, et al : Overall survival rate of patients with triglyceride deposit cardiomyovasculopathy. JACC : Advances 2 : 100347, 2023.
P.113 掲載の参考文献
1) Cunningham JM, Patnaik MM, Hammerschmidt DE, et al : Historical perspective and clinical implications of the Pelger-Huet cell. Am J Hematol 84 : 116-119, 2009.
2) 朝長万左男 : 好中球のPelger-Huet核異常をめぐって ; 血液形態学の進化. 臨床病理 53 : 54-60, 2005.
3) Kuriyama K, Tomonaga M, Matsuo T, et al : Diagnostic significance of detecting pseudo-Pelger-Huet anomalies and micro-megakaryocytes in myelodysplastic syndrome. Br J Haematol 63 : 665-669, 1986.
4) 松田晃, 朝長万左男, 通山薫, ほか : 骨髄異形成症候群の形態学的異形成に基づく診断確度区分 (第2版) (厚生労働科学研究費補助金難治性疾患政策研究事業「特発性造血障害に関する調査研究」 (研究代表者 : 三谷絹子)), 2023. [http://zoketsushogaihan.umin.jp/file/2022/MDS_Morphological_Diagnostic_Atlas2022.pdf] (2023年8月閲覧)
5) Wang E, Boswell E, Siddiqi I, et al : Pseudo-Pelger-Huet anomaly induced by medications : a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Huet anomaly. Am J Clin Pathol 135 : 291-303, 2011.
6) Dusse LMS, Moreira AMB, Vieira LM, et al : Acquired Pelger-Huet ; What does it really mean? Clin Chim Acta 411 : 1587-1590, 2010.
7) Sasada K, Yamamoto N, Masuda H, et al : Inter-Observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome. Leuk Res 69 : 54-59, 2018.
P.116 掲載の参考文献
1) Itoga T, Laszlo J : Dohle bodies and other granulocytic alterations during chemotherapy with cyclophosphamide. Blood 20 : 668-674, 1962.
2) Balduini CL, Pecci A, Savoia A : Recent advances in the understanding and management of MYH9-related inherited thrombocytopenias. Br J Haematol 154 : 161-174, 2011.
4) 松田晃, 朝長万左男, 通山薫, ほか : 骨髄異形成症候群の形態学的異形成に基づく診断確度区分 (第2版) (厚生労働科学研究費補助金難治性疾患政策研究事業「特発性造血障害に関する調査研究」 (研究代表者 : 三谷絹子)), 2023. [http://zoketsushogaihan.umin.jp/file/2022/MDS_Morphological_Diagnostic_Atlas2022.pdf] (2023年8月閲覧)
5) Jain S, Meena R, Kumar V, et al : Comparison of hematologic abnormalities between hospitalized coronavirus disease 2019 positive and negative patients with correlation to disease severity and outcome. J Med Virol 94 : 3757-3767, 2022.
P.120 掲載の参考文献
1) Loffler W : Zur Differential-Diagnose der Lungeninfiltrierungen. Beitrage zur Klinik der Tuberkulose 79 : 368-382, 1932.
2) von Meyenburg H : Das eosinophile Lungeninfiltrat : Pathologische Anatomie und Pathogenese. Schweiz Med Wochenschr 72 : 809-811, 1942.
3) Cohn L, Rochester CL, Clark BJ, et al : Eosinophilic lung diseases. In : Fishman's Pulmonary Diseases and Disorders, 6th ed (ed by Grippi MA, Antin-Ozerkis DE, Dela Cruz CS, et al), p1186-1210, McGraw Hill LLC, New York, 2023.
4) Reeder WH, Goodrich BE : Pulmonary infiltration with eosinophilia (PIE syndrome). Ann Intern Med 36 : 1217-1240, 1952.
5) Crofton JW, Livingstone JL, Oswald NC, et al : Pulmonary eosinophilia. Thorax 7 : 1-35, 1952.
6) 梅田啓, 矢野平一, 松本健治, ほか : Loffler症候群 ; 白血球 (顆粒球) の異常 (悪性腫瘍を除く). 好酸球の異常. 好酸球増加症. PIE症候群. 別冊日本臨牀新領域別症候群シリーズ No.22 血液症候群 (第2版) II, p116-118, 日本臨牀社, 2013.
7) Carrington CB, Addington WW, Goff AM, et al : Chronic eosinophilic pneumonia. N Engl J Med 280 : 787-798, 1969.
10) Lazoglu AH, Boglioli LR, Dorsett B, et al : Phenytoin-related immunodeficiency associated with Loeffler's syndrome. Ann Allergy Asthma Immunol 74 : 479-482, 1995.
11) Silveira MR, Nunes KP, Cara DC, et al : Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyperrespon-siveness in rats. Infect Immun 70 : 6263-6272, 2002.
12) Paul WE, Zhu J : How are T (H) 2-type immune responses initiated and amplified? Nat Rev Immunol 10 : 225-235, 2010.
13) Yasuda K, Muto T, Kawagoe T, et al : Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A 109 : 3451-3456, 2012.
14) Yasuda K, Adachi T, Koida A, et al : Nematode-infected mice acquire resistance to subsequent infection with unrelated nematode by inducing highly responsive group 2 innate lymphoid cells in the lung. Front Immunol 9 : 2132, 2018.
15) Jarick KJ, Topczewska PM, Jakob MO, et al : Non-redundant functions of group 2 innate lymphoid cells. Nature 611 : 794-800, 2022.
P.124 掲載の参考文献
1) Crofton JW, Livingstone JL, Oswald NC, et al : Pulmonary eosinophilia. Thorax 7 : 1-35, 1952.
2) 梅田啓, 矢野平一, 松本健治, ほか : Loffler症候群 ; 白血球 (顆粒球) の異常 (悪性腫瘍を除く). 好酸球の異常. 好酸球増加症. PIE 症候群. 別冊日本臨牀新領域別症候群シリーズ No.22 血液症候群 (第2版) II, p116-118, 日本臨牀社, 2013.
3) Carrington CB, Addington WW, Goff AM, et al : Chronic eosinophilic pneumonia. N Engl J Med 280 : 787-798, 1969.
4) Akuthota P, Wechsler ME : Hypersensitivity pneumonitis and pulmonary infiltrates with eosinophilia. In : Harrison's Principles of Internal Medicine, 21st ed (ed by Loscalzo J, Fauci AS, Kasper DL, et al), p2160-2166, McGraw Hill LLC, New York, 2022.
5) Cohn L, Rochester CL, Clark BJ, et al : Eosinophilic lung diseases. In : Fishman's Pulmonary Diseases and Disorders, 6th ed (ed by Grippi MA, Antin-Ozerkis DE, Dela Cruz CS, et al), p1186-1210, McGraw Hill LLC, New York, 2023.
9) Nakagome K, Nagata M : Possible Mechanisms of Eosinophil Accumulation in Eosinophilic Pneumonia. Biomolecules 10 : 638, 2020.
10) Brenard E, Pilette C, Dahlqvist C, et al : Real-Life Study of Mepolizumab in Idiopathic Chronic Eosinophilic Pneumonia. Lung 198 : 355-360, 2020.
11) Mukherjee M, Sehmi R, Nair P : Anti-IL5 therapy for asthma and beyond. World Allergy Organ J 7 : 32, 2014.
12) Moro K, Yamada T, Tanabe M, et al : Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463 : 540-544, 2010.
13) Sims JE, Williams DE, Morrissey PJ, et al : Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J Exp Med 192 : 671-680, 2000.
14) Park JY, Lee T, Lee H, et al : Significance of fractional exhaled nitric oxide in chronic eosinophilic pneumonia : a retrospective cohort study. BMC Pulm Med 14 : 81, 2014.
15) Takano T, Inutsuka Y, Nakamura S, et al : Benralizumab use in chronic eosinophilic pneumonia with eosinophilic bronchiolitis and chronic airway infection. Respirol Case Rep 9 : e00810, 2021.
P.129 掲載の参考文献
1) Reeder WH, Goodrich BE : Pulmonary infiltration with eosinophilia (PIE syndrome). Ann Intern Med 36 : 1217-1240, 1952.
2) アレルギー性気管支肺真菌症の診療の手引き (日本アレルギー学会/日本呼吸器学会監, 「アレルギー性気管支肺真菌症」研究班編), 医学書院, 2019.
3) Asano K, Hebisawa A, Ishiguro T, et al : New clinical diagnostic criteria for allergic bronchopulmonary aspergillosis/mycosis and its validation. J Allergy Clin Immunol 147 : 1261-1268.e5, 2021.
4) Stevens DA, Moss RB, Kurup VP, et al : Allergic bronchopulmonary aspergillosis in cystic fibrosis-state of the art : Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 37 (Suppl 3) : S225-S264, 2003.
5) Chupp GL : Allergic bronchopulmonary aspergillosis (mycosis) and severe asthma with fungal sensitivity. In : Fishman's Pulmonary Diseases and Disorders, 6th ed (ed by Grippi MA, Antin-Ozerkis DE, Dela Cruz CS, et al), p785-793, McGraw Hill LLC, New York, 2023.
6) Desai SR, Lynch DA, Elicker BM, et al : Airways diseases. In : Webb, Muller and Naidich's High-Resolution CT of the Lung, 6th ed (ed by Desai SR, Lynch DA, Elicker BM, et al), p568-602, Wolters Kluwer, Philadelphia, 2021.
7) Gibson PG, Wark PA, Simpson JL, et al : Induced sputum IL-8 gene expression, neutrophil influx and MMP-9 in allergic bronchopulmonary aspergillosis. Eur Respir J 21 : 582-588, 2003.
8) Walker C, Bauer W, Braun RK, et al : Activated T cells and cytokines in bronchoalveolar lavages from patients with various lung diseases associated with eosinophilia. Am J Respir Crit Care Med 150 : 1038-1048, 1994.
9) Muniz VS, Silva JC, Braga YAV, et al : Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol 141 : 571-585.e7, 2018.
11) Tanimoto H, Fukutomi Y, Yasueda H, et al : Molecular-based allergy diagnosis of allergic bronchopulmonary aspergillosis in Aspergillus fumigatus-sensitized Japanese patients. Clin Exp Allergy 45 : 1790-1800, 2015.
12) Li JX, Fan LC, Li MH, et al : Beneficial effects of Omalizumab therapy in allergic bronchopulmonary aspergillosis : A synthesis review of published literature. Respir Med 122 : 33-42, 2017.
13) Tolebeyan A, Mohammadi O, Vaezi Z, et al : Mepolizumab as possible treatment for allergic bronchopulmonary aspergillosis : a review of eight cases. Cureus 12 : e9684, 2020.
14) Stevens DA, Schwartz HJ, Lee JY, et al : A randomized trial of itraconazole in allergic bronchopulmonary aspergillosis. N Engl J Med 342 : 756-762, 2000.
15) Laoudi Y, Paolini JB, Grimfed A, et al : Nebulised corticosteroid and amphotericin B : an alternative treatment for ABPA? Eur Respir J 31 : 908-909, 2008.
P.135 掲載の参考文献
2) Kitching AR, Anders HJ, Basu N, et al : ANCA-associated vasculitis. Nat Rev Dis Primers 6 : 71, 2020.
3) Sada KE, Amano K, Uehara R, et al : A nationwide survey on the epidemiology and clinical features of eosinophilic granulomatosis with polyangiitis (Churg-Strauss) in Japan. Mod Rheumatol 24 : 640-644, 2014.
