麻酔科医のための周術期のモニタリング

出版社: 中山書店
著者:
発行日: 2016-02-25
分野: 臨床医学:外科  >  麻酔科学/ペイン
ISBN: 9784521743257
シリーズ: 新戦略に基づく麻酔・周術期医学
電子書籍版: 2016-02-25 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
発送目安:8~14営業日

13,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

13,200 円(税込)

商品紹介

周術期のモニタリングによって、適切な全身管理と危険兆候への迅速な対処が可能になる。本書では、各種モニターの測定原理や特性、有効に使いこなすための実際を詳述した。

目次

  • 表紙
  • 読者の方々へ
  • シリーズ刊行にあたって
  • CONTENTS
  • 執筆者一覧
  • 1章 神経系モニター
  • 1-1 BIS モニター
  • (1) BIS モニターとは
  • Column BIS のアルゴリズムバージョン
  • (2) 測定原理 ( 計算原理 )
  • (3) 測定に影響する因子
  • Column 麻酔の急速導入直後の脳波波形
  • (4) 各種麻酔薬と BIS
  • (5) 臨床仕様の実際
  • Column 意識の不確定性原理
  • (6) おわりに
  • 1-2 聴性誘発電位 ( AEP )
  • (1) 聴性脳幹反応 ( ABR ), 中潜時聴性誘発電位 ( MLAEP ), 長潜時聴性誘発電位 ( LLAEP )
  • (2) 測定原理 ( 計算原理 )
  • (3) 測定に影響する因子
  • (4) 各種麻酔薬と AEP
  • (5) 臨床使用の実際
  • 1-3 運動誘発電位 ( MEP )
  • (1) 測定原理
  • (2) 測定に影響する因子
  • (3) 各種麻酔薬と MEP
  • (4) 臨床使用の実際
  • (5) おわりに
  • 1-4 体性感覚誘発電位 ( SEP )
  • (1) 測定原理
  • (2) SEP 波形に影響する因子
  • (3) 臨床使用の実際
  • 1-5 視覚誘発電位 ( VEP )
  • (1) 全身麻酔下における VEP の歴史的背景
  • (2) 測定原理
  • (3) 測定に影響する因子
  • (4) 各種麻酔薬と VEP
  • (5) 臨床使用の実際
  • (6) おわりに
  • 1-6 脳酸素飽和度モニター ( NIRS )
  • (1) 測定原理
  • (2) 脳内酸素飽和度に影響を及ぼす因子
  • (3) 臨床使用の実際
  • 2章 呼吸器系モニター
  • 2-1 ガスモニター
  • 2-1-1 カプノグラム
  • (1) カプノグラム波形の生理学的意味
  • (2) 測定原理
  • (3) 測定に影響する因子
  • (4) 臨床使用の実際
  • 2-1-2 麻酔ガスモニター
  • (1) 測定原理
  • (2) 測定値を解釈する場合に考慮すべき因子
  • (3) 臨床使用の実際
  • Column BIS モニターとの比較
  • 2-1-3 経皮血液ガスモニター
  • (1) 測定原理と特長
  • (2) 測定に影響する因子
  • (3) 臨床使用の実際
  • Column 経皮炭酸ガスモニターの生体肺移植での使用例
  • 2-2 人工呼吸器モニター
  • (1) なぜ麻酔科医は人工呼吸をモニタリングしなければならないのか ?
  • (2) 換気量の測定
  • (3) 呼吸機能モニター
  • Column 呼吸モニタリングとしての評価の限界
  • (4) 症例呈示
  • (5) おわりに
  • 3章 循環器系モニター
  • 3-1 動脈圧
  • (1) 侵襲的動脈圧モニター
  • Column 動脈圧の測定
  • (2) 非侵襲的動脈圧モニター ( NIBP )
  • 3-2 中心静脈圧
  • (1) 測定に影響する因子
  • (2) 臨床使用の実際
  • Column 肝頚静脈逆流現象
  • 3-3 心拍出量
  • (1) 侵襲的 CO モニター ( 熱希釈式肺動脈カテーテル )
  • (2) 非侵襲的 CO モニター
  • Column リチウム指示薬希釈法
  • Column 連続 CO モニタリング
  • (3) 混合静脈血酸素飽和度モニター
  • (4) おわりに
  • 3-4 超音波モニタリング
  • 3-4-1 経食道心エコー法 ( TEE )
  • (1) 周術期 TEE の ASA ガイドライン 2010 年改訂版による TEE の適応と推奨される使用法
  • (2) 