4) Sada KE, Kojo Y, Fairburn-Beech J, et al : The prevalence, burden of disease, and healthcare utilization of patients with eosinophilic granulomatosis with polyangiitis in Japan : a retrospective, descriptive cohort claims database study. Mod Rheumatol 32 : 380-386, 2022.
5) Lyons PA, Peters JE, Alberici F, et al : Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat Commun 10 : 5120, 2019.
6) Furuta S, Iwamoto T, Nakajima H : Update on eosinophilic granulomatosis with polyangiitis. Allergol Int 68 : 430-436, 2019.
7) Nakazawa D, Shida H, Tomaru U, et al : Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J Am Soc Nephrol 25 : 990-997, 2014.
8) Nakazawa D, Masuda S, Tomaru U, et al : Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol 15 : 91-101, 2019.
9) Chang HC, Chou PC, Lai CY, et al : Antineutrophil Cytoplasmic Antibodies and Organ-Specific Manifestations in Eosinophilic Granulomatosis with Polyangiitis : A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract 9 : 445-452.e6, 2021.
11) Masi AT, Hunder GG, Lie JT, et al : The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum 33 : 1094-1100, 1990.
12) Grayson PC, Ponte C, Suppiah R, et al : 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis With Polyangiitis. Arthritis Rheumatol 74 : 386-392, 2022.
13) 抗リン脂質抗体症候群・好酸球性多発血管炎性肉芽腫症・結節性多発動脈炎・リウマトイド血管炎の治療の手引き 2020 (厚生労働科学研究費補助金 (難治性疾患政策研究事業) 難治性血管炎に関する調査研究針谷正祥編), p.xiii, 診断と治療社, 2021.
P.140 掲載の参考文献
2) Kitching AR, Anders HJ, Basu N, et al : ANCA-associated vasculitis. Nat Rev Dis Primers 6 : 71, 2020.
3) Watts RA, Scott DG, Jayne DR, et al : Renal vasculitis in Japan and the UK-are there differences in epidemiology and clinical phenotype? Nephrol Dial Transplant 23 : 3928-3931, 2008.
4) Kain R, Exner M, Brandes R, et al : Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14 : 1088-1096, 2008.
5) Nakazawa D, Tomaru U, Suzuki A, et al : Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps : implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 64 : 3779-3787, 2012.
6) Hiwa R, Ohmura K, Arase N, et al : Myeloperoxidase/HLA Class II Complexes Recognized by Autoantibodies in Microscopic Polyangiitis. Arthritis Rheumatol 69 : 2069-2080, 2017.
9) Tan LT, Davagnanam I, Isa H, et al : Clinical and imaging features predictive of orbital granulomatosis with polyangiitis and the risk of systemic involvement. Ophthalmology 121 : 1304-1309, 2014.
10) Schmidt J, Pulido JS, Matteson EL : Ocular manifestations of systemic disease : antineutrophil cytoplasmic antibody-associated vasculitis. Curr Opin Ophthalmol 22 : 489-495, 2011.
11) Gomez-Puerta JA, Hernandez-Rodriguez J, Lopez-Soto A, et al : Antineutrophil cytoplasmic antibody-associated vasculitides and respiratory disease. Chest 136 : 1101-1111, 2009.
12) Fauci AS, Haynes BF, Katz P, et al : Wegener's granulomatosis : prospective clinical and therapeutic experience with 85 patients for 21 years. Ann Intern Med 98 : 76-85, 1983.
13) Suppiah R, Hadden RD, Batra R, et al : Peripheral neuropathy in ANCA-associated vasculitis : outcomes from the European Vasculitis Study Group trials. Rheumatology (Oxford) 50 : 2214-2222, 2011.
14) Micheletti RG, Chiesa Fuxench Z, Craven A, et al : Cutaneous Manifestations of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 72 : 1741-1747, 2020.
15) Daoud MS, Gibson LE, DeRemee RA, et al : Cutaneous Wegener's granulomatosis : clinical, histopathologic, and immunopathologic features of thirty patients. J Am Acad Dermatol 31 : 605-612, 1994.
16) Leavitt RY, Fauci AS, Bloch DA, et al : The American College of Rheumatology 1990 criteria for the classification of Wegener's granulomatosis. Arthritis Rheum 33 : 1101-1107, 1990.
17) Watts R, Lane S, Hanslik T, et al : Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann Rheum Dis 66 : 222-227, 2007.
18) Robson JC, Grayson PC, Ponte C, et al : 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. Ann Rheum Dis 81 : 315-320, 2022.
19) Bossuyt X, Cohen Tervaert JW, Arimura Y, et al : Position paper : Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol 13 : 683-692, 2017.
20) Folci M, Ramponi G, Shiffer D, et al : ANCA-Associated Vasculitides and Hematologic Malignancies : Lessons from the Past and Future Perspectives. J Immunol Res 2019 : 1732175, 2019.
21) de Groot K, Harper L, Jayne DR, et al : Pulse versus daily oral cyclophosphamide for induction of remission in antineutrophil cytoplasmic antibody-associated vasculitis : a randomized trial. Ann Intern Med 150 : 670-680, 2009.
22) Adu D, Pall A, Luqmani RA, et al : Controlled trial of pulse versus continuous prednisolone and cyclophosphamide in the treatment of systemic vasculitis. QJM 90 : 401-409, 1997.
23) Specks U, Merkel PA, Seo P, et al : Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med 369 : 417-427, 2013.
24) Jones RB, Tervaert JW, Hauser T, et al : Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med 363 : 211-220, 2010.
25) Rovin BH, Adler SG, Barratt J, et al : Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int 100 : 753-779, 2021.
26) Walsh M, Merkel PA, Peh CA, et al : Plasma Exchange and Glucocorticoids in Severe ANCAA-ssociated Vasculitis. N Engl J Med 382 : 622-631, 2020.
27) Walsh M, Collister D, Zeng L, et al : The effects of plasma exchange in patients with ANCA-associated vasculitis : an updated systematic review and meta-analysis. BMJ 376 : e064604, 2022.
28) Furuta S, Nakagomi D, Kobayashi Y, et al : Effect of Reduced-Dose vs High-Dose Glucocorticoids Added to Rituximab on Remission Induction in ANCA-Associated Vasculitis : A Randomized Clinical Trial. JAMA 325 : 2178-2187, 2021.
29) Jayne DRW, Merkel PA, Schall TJ, et al : Avacopan for the Treatment of ANCA-Associated Vasculitis. N Engl J Med 384 : 599-609, 2021.
30) Guillevin L, Pagnoux C, Karras A, et al : Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med 371 : 1771-1780, 2014.
31) Charles P, Perrodeau E, Samson M, et al : Long-Term Rituximab Use to Maintain Remission of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis : A Randomized Trial. Ann Intern Med 173 : 179-187, 2020.
P.146 掲載の参考文献
1) Kussmaul A, Maier R : Uber eine bisher nicht beschribene eigenthumliche Arterienerkrankung (Periarteritis nodosa), die mit Morbus Brightii und rapid fortschreitender allgemeineer Muskellahmung einhergeht. Dtsh Arch Klin Med 1 : 484-517, 1866.
3) 中林公正, 石津明洋, 小川弥生, ほか : 結節性多発動脈炎. 血管炎アトラス (尾崎承一, 吉木敬編), 厚生労働省難治性疾患克服研究事業難治性血管炎に関する調査研究班, p9-12, 2005.
4) 厚生労働科学研究費補助金難治性疾患克服研究事業難治性血管炎に関する調査研究 : 平成17年度総括・分担研究報告書, 2006.
5) 日本循環器学会, 日本医学放射線学会, 日本眼科学会, ほか ; 厚生労働省難治性疾患政策研究事業難治性血管炎に関する調査研究班 : 血管炎症候群の診療ガイドライン (2017年改訂版), p50-53, 2018.
6) 抗リン脂質抗体症候群・好酸球性多発血管炎性肉芽腫症・結節性多発動脈炎・リウマトイド血管炎の治療の手引き 2020 (厚生労働科学研究費補助金 (難治性疾患政策研究事業) 難治性血管炎に関する調査研究 : 針谷正祥編), p51-62, 診断と治療社, 2021.
7) Guillevin L, Lhote F, Gayraud M, et al : Prognostic factors in polyarteritis nodosa and Churg-Strauss syndrome. A prospective study in 342 patients. Medicine (Baltimore) 75 : 17-28, 1996.
8) Chung SA, Gorelik M, Langford CA, et al : 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Polyarteritis Nodosa. Arthritis Care Res (Hoboken) 73 : 1061-1070, 2021.
P.152 掲載の参考文献
2) Chusid MJ, Dale DC, West BC, et al : The hypereosinophilic syndrome : analysis of fourteen cases with review of the literature. Medicine (Baltimore) 54 : 1-27, 1975.
3) Cools J, DeAngelo DJ, Gotlib J, et al : A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348 : 1201-1214, 2003.
4) Wang SA, Tam W, Tsai AG, et al : Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol 29 : 854-864, 2016.
5) Apperley JF, Gardembas M, Melo JV, et al : Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347 : 481-487, 2002.
6) Arefi M, Garcia JL, Penarrubia MJ, et al : Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol 89 : 37-41, 2012.
7) Cheah CY, Burbury K, Apperley JF, et al : Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood 123 : 3574-3577, 2014.
8) Ogbogu PU, Bochner BS, Butterfield JH, et al : Hypereosinophilic syndrome : a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol 124 : 1319-1325.e3, 2009.
9) Pardanani A, Lasho T, Wassie E, et al : Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia 30 : 1924-1926, 2016.
10) Khoury P, Abiodun AO, Holland-Thomas N, et al : Hypereosinophilic Syndrome Subtype Predicts Responsiveness to Glucocorticoids. J Allergy Clin Immunol Pract 6 : 190-195, 2018.
11) Fauci AS, Harley JB, Roberts WC, et al : NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med 97 : 78-92, 1982.
12) Yoon TY, Ahn GB, Chang SH : Complete remission of hypereosinophilic syndrome after interferon-alpha therapy : report of a case and literature review. J Dermatol 27 : 110-115, 2000.
13) Jovanovic JV, Score J, Waghorn K, et al : Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 109 : 4635-4640, 2007.
14) Roufosse F, Kahn JE, Rothenberg ME, et al : Efficacy and safety of mepolizumab in hypereosinophilic syndrome : A phase III, randomized, placebo-controlled trial. J Allergy Clin Immunol 146 : 1397-1405, 2020.
15) Kuang FL, Legrand F, Makiya M, et al : Benralizumab for PDGFRA-Negative Hypereosinophilic Syndrome. N Engl J Med 380 : 1336-1346, 2019.
P.155 掲載の参考文献
1) Gleich GJ, Schroeter AL, Marcoux JP, et al : Episodic angioedema associated with eosinophilia. N Engl J Med 310 : 1621-1626, 1984.
2) 端本宇志, 田中智子, 高山かおる, ほか : 無治療で自然経過を観察したnon-episodic angioedema with eosinophilia-本邦報告60例についての治療効果の統計と検討-. 日本皮膚科学会雑誌 118 : 925-931, 2008.
3) Haber R, Chebl JA, El Gemayel M, et al : Gleich syndrome : a systematic review. Int J Dermatol 59 : 1458-1465, 2020.
4) Chikama R, Hosokawa M, Miyazawa T, et al : Nonepisodic angioedema associated with eosinophilia : report of 4 cases and review of 33 young female patients reported in Japan. Dermatology 197 : 321-325, 1998.
5) Wolf C, Pehamberger H, Breyer S, et al : Episodic angioedema with eosinophilia. J Am Acad Dermatol 20 : 21-27, 1989.
6) Butterfield JH, Leiferman KM, Abrams J, et al : Elevated serum levels of interleukin-5 in patients with the syndrome of episodic angioedema and eosinophilia. Blood 79 : 688-692, 1992.
7) Sawada T, Hayashi H : Swelling of distal extremities with peripheral blood eosinophilia in a young Asian woman. Eur J Intern Med 48 : e3-e4, 2018.
8) Morgan SJ, Prince HM, Westerman DA, et al : Clonal T-helper lymphocytes and elevated IL-5 levels in episodic angioedema and eosinophilia (Gleich's syndrome). Leuk Lymphoma 44 : 1623-1625, 2003.
9) Mizukawa Y, Shiohara T : The cytokine profile in a transient variant of angioedema with eosinophilia. Br J Dermatol 144 : 169-174, 2001.
10) Oktenli C, Bulucu F, Gurbuz M, et al : Observations on edema formation and resolution in Gleich syndrome : essential role of the kidneys in effective arterial blood volume regulation. Am J Nephrol 21 : 154-161, 2001.
11) Ackerman SJ, Butterfield JH : Eosinophilia, eosinophil-associated diseases, chronic eosinophilic leukemia, and the hypereosinophilic syndromes. In : Hematology : Basic Principles and Practice, 4th ed (ed by Hoffman R, Benz EJ, Shatti SJ, et al), p763-786, Elsevier/Churchill Livingstone, Philadelphia, 2005.
12) 川口康久, 宮崎泰司, 栗山一孝, ほか : 皮疹, 右大腿腫脹を繰り返した好酸球性血管性浮腫. 臨床血液 44 : 1020-1025, 2003.
13) Matucci A, Liotta F, Vivarelli E, et al : Efficacy and safety of mepolizumab (anti-interleukin-5) treatment in Gleich's syndrome. Front Immunol 9 : 1198, 2018.
P.160 掲載の参考文献
1) Kinoshita Y, Yahata S, Oouchi S : Eosinophilic Gastrointestinal Diseases : The Pathogenesis, Diagnosis, and Treatment. Intern Med 62 : 1-10, 2023.
2) Dellon ES, Gonsalves N, Abonia JP, et al : International Consensus Recommendations for Eosinophilic Gastrointestinal Disease Nomenclature. Clin Gastroenterol Hepatol 20 : 2474-2484.e3, 2022.
3) Kinoshita Y, Ishimura N, Oshima N, et al : Systematic review : Eosinophilic esophagitis in Asian countries. World J Gastroenterol 21 : 8433-8440, 2015.
4) Yamamoto M, Nagashima S, Yamada Y, et al : Comparison of Nonesophageal Eosinophilic Gastrointestinal Disorders with Eosinophilic Esophagitis : A Nationwide Survey. J Allergy Clin Immunol Pract 9 : 3339-3349.e8, 2021.
5) Shoda T, Rochman M, Collins MH, et al : Molecular analysis of duodenal eosinophilia. J Allergy Clin Immunol 151 : 1027-1039, 2023.
6) Foroughi S, Foster B, Kim N, et al : Anti-IgE treatment of eosinophil-associated gastrointestinal disorders. J Allergy Clin Immunol 120 : 594-601, 2007.
7) Gurtner A, Borrelli C, Gonzalez-Perez I, et al : Active eosinophils regulate host defence and immune responses in colitis. Nature 615 : 151-157, 2023.
8) Shoda T, Collins MH, Rochman M, et al : Evaluating Eosinophilic Colitis as a Unique Disease Using Colonic Molecular Profiles : A Multi-Site Study. Gastroenterology 162 : 1635-1649, 2022.
9) Chehade M, Kamboj AP, Atkins D, et al : Diagnostic Delay in Patients with Eosinophilic Gastritis and/or Duodenitis : A Population-Based Study. J Allergy Clin Immunol Pract 9 : 2050-2059.e20, 2021.
10) Pesek RD, Reed CC, Collins MH, et al : Association Between Endoscopic and Histologic Findings in a Multicenter Retrospective Cohort of Patients with Non-esophageal Eosinophilic Gastrointestinal Disorders. Dig Dis Sci 65 : 2024-2035, 2020.
11) Matsushita T, Maruyama R, Ishikawa N, et al : The number and distribution of eosinophils in the adult human gastrointestinal tract : a study and comparison of racial and environmental factors. Am J Surg Pathol 39 : 521-527, 2015.
12) Friesen CA, Kearns GL, Andre L, et al : Clinical efficacy and pharmacokinetics of montelukast in dyspeptic children with duodenal eosinophilia. J Pediatr Gastroenterol Nutr 38 : 343-351, 2004.
13) 幼児・成人好酸球性消化管疾患診療ガイドライン (厚生労働省好酸球性消化管疾患研究班編), 2020. [https://www.ncchd.go.jp/hospital/sickness/children/allergy/EGIDs_guideline.pdf] (2023年8月閲覧)
14) Pineton de Chambrun G, Gonzalez F, Canva JY, et al : Natural history of eosinophilic gastroenteritis. Clin Gastroenterol Hepatol 9 : 950-956.e1, 2011.
15) Dellon ES, Peterson KA, Murray JA, et al : Anti-Siglec-8 Antibody for Eosinophilic Gastritis and Duodenitis. N Engl J Med 383 : 1624-1634, 2020.
16) Bledsoe AC, Garber JJ, Ye W, et al : Mortality and cancer in eosinophilic gastrointestinal disorders distal to the esophagus : nationwide cohort study 1990-2017. J Gastroenterol 57 : 735-747, 2022.
P.166 掲載の参考文献
1) Roan F, Obata-Ninomiya K, Ziegler SF : Epithelial cell-derived cytokines : more than just signaling the alarm. J Clin Invest 129 : 1441-1451, 2019.
2) Moro K, Yamada T, Tanabe M, et al : Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463 : 540-544, 2010.
3) Yasuda K, Muto T, Kawagoe T, et al : Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci USA 109 : 3451-3456, 2012.
4) Kim BS, Siracusa MC, Saenz SA, et al : TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5 : 170ra16, 2013.
5) von Moltke J, Ji M, Liang HE, et al : Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529 : 221-225, 2016.
6) Mitre E, Klion AD : Eosinophils and helminth infection : protective or pathogenic? Semin Immunopathol 43 : 363-381, 2021.
7) Nakagawa Y, Ikematsu Y, Nakanishi T, et al : An outbreak of Paragonimus westermani infection among Cambodian technical intern trainees in Japan, exhibiting various extrapulmonary lesions. Parasitol Int 81 : 102279, 2021.
8) Nagayasu E, Yoshida A, Hombu A, et al : Paragonimiasis in Japan : a twelve-year retrospective case review (2001-2012). Intern Med 54 : 179-186, 2015.
9) Yoshida A, Hombu A, Wang Z, et al : Larva migrans syndrome caused by Toxocara and Ascaris roundworm infections in Japanese patients. Eur J Clin Microbiol Infect Dis 35 : 1521-1529, 2016.
10) Hiramatsu Y, Yoshimura M, Saigo R, et al : Toxocara canis myelitis involving the lumbosacral region : a case report. J Spinal Cord Med 40 : 241-245, 2017.
P.169 掲載の参考文献
1) Kempuraj D, Saito H, Kaneko A, et al : Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 93 : 3338-3346, 1999.
2) Dwyer DF, Barrett NA, Austen KF, et al : Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 17 : 878-887, 2016.
3) Han X, Jorgensen JL, Brahmandam A, et al : Immunophenotypic study of basophils by multiparameter flow cytometry. Arch Pathol Lab Med 132 : 813-819, 2008.
4) 末梢血白血球分類の診断的意義. 臨床検査法提要 [改訂第31版] (金井泉原著, 金井正光編著), p306-309, 金原出版, 1998.
5) 松村到, 金倉譲 : 好塩基球の増加する疾患, 減少する疾患. 三輪血液病学 [第3版] (浅野茂隆, 池田康夫, 内山卓監), p1314-1320, 文光堂, 2006.
6) Parker RI, Metcalfe DD : Basophils, mast cells, and systemic mastocytosis. In : Hematology : Basic Principles and Practice, 4th ed (ed by Hoffman R, Benz EJ Jr, Shattil SJ, et al), p763-786, p911-925, Elsevier/Churchill Livingstone, Philadelphia, 2005.
7) Valent P, Sotlar K, Blatt K, et al : Proposed diagnostic criteria and classification of basophilic leukemias and related disorders. Leukemia 31 : 788-797, 2017.
8) Chang KL, Forman SJ : Myeloid disorders. In : Atlas of Clinical Hematology (ed by Armitage JO), p149, Lippincott Williams & Wilkins, Philadelphia, 2004.
9) Befus AD, Denbrug JA : Chapter 11, Basophilic lymphocytes : mast cells and basophils. In : Wintrobe's Clinical Hematology, 12th ed (ed by Greer JP, Foerster J, Rodgers GM, et al), p236-248, Lippincott Williams & Wilkins, Philadelphia, 2009.
10) Lim HD, van Rijn RM, Ling P, et al : Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor : identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314 : 1310-1321, 2005.
11) Mahdavinia M, Carter RG, Ocampo CJ, et al : Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. J Allergy Clin Immunol 133 : 1759-1763, 2014.
12) Stevens WW, Staudacher AG, Hulse KE, et al : Studies of the role of basophils in aspirin-exacerbated respiratory disease pathogenesis. J Allergy Clin Immunol 148 : 439-449.e5, 2021.
14) Xu Y, Wahner AE, Nguyen PL : Progression of chronic myeloid leukemia to blast crisis during treatment with imatinib mesylate. Arch Pathol Lab Med 128 : 980-985, 2004.
15) Staal-Viliare A, Latger-Cannard V, Rault JP, et al : A case of de novo acute basophilic leukaemia : diagnostic criteria and review of the literature. Ann Biol Clin (Paris) 64 : 361-365, 2006.
16) Gupta R, Jain P, Anand M : Acute basophilic leukemia : case report. Am J Hematol 76 : 134-138, 2004.
17) Tallman MS, Hakimian D, Snower D, et al : Basophilic differentiation in acute promyelocytic leukemia. Leukemia 7 : 521-526, 1993.
18) Martin DI, Zon LI, Mutter G, et al : Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344 : 444-447, 1990.
19) Tsai FY, Orkin SH : Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89 : 3636-3643, 1997.
20) Menzies-Gow A, Flood-Page P, Sehmi R, et al : Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J Allergy Clin Immunol 111 : 714-719, 2003.
P.172 掲載の参考文献
1) 末梢血白血球分類の診断的意義. 臨床検査法提要 [改訂第31版] (金井泉原著, 金井正光編著), p306-309, 金原出版, 1998.
2) 好塩基球の増加する疾患, 減少する疾患. 三輪血液病学, 第3版 (浅野茂隆, 池田康夫, 内山卓監), p1314-1320, 文光堂, 2006.
3) Parker RI, Metcalfe DD : Basophils, mast cells, and systemic mastocytosis. In : Hematology : Basic principles and practice (ed by Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P), p911-925, Elsevier, Philadelphia, USA, 2005.
4) Befus AD, Denbrug JA : Chapter 11, Basophilic lymphocytes : mast cells and basophils. In : Wintrobe's Clinical Hematology, 12th ed (ed by Greer JP, Foerster J, Rodgers GM, Paraskevas F, Glader B, Arber DA, Means RT Jr), p236-248, Lippincott Williams & Wilkins, Philadelphia, USA, 2009.
5) Miyake K, Ito J, Karasuyama H : Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 13 : 902494, 2022.
6) Ito Y, Satoh T, Takayama K, et al : Basophil recruitment and activation in inflammatory skin diseases. Allergy 66 : 1107-1113, 2011.
7) Grattan CE, Dawn G, Gibbs S, et al : Blood basophil numbers in chronic ordinary urticaria and healthy controls : diurnal variation, influence of loratadine and prednisolone and relationship to disease activity. Clin Exp Allergy 33 : 337-341, 2003.
8) Scurlock AM, Burks AW, Jones SM : Oral immunotherapy for food allergy. Curr Allergy Asthma Rep 9 : 186-193, 2009.
9) Kishimoto I, Kambe N, Ly NTM, et al : Basophil count is a sensitive marker for clinical progression in a chronic spontaneous urticaria patient treated with omalizumab. Allergol Int 68 : 388-390, 2019.
10) Saini SS, Omachi TA, Trzaskoma B, et al : Effect of Omalizumab on Blood Basophil Counts in Patients with Chronic Idiopathic/Spontaneous Urticaria. J Invest Dermatol 137 : 958-961, 2017.
11) Lommatzsch M, Marchewski H, Schwefel G, et al : Benralizumab strongly reduces blood basophils in severe eosinophilic asthma. Clin Exp Allergy 50 : 1267-1269, 2020.
12) Rajan P, Rao GS, Walter S : Blood basopenia as an indicator of ovulation. Indian J Physiol Pharmacol 36 : 115-117, 1992.
13) Korosec P, Turner PJ, Silar M, et al : Basophils, high-affinity IgE receptors, and CCL2 in human anaphylaxis. J Allergy Clin Immunol 140 : 750-758.e15, 2017.
14) Yamaga S, Yanase Y, Ishii K, et al : Decreased intracellular histamine concentration and basophil activation in anaphylaxis. Allergol Int 69 : 78-83, 2020.
15) Sicklinger F, Meyer IS, Li X, et al : Basophils Balance Healing After Myocardial Infarction via IL-4/IL-13. J Clin Invest 131 : e136778, 2021.
16) Atta AM, Santiago MB, Guerra FG, et al : Autoimmune response of IgE antibodies to cellular self-antigens in systemic Lupus Erythematosus. Int Arch Allergy Immunol 152 : 401-406, 2010.
17) Charles N, Hardwick D, Daugas E, et al : Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 16 : 701-707, 2010.
18) Rodriguez L, Pekkarinen PT, Lakshmikanth T, et al : Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Rep Med 1 : 100078, 2020.
19) Laing AG, Lorenc A, Del Molino Del Barrio I, et al : A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 26 : 1623-1635, 2020.
20) Vitte J, Diallo AB, Boumaza A, et al : A Granulocytic Signature Identifies COVID-19 and Its Severity. J Infect Dis 222 : 1985-1996, 2020.
21) Ten-Caten F, Gonzalez-Dias P, Castro I, et al : In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19. Int J Infect Dis 105 : 579-587, 2021.
P.177 掲載の参考文献
1) Khoury JD, Solary E, Abla O, et al : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours : Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36 : 1703-1719, 2022.
2) van Zeventer IA, de Graaf AO, Koorenhof-Scheele TN, et al : Monocytosis and its association with clonal hematopoiesis in community-dwelling individuals. Blood Adv 6 : 4174-4184, 2022.
3) Tadmor T, Fell R, Polliack A, et al : Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells. Hematol Oncol 31 : 65-71, 2013.
4) Lamprecht B, Walter K, Kreher S, et al : Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16 : 571-579, 2010.
5) Khan E, Kisat M, Khan N, et al : Demographic and clinical features of dengue fever in Pakistan from 2003-2007 : a retrospective cross-sectional study. PLoS One 5 : e12505, 2010.
6) Raffray L, Giry C, Vandroux D, et al : The monocytosis during human leptospirosis is associated with modest immune cell activation states. Med Microbiol Immunol 208 : 667-678, 2019.
7) Schulte-Schrepping J, Reusch N, Paclik D, et al : Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 182 : 1419-1440.e23, 2020.
8) Ruka W, Rutkowski P, Kaminska J, et al : Alterations of routine blood tests in adult patients with soft tissue sarcomas : relationships to cytokine serum levels and prognostic significance. Ann Oncol 12 : 1423-1432, 2001.
9) Chen MH, Chang PM, Chen PM, et al : Prognostic significance of a pretreatment hematologic profile in patients with head and neck cancer. J Cancer Res Clin Oncol 135 : 1783-1790, 2009.
10) Meisel SR, Pauzner H, Shechter M, et al : Peripheral monocytosis following acute myocardial infarction : incidence and its possible role as a bedside marker of the extent of cardiac injury. Cardiology 90 : 52-57, 1998.
11) Dutta P, Courties G, Wei Y, et al : Myocardial infarction accelerates atherosclerosis. Nature 487 : 325-329, 2012.
12) Suzuki K, Nakaji S, Yamada M, et al : Impact of a competitive marathon race on systemic cytokine and neutrophil responses. Med Sci Sports Exerc 35 : 348-355, 2003.
13) Wong KL, Yeap WH, Tai JJ, et al : The three human monocyte subsets : implications for health and disease. Immunol Res 53 : 41-57, 2012.
14) Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al : Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 125 : 3618-3626, 2015.
15) Cargo C, Cullen M, Taylor J, et al : The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood 133 : 1325-1334, 2019.
P.180 掲載の参考文献
1) Krumbhaar EB : Leukemoid Blood Pictures in Various Clinical Conditions. Am J Med Sci 172 : 519-532, 1926.
2) Hoofien A, Yarden-Bilavski H, Ashkenazi S, et al : Leukemoid reaction in the pediatric population : etiologies, outcome, and implications. Eur J Pediatr 177 : 1029-1036, 2018.
3) Shi C, Pamer EG : Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11 : 762-774, 2011.
4) Hegde A, Srinivasan R, Dinakar C : Congenital syphilis : a rare presentation of a forgotten infection. J Infect Dev Ctries 17 : 135-138, 2023.
5) Liu WN, Jiang XY, Xu YZ, et al : Treponemapallidum Dysregulates Monocytes and Promotes the Expression of IL-1β and Migration in Monocytes Through the mTOR Signaling Pathway. Front Cell Infect Microbiol 10 : 592864, 2020.
6) Yoshida K, Aida K, Horibe T, et al : [Plasma cell leukemia associated with monocytosis]. Rinsho Ketsueki 38 : 604-609, 1997.
8) 元吉和夫 : 単球性類白血病反応 ; 白血病 (顆粒球) の異常 (悪性腫瘍を除く). 単球の異常. 別冊日本臨牀領域別症候群シリーズ血液症候群 II, p146-148, 日本臨牀社, 1998.
9) 川越富夫, 松岡均, 繁永美紀, ほか : 末梢血白血球数が12万/μlにまで上昇し, 慢性骨髄単球性白血病が疑われた類白血病反応の1例. 臨床雑誌内科 106 : 757-760, 2010.
10) Gibson A : Monocytic leukaemoid reaction associated with tuberculosis and a mediastinal teratoma. J Pathol Bacteriol 58 : 469-475, 1946.
11) Cargo C, Cullen M, Taylor J, et al : The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood 133 : 1325-1334, 2019.
12) Khoury JD, Solary E, Abla O, et al : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours : Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36 : 1703-1719, 2022.
P.184 掲載の参考文献
1) Unger S, Ferreira CR, Mortier GR, et al : Nosology of genetic skeletal disorders : 2023 revision. Am J Med Genet A 191 : 1164-1209, 2023.
2) Sawamura K, Mishima K, Matsushita M, et al : A cross-sectional nationwide survey of osteosclerotic skeletal dysplasias in Japan. J Orthop Sci 27 : 1139-1142, 2022.
3) Teti A, Econs MJ : Osteopetroses, emphasizing potential approaches to treatment. Bone 102 : 50-59, 2017.
4) Key LL Jr, Rodriguiz RM, Willi SM, et al : Long-term treatment of osteopetrosis with recombinant human interferon gamma. N Engl J Med 332 : 1594-1599, 1995.
5) Lo Iacono N, Blair HC, Poliani PL, et al : Osteopetrosis rescue upon RANKL administration to Rankl-/- mice : a new therapy for human RANKL-dependent ARO. J Bone Miner Res 27 : 2501-2510, 2012.
6) Capulli M, Maurizi A, Ventura L, et al : Effective small interfering RNA therapy to treat CLCN7-dependent autosomal dominant osteopetrosis type 2. Mol Ther Nucleic Acids 4 : e248, 2015.
P.188 掲載の参考文献
1) Horny HP, Metcalfe DD, Akin C, et al : Mastocytosis. In : WHO Classification of Tumours, Revised 4th ed, Vol 2, WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed by Swerdlow SH, Campo E, Harris NL, et al), p62-69, IARC, Lyon, 2017.
2) Cohen SS, Skovbo S, Vestergaard H, et al : Epidemiology of systemic mastocytosis in Denmark. Br J Haematol 166 : 521-528, 2014.
3) Li Z : New Insights into the Pathogenesis of Systemic Mastocytosis. Int J Mol Sci 22 : 4900, 2021.
4) Kluin-Nelemans HC, Reiter A, Illerhaus A, et al : Prognostic impact of eosinophils in mastocytosis : analysis of 2350 patients collected in the ECNM Registry. Leukemia 34 : 1090-1101, 2020.
5) Lim KH, Tefferi A, Lasho TL, et al : Systemic mastocytosis in 342 consecutive adults : survival studies and prognostic factors. Blood 113 : 5727-5736, 2009.
6) NCCN Guidelines Version 4. 2023 Systematic Mastocytosis. [https://www.nccn.org/professionals/physician_gls/pdf/mastocytosis.pdf] (2023年8月閲覧)
7) Gotlib J, Kluin-Nelemans HC, George TI, et al : Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med 374 : 2530-2541, 2016.
8) Gotlib J, Reiter A, Radia DH, et al : Efficacy and safety of avapritinib in advanced systemic mastocytosis : interim analysis of the phase 2 PATHFINDER trial. Nat Med 27 : 2192-2199, 2021.
9) Ustun C, Reiter A, Scott BL, et al : Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol 32 : 3264-3274, 2014.
10) Maegaki M, Kawamura K, Hara K, et al : [Successful outcome of allogeneic hematopoietic stem cell transplantation for systemic mastocytosis complicated with acute myeloid leukemia]. Rinsho Ketsueki 63 : 14-19, 2022.
11) Sorror ML, Maris MB, Storb R, et al : Hematopoietic cell transplantation (HCT) -specific comorbidity index : a new tool for risk assessment before allogeneic HCT. Blood 106 : 2912-2919, 2005.

IV リンパ球の異常

P.194 掲載の参考文献
1) Penn I, Hammond W, Brettschneider L, et al : Malignant lymphomas in transplantation patients. Transplant Proc 1 : 106-112, 1969.
2) Evens AM, David KA, Helenowski I, et al : Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease : outcomes and prognostic factors in the modern era. J Clin Oncol 28 : 1038-1046, 2010.
3) Pearse WB, Vakkalagadda CV, Helenowski I, et al : Prognosis and outcomes of patients with Post-Transplant Lymphoproliferative Disorder : A single center retrospective review. Blood 136 (Suppl 1) : 9-10, 2020.
4) Dharnidharka VR, Webster AC, Martinez OM, et al : Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers 2 : 15088, 2016.
5) Loren AW, Porter DL, Stadtmauer EA, et al : Post-transplant lymphoproliferative disorder : a review. Bone Marrow Transplant 31 : 145-155, 2003.
6) Nourse JP, Jones K, Gandhi MK : Epstein-Barr Virus-related post-transplant lymphoproliferative disorders : pathogenetic insights for targeted therapy. Am J Transplant 11 : 888-895, 2011.
7) Cockfield SM : Identifying the patient at risk for post-transplant lymphoproliferative disorder. Transpl Infect Dis 3 : 70-78, 2001.
8) Curtis RE, Travis LB, Rowlings PA, et al : Risk of lymphoproliferative disorders after bone marrow transplantation : a multi-institutional study. Blood 94 : 2208-2216, 1999.
9) Nelson BP, Nalesnik MA, Bahler DW, et al : Epstein-Barr virus-negative post-transplant lymphoproliferative disorders : a distinct entity? Am J Surg Pathol 24 : 375-385, 2000.
10) Herreman A, Dierickx D, Morscio J, et al : Clinicopathological characteristics of post-transplant lymphoproliferative disorders of T-cell origin : single-center series of nine cases and meta-analysis of 147 reported cases. Leuk Lymphoma 54 : 2190-2199, 2013.
11) Oton AB, Wang H, Leleu X, et al : Clinical and pathological prognostic markers for survival in adult patients with post-transplant lymphoproliferative disorders in solid transplant. Leuk Lymphoma 49 : 1738-1744, 2008.
12) Tsao L, Hsi ED : The clinicopathologic spectrum of post-transplantation lymphoproliferative disorders. Arch Pathol Lab Med 131 : 1209-1218, 2007.
13) Swerdlow SH, Campo E, Pileri SA, et al : The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127 : 2375-2390, 2016.
14) Swerdlow SH, et al : Post-transplant lymphoproliferative disorder. In : WHO Classification of Tumours, 4th ed, Vol 2, WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (ed by Swerdlow SH, Campo E, Harris NL, et al), p343-349, IARC, Lyon, 2008.
15) Campo E, Jaffe ES, Cook JR, et al : The International Consensus Classification of Mature Lymphoid Neoplasms : a report from the Clinical Advisory Committee. Blood 140 : 1229-1253, 2022.
16) Alaggio R, Amador C, Anagnostopoulos I, et al : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours : Lymphoid Neoplasms. Leukemia 36 : 1720-1748, 2022.
17) Funch DP, Walker AM, Schneider G, et al : Ganciclovir and acyclovir reduce the risk of post-transplant lymphoproliferative disorder in renal transplant recipients. Am J Transplant 5 : 2894-2900, 2005.
18) AlDabbagh MA, Gitman MR, Kumar D, et al : The Role of Antiviral Prophylaxis for the Prevention of Epstein-Barr Virus-Associated Posttransplant Lymphoproliferative Disease in Solid Organ Transplant Recipients : A Systematic Review. Am J Transplant 17 : 770-781, 2017.
19) Styczynski J, van der Velden W, Fox CP, et al : Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation : Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica 101 : 803-811, 2016.
20) Reshef R, Vardhanabhuti S, Luskin MR, et al : Reduction of immunosuppression as initial therapy for post-transplantation lymphoproliferative disorder. Am J Transplant 11 : 336-347, 2011.
21) Choquet S, Trappe R, Leblond V, et al : CHOP-21 for the treatment of post-transplant lymphoproliferative disorders (PTLD) following solid organ transplantation. Haematologica 92 : 273-274, 2007.
22) Zimmermann H, Koenecke C, Dreyling MH, et al : Modified risk-stratified sequential treatment (subcutaneous rituximab with or without chemotherapy) in B-cell Post-transplant lymphoproliferative disorder (PTLD) after Solid organ transplantation (SOT) : the prospective multicentre phase II PTLD-2 trial. Leukemia 36 : 2468-2478, 2022.
23) Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al : Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119 : 2644-2656, 2012.
24) Haque T, Wilkie GM, Jones MM, et al : Allogeneic cytotoxic T-cell therapy for EBV-positive post-transplantation lymphoproliferative disease : results of a phase 2 multicenter clinical trial. Blood 110 : 1123-1131, 2007.
25) Evens AM, Choquet S, Kroll-Desrosiers AR, et al : Primary CNS post-transplant lymphoproliferative disease (PTLD) : an international report of 84 cases in the modern era. Am J Transplant 13 : 1512-1522, 2013.
P.200 掲載の参考文献
1) Alaggio R, Amador C, Anagnostopoulos I, et al : The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours : Lymphoid Neoplasms. Leukemia 36 : 1720-1748, 2022.
2) Campo E, Jaffe ES, Cook JR, et al : The International Consensus Classification of Mature Lymphoid Neoplasms : a report from the Clinical Advisory Committee. Blood 140 : 1229-1253, 2022.
3) Loughran TP Jr, Starkebaum G : Large granular lymphocyte leukemia. Report of 38 cases and review of the literature. Medicine (Baltimore) 66 : 397-405, 1987.
4) Barila G, Calabretto G, Teramo A, et al : T cell large granular lymphocyte leukemia and chronic NK lymphocytosis. Best Pract Res Clin Haematol 32 : 207-216, 2019.
5) Loughran TP Jr : Clonal diseases of large granular lymphocytes. Blood 82 : 1-14, 1993.
6) Sandberg Y, Kallemeijn MJ, Dik WA, et al : Lack of common TCRA and TCRB clonotypes in CD8+/TCRαβ+ T-cell large granular lymphocyte leukemia : a review on the role of antigenic selection in the immunopathogenesis of CD8+ T-LGL. Blood Cancer J 4 : e172, 2014.
7) Koskela HL, Eldfors S, Ellonen P, et al : Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366 : 1905-1913, 2012.
8) Mohan SR, Maciejewski JP : Diagnosis and therapy of neutropenia in large granular lymphocyte leukemia. Curr Opin Hematol 16 : 27-34, 2009.
9) Garrido P, Ruiz-Cabello F, Barcena P, et al : Monoclonal TCR-Vβ13.1+/CD4+/NKa+/CD-/+dim T-LGL lymphocytosis : evidence for an antigen-driven chronic T-cell stimulation origin. Blood 109 : 4890-4898, 2007.
10) Lima M, Almeida J, Santos AH, et al : Immunophenotypic analysis of the TCR-Vβ repertoire in 98 persistent expansions of CD3+/TCR-αβ+ large granular lymphocytes : utility in assessing clonality and insights into the pathogenesis of the disease. Am J Pathol 159 : 1861-1868, 2001.
12) Osuji N, Matutes E, Dearden C, et al : Pregnancy improves neutropenia in T-cell large granular lymphocyte leukaemia. Br J Haematol 128 : 645-648, 2005.
13) Loughran TP Jr, Zickl L, Olson TL, et al : Immunosuppressive therapy of LGL leukemia : prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998). Leukemia 29 : 886-894, 2015.
14) Cornec D, Devauchelle-Pensec V, Jousse-Joulin S, et al : Long-term remission of T-cell large granular lymphocyte leukemia associated with rheumatoid arthritis after rituximab therapy. Blood 122 : 1583-1586, 2013.
15) Cheon H, Dziewulska KH, Moosic KB, et al : Advances in the Diagnosis and Treatment of Large Granular Lymphocytic Leukemia. Curr Hematol Malig Rep 15 : 103-112, 2020.
P.204 掲載の参考文献
1) Seemayer TA, Gross TG, Egeler RM, et al : X-linked lymphoproliferative disease : twenty-five years after the discovery. Pediatr Res 38 : 471-478, 1995.
2) Rigaud S, Fondaneche MC, Lambert N, et al : XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444 : 110-114, 2006.
3) Speckmann C, Rohr J, Ehl S : Genetic Disorders of Immune Regulation. In : Primary Immunodeficiency Diseases : Definition, Diagnosis and Management (ed by Rezaei N, Aghamohammadi A, Notarangelo LD), p167-194, Springer-Verlag, Berlin, Heidelberg, 2008.
4) Brandau O, Schuster V, Weiss M, et al : Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet 8 : 2407-2413, 1999.
5) Sumegi J, Huang D, Lanyi A, et al : Correlation of mutations of the SH2D1A gene and epsteinbarr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 96 : 3118-3125, 2000.
6) Milone MC, Tsai DE, Hodinka RL, et al : Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood 105 : 994-996, 2005.
7) Coffey AJ, Brooksbank RA, Brandau O, et al : Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20 : 129-135, 1998.
8) Sayos J, Wu C, Morra M, et al : The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395 : 462-469, 1998.
9) Ostrakhovitch EA, Wang Y, Li SS : SAP binds to CD22 and regulates B cell inhibitory signaling and calcium flux. Cell Signal 21 : 540-550, 2009.
10) Tangye SG : XLP : clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol 34 : 772-779, 2014.
11) Filipovich AH, Zhang K, Snow AL, et al : X-linked lymphoproliferative syndromes : brothers or distant cousins? Blood 116 : 3398-3408, 2010.
12) Rezaei N, Mahmoudi E, Aghamohammadi A, et al : X-linked lymphoproliferative syndrome : a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol 152 : 13-30, 2011.
16) Yuling H, Ruijing X, Li L, et al : EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 69 : 7935-7944, 2009.
17) Ma CS, Pittaluga S, Avery DT, et al : Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest 116 : 322-333, 2006.
18) Panchal N, Booth C, Cannons JL, et al : X-Linked Lymphoproliferative Disease Type 1 : A Clinical and Molecular Perspective. Front Immunol 9 : 666, 2018.
19) Henter JI, Horne A, Arico M, et al : HLH-2004 : Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48 : 124-131, 2007.
P.209 掲載の参考文献
1) 秋山暢 : 白血球増加と類白血病反応. 血液の事典 (平井久丸, 押味和夫, 坂田洋一編), p141-143, 朝倉書店, 2004.
3) Shanafelt TD, Ghia P, Lanasa MC, et al : Monoclonal B-cell lymphocytosis (MBL) : biology, natural history and clinical management. Leukemia 24 : 512-520, 2010.
4) 青木定夫 : 白血球数の増加. medicina 45 : 2202-2205, 2008.
5) George TI : Malignant or benign leukocytosis. Hematology Am Soc Hematol Educ Program 2012 : 475-484, 2012.
6) 樋口敬和, 岡田定 : リンパ球数の増減をきたす疾患・病態. 臨床検査 61 : 946-950, 2017.
7) Hutchinson RE, Kurec AS, Davey FR : Lymphocytic surface markers in lymphoid leukemoid reactions. Clin Lab Med 8 : 237-245, 1988.
8) Rawstron AC, Bennett FL, O'Connor SJ, et al : Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 359 : 575-583, 2008.
9) 青木定夫 : 単クローン性B細胞リンパ球増加症. WHO分類改訂第4版による白血病・リンパ系腫瘍の病態学 (木崎昌弘, 田丸淳一編著), p226, 中外医学社, 2019.
10) Galigalidou C, Zaragoza-Infante L, Iatrou A, et al : Understanding Monoclonal B Cell Lymphocytosis : An Interplay of Genetic and Microenvironmental Factors. Front Oncol 11 : 769612, 2021.
11) Kalpadakis C, Pangalis GA, Sachanas S, et al : New insights into monoclonal B-cell lymphocytosis. Biomed Res Int 2014 : 258917, 2014.
12) Marti G, Abbasi F, Raveche E, et al : Overview of monoclonal B-cell lymphocytosis. Br J Haematol 139 : 701-708, 2007.
P.212 掲載の参考文献
1) Bousfiha A, Moundir A, Tangye SG, et al : The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 42 : 1508-1520, 2022.
2) Hosaka S, Kido T, Imagawa K, et al : Vaccination for Patients with Inborn Errors of Immunity : a Nationwide Survey in Japan. J Clin Immunol 42 : 183-194, 2022.
3) Scammon RE : The measurement of the body in childhood. In : The Measurement of Man (ed by Harris JA, Jackson CM, Paterson DG, et al), p173-215, University of Minnesota Press, Minneapolis, 1930.
4) van Gent R, van Tilburg CM, Nibbelke EE, et al : Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol 133 : 95-107, 2009.
5) 仲村和子 : 白血球数 (WBC), 白血球分画. 小児臨床検査ガイド (五十嵐隆, 水口雅編), p64-65, 文光堂, 2006.
6) Schatorje EJ, Gemen EF, Driessen GJ, et al : Paediatric reference values for the peripheral T cell compartment. Scand J Immunol 75 : 436-444, 2012.
P.217 掲載の参考文献
1) Illg Z, Muller G, Mueller M, et al : Analysis of absolute lymphocyte count in patients with COVID-19. Am J Emerg Med 46 : 16-19, 2021.
2) Cilloniz C, Peroni HJ, Gabarrus A, et al : Lymphopenia Is Associated With Poor Outcomes of Patients With Community-Acquired Pneumonia and Sepsis. Open Forum Infect Dis 8 : ofab169, 2021.
3) van Gent R, van Tilburg CM, Nibbelke EE, et al : Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol 133 : 95-107, 2009.
4) Kooshesh KA, Foy BH, Sykes DB, et al : Health Consequences of Thymus Removal in Adults. N Engl J Med 389 : 406-417, 2023.
5) Castelino DJ, McNair P, Kay TW : Lymphocytopenia in a hospital population-what does it signify? Aust N Z J Med 27 : 170-174, 1997.
6) 大越靖 : 先天性リンパ球減少症 ; リンパ球の異常. リンパ球減少症. リンパ減少症. 別冊日本臨牀新領域別症候群シリーズ No.22 血液症候群 (第2版) II, p204-207, 2013.
7) Guo Z, Zhang Z, Prajapati M, et al : Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses 13 : 1876, 2021.
8) Merayo-Chalico J, Rajme-Lopez S, Barrera-Vargas A, et al : Lymphopenia and autoimmunity : A double-edged sword. Hum Immunol 77 : 921-929, 2016.
9) Yao Z, Fukushima H, Suzuki R, et al : Recovery of lymphocyte subpopulations is incomplete in the long-term setting in pediatric solid tumor survivors. Pediatr Int 64 : e15257, 2022.
10) Scammon RE : The measurement of the body in childhood. In : The Measurement of Man (ed by Harris JA, Jackson CM, Paterson DG, et al), p173-215, University of Minnesota Press, Minneapolis, 1930.
11) 仲村和子 : 白血球数 (WBC), 白血球分画. 小児臨床検査ガイド (五十嵐隆, 水口雅編), p64-65, 文光堂, 2006.
12) Schatorje EJ, Gemen EF, Driessen GJ, et al : Paediatric reference values for the peripheral T cell compartment. Scand J Immunol 75 : 436-444, 2012.
P.220 掲載の参考文献
1) Centers for Disease Control (CDC) : Unexplained CD4+ T-lymphocyte depletion in persons without evident HIV infection-United States. MMWR Morb Mortal Wkly Rep 41 : 541-545, 1992.
2) Busch MP, Valinsky JE, Paglieroni T, et al : Screening of blood donors for idiopathic CD4+ T-lymphocytopenia. Transfusion 34 : 192-197, 1994.
3) Smith DK, Neal JJ, Holmberg SD ; The Centers for Disease Control Idiopathic CD4+ T-lymphocytopenia Task Force : Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. N Engl J Med 328 : 373-379, 1993.
4) Ho DD, Cao Y, Zhu T, et al : Idiopathic CD4+ T-lymphocytopenia-immunodeficiency without evidence of HIV infection. N Engl J Med 328 : 380-385, 1993.
5) Vijayakumar S, Viswanathan S, Aghoram R : Idiopathic CD4 Lymphocytopenia : Current Insights. Immunotargets Ther 9 : 79-93, 2020.
6) Lisco A, Ortega-Villa AM, Mystakelis H, et al : Reappraisal of Idiopathic CD4 Lymphocytopenia at 30 Years. N Engl J Med 388 : 1680-1691, 2023.
7) Zonios DI, Falloon J, Bennett JE, et al : Idiopathic CD4+ lymphocytopenia : natural history and prognostic factors. Blood 112 : 287-294, 2008.
8) Regent A, Autran B, Carcelain G, et al : Idiopathic CD4 lymphocytopenia : clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore) 93 : 61-72, 2014.
P.226 掲載の参考文献
1) Balfour HH Jr, Odumade OA, Schmeling DO, et al : Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis 207 : 80-88, 2013.
2) Takeuchi K, Tanaka-Taya K, Kazuyama Y, et al : Prevalence of Epstein-Barr virus in Japan : trends and future prediction. Pathol Int 56 : 112-116, 2006.
3) Miura M, Shimizu H, Saito D, et al : Multicenter, cross-sectional, observational study on Epstein-Barr viral infection status and thiopurine use by age group in patients with inflammatory bowel disease in Japan (EBISU study). J Gastroenterol 56 : 1080-1091, 2021.
4) Rezk E, Nofal YH, Hamzeh A, et al : Steroids for symptom control in infectious mononucleosis. Cochrane Database Syst Rev 2015 : CD004402, 2015.
5) Torre D, Tambini R : Acyclovir for treatment of infectious mononucleosis : a meta-analysis. Scand J Infect Dis 31 : 543-547, 1999.
6) Hjalgrim H, Askling J, Rostgaard K, et al : Characteristics of Hodgkin's lymphoma after infectious mononucleosis. N Engl J Med 349 : 1324-1332, 2003.
P.228 掲載の参考文献
1) Furui Y, Satake M, Hoshi Y, et al : Cytomegalovirus (CMV) seroprevalence in Japanese blood donors and high detection frequency of CMV DNA in elderly donors. Transfusion 53 : 2190-2197, 2013.
2) Ishii T, Sasaki Y, Maeda T, et al : Clinical differentiation of infectious mononucleosis that is caused by Epstein-Barr virus or cytomegalovirus : A single-center case-control study in Japan. J Infect Chemother 25 : 431-436, 2019.
P.231 掲載の参考文献
1) Gitlin D, Janeway CA : Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol 1 : 318-329, 1956.
2) Atkinson AR, Roifman CM : Low serum immunoglobulin G2 levels in infancy can be transient. Pediatrics 120 : e543-547, 2007.
3) Keles S, Artac H, Kara R, et al : Transient hypogammaglobulinemia and unclassified hypogammaglobulinemia : 'similarities and differences'. Pediatr Allergy Immunol 21 : 843-851, 2010.
4) Schatorje EJ, Gathmann B, van Hout RW, et al : The PedPAD study : boys predominate in the hypogammaglobulinaemia registry of the ESID online database. Clin Exp Immunol 176 : 387-393, 2014.
5) Soothill JF : Immunoglobulins in first-degree relatives of patients with hypogammaglobulinaemia. Transient hypogammaglobulinaemia : a possible manifestation of heterozygocity. Lancet 1 : 1001-1003, 1968.
6) Fudenberg HH, Fudenberg BR : Antibody to Hereditary Human Gamma-Globulin (GM) Factor Resulting from Maternal-Fetal Incompatibility. Science 145 : 170-171, 1964.
7) Siegel RL, Issekutz T, Schwaber J, et al : Deficiency of T helper cells in transient hypogammaglobulinemia of infancy. N Engl J Med 305 : 1307-1313, 1981.
8) Rutkowska M, Lenart M, Bukowska-Strakova K, et al : The number of circulating CD4+ CD25high Foxp3+ T lymphocytes is transiently elevated in the early childhood of transient hypogamma-globulinemia of infancy patients. Clin Immunol 140 : 307-310, 2011.
9) Ameratunga R, Ahn Y, Steele R, et al : Transient hypogammaglobulinaemia of infancy : many patients recover in adolescence and adulthood. Clin Exp Immunol 198 : 224-232, 2019.
10) Plebani A, Palumbo L, Dotta L, et al : Diagnostic approach of hypogammaglobulinemia in infancy. Pediatr Allergy Immunol 31 (Suppl 24) : 11-12, 2020.
11) Kanegane H, Futatani T, Wang Y, et al : Clinical and mutational characteristics of X-linked agammaglobulinemia and its carrier identified by flow cytometric assessment combined with genetic analysis. J Allergy Clin Immunol 108 : 1012-1020, 2001.
13) Duse M, Iacobini M, Leonardi L, et al : Transient hypogammaglobulinemia of infancy : intravenous immunoglobulin as first line therapy. Int J Immunopathol Pharmacol 23 : 349-353, 2010.
P.235 掲載の参考文献
1) Bruton OC : Agammaglobulinemia. Pediatrics 9 : 722-728, 1952.
2) El-Sayed ZA, Abramova I, Aldave JC, et al : X-linked agammaglobulinemia (XLA) : Phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J 12 : 100018 2019.
3) Tsukada S, Saffran DC, Rawlings DJ, et al : Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72 : 279-290, 1993.
4) Vetrie D, Vorechovsky I, Sideras P, et al : The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361 : 226-233, 1993.
5) Global Variome shared LOVD : BTK (Bruton tyrosine kinase). [https://databases.lovd.nl/shared/genes/BTK] (2023年8月閲覧)
6) Tangye SG, Nguyen T, Deenick EK, et al : Inborn errors of human B cell development, differentiation, and function. J Exp Med 220 : e20221105, 2023.
7) Winkelstein JA, Marino MC, Lederman HM, et al : X-linked agammaglobulinemia : report on a United States registry of 201 patients. Medicine (Baltimore) 85 : 193-202, 2006.
8) Honda F, Kano H, Kanegane H, et al : The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13 : 369-378, 2012.
9) Chawla S, Jindal AK, Arora K, et al : T Cell Abnormalities in X-Linked Agammaglobulinaemia : an Updated Review. Clin Rev Allergy Immunol 65 : 31-42, 2023.
10) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
11) Takada H, Kanegane H, Nomura A, et al : Female agammaglobulinemia due to the Bruton tyrosine kinase deficiency caused by extremely skewed X-chromosome inactivation. Blood 103 : 185-187, 2004.
12) Futatani T, Miyawaki T, Tsukada S, et al : Deficient expression of Bruton's tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood 91 : 595-602, 1998.
13) Jolles S, Rojavin MA, Lawo JP, et al : Long-Term Efficacy and Safety of Hizentra in Patients with Primary Immunodeficiency in Japan, Europe, and the United States : a Review of 7 Phase 3 Trials. J Clin Immunol 38 : 864-875, 2018.
14) Ikegame K, Imai K, Yamashita M, et al : Allogeneic stem cell transplantation for X-linked agammaglobulinemia using reduced intensity conditioning as a model of the reconstitution of humoral immunity. J Hematol Oncol 9 : 9, 2016.
15) Inoue K, Sasaki S, Yasumi T, et al : Helicobacter cinaedi-Associated Refractory Cellulitis in Patients with X-Linked Agammaglobulinemia. J Clin Immunol 40 : 1132-1137, 2020.
P.240 掲載の参考文献
1) Grimbacher B, Hutloff A, Schlesier M, et al : Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 4 : 261-268, 2003.
2) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
3) Bogaert DJ, Dullaers M, Lambrecht BN, et al : Genes associated with common variable immunodeficiency : one diagnosis to rule them all? J Med Genet 53 : 575-590, 2016.
4) European Society for Immunodeficiencies : Registry Working Party Diagnosis criteria. ESID Registry-Working definitions for clinical diagnosis of PID. [https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria] (2023年8月閲覧)
5) 小児慢性特定疾病情報センター : 分類不能型免疫不全症. [https://www.shouman.jp/disease/details/10_03_024/]
6) Yong PF, Thaventhiran JE, Grimbacher B : "A rose is a rose is a rose," but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011? Adv Immunol 111 : 47-107, 2011.
7) Hosaka S, Kido T, Imagawa K, et al : Vaccination for Patients with Inborn Errors of Immunity : a Nationwide Survey in Japan. J Clin Immunol 42 : 183-194, 2022.
8) Tangye SG, Nguyen T, Deenick EK, et al : Inborn errors of human B cell development, differentiation, and function. J Exp Med 220 : e20221105, 2023.
9) Bonagura VR, Marchlewski R, Cox A, et al : Biologic IgG level in primary immunodeficiency disease : the IgG level that protects against recurrent infection. J Allergy Clin Immunol 122 : 210-212, 2008.
10) Wehr C, Gennery AR, Lindemans C, et al : Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J Allergy Clin Immunol 135 : 988-997.e6, 2015.
11) Kamae C, Nakagawa N, Sato H, et al : Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin κ-deleting recombination excision circles. J Allergy Clin Immunol 131 : 1437-1440.e5, 2013.
P.246 掲載の参考文献
1) Kracker S, Gardes P, Mazerolles F, et al : Immunoglobulin class switch recombination deficiencies. Clin Immunol 135 : 193-203, 2010.
2) Hennig C, Happle C, Hansen G : "A bad wound may heal, but a bad name can kill" -lessons learned from "hyper-IgM syndrome". J Allergy Clin Immunol 128 : 1380-1382 ; author reply 1382-1383, 2011.
3) Mitsui-Sekinaka K, Imai K, Sato H, et al : Clinical features and hematopoietic stem cell transplantations for CD40 ligand deficiency in Japan. J Allergy Clin Immunol 136 : 1018-1024, 2015.
4) Zhu Y, Nonoyama S, Morio T, et al : Type two hyper-IgM syndrome caused by mutation in activation-induced cytidine deaminase. J Med Dent Sci 50 : 41-46, 2003.
5) Imai K, Slupphaug G, Lee WI, et al : Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4 : 1023-1028, 2003.
6) Okano T, Imai K, Tsujita Y, et al : Hematopoietic stem cell transplantation for progressive combined immunodeficiency and lymphoproliferation in patients with activated phosphatidylinositol-3-OH kinase δ syndrome type 1. J Allergy Clin Immunol 143 : 266-275, 2019.
7) Elkaim E, Neven B, Bruneau J, et al : Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2 : A cohort study. J Allergy Clin Immunol 138 : 210-218.e9, 2016.
8) Gathmann B, Grimbacher B, Beaute J, et al : The European internet-based patient and research database for primary immunodeficiencies : results 2006-2008. Clin Exp Immunol 157 (Suppl 1) : 3-11, 2009.
9) CEREDIH : The French PID study group : The French national registry of primary immunodeficiency diseases. Clin Immunol 135 : 264-272, 2010.
10) El-Helou SM, Biegner AK, Bode S, et al : The German National Registry of Primary Immunodeficiencies (2012-2017). Front Immunol 10 : 1272, 2019.
11) de la Morena MT, Leonard D, Torgerson TR, et al : Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol 139 : 1282-1292, 2017.
12) Levy J, Espanol-Boren T, Thomas C, et al : Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr 131 : 47-54, 1997.
13) Ferrari S, Giliani S, Insalaco A, et al : Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci USA 98 : 12614-12619, 2001.
14) Revy P, Muto T, Levy Y, et al : Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102 : 565-575, 2000.
15) Gardes P, Forveille M, Alyanakian MA, et al : Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol 188 : 2023-2029, 2012.
16) Peron S, Metin A, Gardes P, et al : Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med 205 : 2465-2472, 2008.
17) Imai K, Catalan N, Plebani A, et al : Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J Clin Invest 112 : 136-142, 2003.
18) Peron S, Pan-Hammarstrom Q, Imai K, et al : A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. J Exp Med 204 : 1207-1216, 2007.
19) Angulo I, Vadas O, Garcon F, et al : Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342 : 866-871, 2013.
20) Lucas CL, Kuehn HS, Zhao F, et al : Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15 : 88-97, 2014.
21) Tsujita Y, Imai K, Honma K, et al : A Severe Anaphylactic Reaction Associated with IgM-Class Anti-Human IgG Antibodies in a Hyper-IgM Syndrome Type 2 Patient. J Clin Immunol 38 : 144-148, 2018.
22) Buck D, Malivert L, de Chasseval R, et al : Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124 : 287-299, 2006.
23) Aghamohammadi A, Imai K, Moazzami K, et al : Ataxia-telangiectasia in a patient presenting with hyper-immunoglobulin M syndrome. J Investig Allergol Clin Immunol 20 : 442-445, 2010.
24) Quartier P, Bustamante J, Sanal O, et al : Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin Immunol 110 : 22-29, 2004.
25) Dimitrova D, Nademi Z, Maccari ME, et al : International retrospective study of allogeneic hematopoietic cell transplantation for activated PI3K-delta syndrome. J Allergy Clin Immunol 149 : 410-421.e7, 2022.
P.250 掲載の参考文献
1) 大西秀典, 加藤善一郎, 金子英雄 : 選択的IgA欠損症の診断基準について. 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業), 令和3年度分担研究報告書, 2022.
2) Kanoh T, Mizumoto T, Yasuda N, et al : Selective IgA deficiency in Japanese blood donors : frequency and statistical analysis. Vox Sang 50 : 81-86, 1986.
3) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
4) Durandy A, Kracker S, Fischer A : Primary antibody deficiencies. Nat Rev Immunol 13 : 519-533, 2013.
5) Suzuki H, Kaneko H, Fukao T, et al : Various expression patterns of α1 and α2 genes in IgA deficiency. Allergol Int 58 : 111-117, 2009.
6) Castigli E, Wilson SA, Garibyan L, et al : TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 37 : 829-834, 2005.
7) Abolhassani H, Aghamohammadi A, Hammarstrom L : Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol 12 : 1321-1335, 2016.
8) Terada T, Kaneko H, Li AL, et al : Analysis of Ig subclass deficiency : First reported case of IgG2, IgG4, and IgA deficiency caused by deletion of Cα1, ψCr, Cγ2, Cγ4, and Cε in a Mongoloid patient. J Allergy Clin Immunol 108 : 602-606, 2001.
9) Angulo I, Vadas O, Garcon F, et al : Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342 : 866-871, 2013.
10) Lucas CL, Kuehn HS, Zhao F, et al : Dominant-activating germline mutations in the gene encoding the PI (3) K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15 : 88-97, 2014.
11) Kato T, Crestani E, Kamae C, et al : RAG1 deficiency may present clinically as selective IgA deficiency. J Clin Immunol 35 : 280-288, 2015.
12) Yazdani R, Azizi G, Abolhassani H, et al : Selective IgA Deficiency : Epidemiology, Pathogenesis, Clinical Phenotype, Diagnosis, Prognosis and Management. Scand J Immunol 85 : 3-12, 2017.
13) Jacob CM, Pastorino AC, Fahl K, et al : Autoimmunity in IgA deficiency : revisiting the role of IgA as a silent housekeeper. J Clin Immunol 28 (Suppl 1) : S56-S61, 2008.
14) Odineal DD, Gershwin ME : The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin Rev Allergy Immunol 58 : 107-133, 2020.
15) Clinical Working Party Diagnostic criteria for PID : IgA deficiency, European Society for Immunodeficiencies. [https://esid.org/Working-Parties/Clinical-Working-Party/Resources/Diagnostic-criteria-for-PID2] (2023年9月閲覧)
P.255 掲載の参考文献
1) Louis AG, Gupta S : Primary selective IgM deficiency : an ignored immunodeficiency. Clin Rev Allergy Immunol 46 : 104-111, 2014.
2) Hobbs JR, Milner RD, Watt PJ : Gamma-M deficiency predisposing to meningococcal septicaemia. Br Med J 4 : 583-586, 1967.
3) Bousfiha A, Jeddane L, Picard C, et al : The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 38 : 129-143, 2018.
4) Janssen LMA, Macken T, Creemers MCW, et al : Truly selective primary IgM deficiency is probably very rare. Clin Exp Immunol 191 : 203-211, 2018.
5) Goldstein MF, Goldstein AL, Dunsky EH, et al : Selective IgM immunodeficiency : retrospective analysis of 36 adult patients with review of the literature. Ann Allergy Asthma Immunol 97 : 717-730, 2006.
6) Goldstein MF, Goldstein AL, Dunsky EH, et al : Pediatric Selective IgM Immunodeficiency. Clin Dev Immunol 2008 : 624850, 2008.
7) Belgemen T, Suskan E, Dogu F, et al : Selective immunoglobulin M deficiency presenting with recurrent impetigo : a case report and review of the literature. Int Arch Allergy Immunol 149 : 283-288, 2009.
8) Chovancova Z, Kralickova P, Pejchalova A, et al : Selective IgM Deficiency : Clinical and Laboratory Features of 17 Patients and a Review of the Literature. J Clin Immunol 37 : 559-574, 2017.
9) Lucuab-Fegurgur DL, Gupta S : Comprehensive clinical and immunological features of 62 adult patients with selective primary IgM deficiency. Am J Clin Exp Immunol 8 : 55-67, 2019.
10) Yel L, Ramanuja S, Gupta S : Clinical and immunological features in IgM deficiency. Int Arch Allergy Immunol 150 : 291-298, 2009.
12) Caka C, Cimen O, Kahyaoglu P, et al : Selective IgM deficiency : Follow-up and outcome. Pediatr Allergy Immunol 32 : 1327-1334, 2021.
13) Bousfiha A, Moundir A, Tangye SG, et al : The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 42 : 1508-1520, 2022.
14) Janssen LMA, van Hout RWNM, de Vries E ; SIMcal Consortium : Challenges in investigating patients with isolated decreased serum IgM : The SIMcal study. Scand J Immunol 89 : e12763, 2019.
P.259 掲載の参考文献
1) Herrod HG : Clinical significance of IgG subclasses. Curr Opin Pediatr 5 : 696-699, 1993.
2) Schwartz RA, Lin RY, Vafaie J : Immunoglobulin G Deficiency. Medscape, Updated : Apr 28, 2021. [https://emedicine.medscape.com/article/136897-overview] (2023年8月閲覧)
3) Vidarsson G, Dekkers G, Rispens T : IgG subclasses and allotypes : from structure to effector functions. Front Immunol 5 : 520, 2014.
4) Tashita H, Fukao T, Kaneko H, et al : Molecular basis of selective IgG2 deficiency. The mutated membrane-bound form of gamma2 heavy chain caused complete IGG2 deficiency in two Japanese siblings. J Clin Invest 101 : 677-681, 1998.
5) Zhao Y, Pan-Hammarstrom Q, Zhao Z, et al : Selective IgG2 deficiency due to a point mutation causing abnormal splicing of the Cγ2 gene. Int Immunol 17 : 95-101, 2005.
6) Terada T, Kaneko H, Li AL, et al : Analysis of Ig subclass deficiency : First reported case of IgG2, IgG4, and IgA deficiency caused by deletion of Cα1, ψCγ, Cγ2, Cγ4, and Cε in a Mongoloid patient. J Allergy Clin Immunol 108 : 602-606, 2001.
7) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
8) Zhang Y, Clarke A, Regan KH, et al : Isolated IgG2 deficiency is an independent risk factor for exacerbations in bronchiectasis. QJM 115 : 292-297, 2022.
9) Hammarstrom L, Carbonara AO, DeMarchi M, et al : Subclass restriction pattern of antigen-specific antibodies in donors with defective expression of IgG or IgA subclass heavy chain constant region genes. Clin Immunol Immunopathol 45 : 461-470, 1987.
10) Barton JC, Bertoli LF, Barton JC, et al : Selective subnormal IgG3 in 121 adult index patients with frequent or severe bacterial respiratory tract infections. Cell Immunol 299 : 50-57, 2016.
11) Pardos-Gea J, Artaza Minano G, Sanjose A : Association with IgG3 deficiency in chronic autoimmune neutropenia in adults : case report and literatura review. Med Clin (Barc) 145 : 553-554, 2015.
12) Heiner DC, Myers A, Beck CS : Deficiency of IgG4 : a disorder associated with frequent infections and bronchiectasis that may be familial. Clin Rev Allergy 1 : 259-266, 1983.
13) Koutroumpakis F, Phillips AE, Yadav D, et al : Serum IgG4 Subclass Deficiency Defines a Distinct, Commonly Encountered, Severe Inflammatory Bowel Disease Subtype. Inflamm Bowel Dis 27 : 855-863, 2021.
14) Bonilla FA, Khan DA, Ballas ZK, et al : Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 136 : 1186-1205.e2078, 2015.
15) Parker AR, Skold M, Ramsden DB, et al : The Clinical Utility of Measuring IgG Subclass Immunoglobulins During Immunological Investigation for Suspected Primary Antibody Deficiencies. Lab Med 48 : 314-325, 2017.
P.264 掲載の参考文献
1) DiGeorge AM : Discussions on a new concept of the cellular basis of immunology. J Pediatr 67 : 907-908, 1965.
2) de la Chapelle A, Herva R, Koivisto M, et al : A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 57 : 253-256, 1981.
3) Wilson DI, Burn J, Scambler P, et al : DiGeorge syndrome : part of CATCH 22. J Med Genet 30 : 852-856, 1993.
4) Wahrmann S, Kainulainen L, Kyto V, et al : Childhood manifestations of 22q11.2 deletion syndrome : A Finnish nationwide register-based cohort study. Acta Paediatr 112 : 1312-1318, 2023.
5) Emanuel BS : Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangements. Dev Disabil Res Rev 14 : 11-18, 2008.
6) Merscher S, Funke B, Epstein JA, et al : TBX1 is responsible for cardiovascular defects in velocardio-facial/DiGeorge syndrome. Cell 104 : 619-629, 2001.
7) Yagi H, Furutani Y, Hamada H, et al : Role of TBX1 in human del22q11.2 syndrome. Lancet 362 : 1366-1373, 2003.
8) Funato N : Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 10 : 18, 2022.
9) 大久保直, 高田慎治 : 咽頭弓からの胸腺形成と先天性異常の発症機構. 生化学 84 : 168-176, 2012.
10) Kojima D, Wang X, Muramatsu H, et al : Application of extensively targeted next-generation sequencing for the diagnosis of primary immunodeficiencies. J Allergy Clin Immunol 138 : 303-305.e3, 2016.
11) Kwan A, Abraham RS, Currier R, et al : Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 312 : 729-738, 2014.
12) Markert ML, Devlin BH, Alexieff MJ, et al : Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation : outcome of 44 consecutive transplants. Blood 109 : 4539-4547, 2007.
13) Land MH, Garcia-Lloret MI, Borzy MS, et al : Long-term results of bone marrow transplantation in complete DiGeorge syndrome. J Allergy Clin Immunol 120 : 908-915, 2007.
14) Kojima D, Muramatsu H, Okuno Y, et al : Successful T-cell reconstitution after unrelated cord blood transplantation in a patient with complete DiGeorge syndrome. J Allergy Clin Immunol 138 : 1471-1473.e4, 2016.
P.267 掲載の参考文献
1) Somech R, Lev A, Grisaru-Soen G, et al : Purine nucleoside phosphorylase deficiency presenting as severe combined immune deficiency. Immunol Res 56 : 150-154, 2013.
2) Giblett ER, Ammann AJ, Wara DW, et al : Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1 : 1010-1013, 1975.
3) Habib Dzulkarnain SM, Hashim IF, Zainudeen ZT, et al : Purine Nucleoside Phosphorylase Deficient Severe Combined Immunodeficiencies : A Case Report and Systematic Review (1975-2022). J Clin Immunol, 2023. (DOI : 10.1007/s10875-023-01532-5)
4) Sasaki Y, Iseki M, Yamaguchi S, et al : Direct evidence of autosomal recessive inheritance of Arg24 to termination codon in purine nucleoside phosphorylase gene in a family with a severe combined immunodeficiency patient. Hum Genet 103 : 81-85, 1998.
5) Tsuda M, Horinouchi K, Sakiyama T, et al : Novel missense mutation in the purine nucleoside phosphorylase gene in a Japanese patient with purine nucleoside phosphorylase deficiency. Pediatr Int 44 : 333-334, 2002.
6) Simmonds HA, Fairbanks LD, Morris GS, et al : Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency. Arch Dis Child 62 : 385-391, 1987.
7) Hallett RJ, Cronin SM, Morgan G, et al : Normal uric acid concentrations in a purine nucleoside phosphorylase (PNP) deficient child presenting with severe chicken pox, possible immunodeficiency and developmental delay. Adv Exp Med Biol 370 : 387-389, 1994.
8) Parvaneh N, Ashrafi MR, Yeganeh M, et al : Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency. Brain Dev 29 : 124-126, 2007.
9) Eichinger A, von Bernuth H, Dedieu C, et al : Upfront Enzyme Replacement via Erythrocyte Transfusions for PNP Deficiency. J Clin Immunol 41 : 1112-1115, 2021.
P.272 掲載の参考文献
1) Fischer A, Munnich A, Saudubray JM, et al : Biotin-responsive immunoregulatory dysfunction in multiple carboxylase deficiency. J Clin Immunol 2 : 35-38, 1982.
2) Yang X, Aoki Y, Li X, et al : Structure of human holocarboxylase synthetase gene and mutation spectrum of holocarboxylase synthetase deficiency. Hum Genet 109 : 526-534, 2001.
4) 岡田慶介, 味原さや香, 武者育麻, ほか : 新生児マススクリーニングでは異常が認められなかったビオチニダーゼ欠損症クルド人例. 日本小児科学会雑誌 123 : 1418-1423, 2019.
5) 鈴木洋一, 坂本修, 真下陽一, ほか : 栄養性ビオチン欠乏症と先天性ビオチン代謝異常症の疫学. ビタミン 86 : 499-507, 2012.
6) Zempleni J, Wijeratne SS, Hassan YI : Biotin. Biofactors 35 : 36-46, 2009.
7) Kazanasmaz H, Karaca M : Investigation of alanine, propionylcarnitine (C3) and 3-hydroxyisovalerylcarnitine (C5-OH) levels in patients with partial biotinidase deficiency. Turkish Journal of Biochemistry 44 : 482-486, 2019.
8) Lee J, Walsh MC, Hoehn KL, et al : Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol 192 : 3190-3199, 2014.
9) Zempleni J, Liu D, Camara DT, et al : Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism. Nutr Rev 72 : 369-376, 2014.
10) Cowan MJ, Wara DW, Packman S, et al : Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet 314 : 115-118, 1979.
11) 新生児マススクリーニング対象疾患等診療ガイドライン 2019 (日本先天代謝異常学会編), 診断と治療社, 2019.
12) Aoki Y, Suzuki Y, Sakamoto O, et al : Molecular analysis of holocarboxylase synthetase deficiency : a missense mutation and a single base deletion are predominant in Japanese patients. Biochim Biophys Acta 1272 : 168-174, 1995.
13) 新生児マススクリーニング対象疾患等診療ガイドライン 2019. [https://jsimd.net/pdf/newborn-mass-screening-disease-practice-guideline2019.pdf] (2023年8月閲覧)
14) 公益財団法人かずさDNA 研究所かずさ遺伝子検査室. [https://www.kazusa.or.jp/genetest/] (2023年8月閲覧)
P.277 掲載の参考文献
1) Tangye SG, Al-Herz W, Bousfiha A, et al : Human Inborn Errors of Immunity : 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42 : 1473-1507, 2022.
2) Lev A, Lee YN, Sun G, et al : Inherited SLP76 deficiency in humans causes severe combined immunodeficiency, neutrophil and platelet defects. J Exp Med 218 : e20201062, 2021.
3) Hosaka S, Kido T, Imagawa K, et al : Vaccination for Patients with Inborn Errors of Immunity : a Nationwide Survey in Japan. J Clin Immunol 42 : 183-194, 2022.
4) Kwan A, Abraham RS, Currier R, et al : Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 312 : 729-738, 2014.
5) Notarangelo LD : Primary immunodeficiencies. J Allergy Clin Immunol 125 : S182-S194, 2010.
6) Cirillo E, Giardino G, Gallo V, et al : Severe combined immunodeficiency-an update. Ann NY Acad Sci 1356 : 90-106, 2015.
7) Bousfiha A, Moundir A, Tangye SG, et al : The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 42 : 1508-1520, 2022.
8) Shearer WT, Dunn E, Notarangelo LD, et al : Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome : the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol 133 : 1092-1098, 2014.
9) Wakamatsu M, Kojima D, Muramatsu H, et al : TREC/KREC Newborn Screening followed by Next-Generation Sequencing for Severe Combined Immunodeficiency in Japan. J Clin Immunol 42 : 1696-1707, 2022.
10) Paris K, Wall LA : The Treatment of Primary Immune Deficiencies : Lessons Learned and Future Opportunities. Clin Rev Allergy Immunol 65 : 19-30, 2023.
11) Miyamoto S, Umeda K, Kurata M, et al : Hematopoietic Cell Transplantation for Severe Combined Immunodeficiency Patients : a Japanese Retrospective Study. J Clin Immunol 41 : 1865-1877, 2021.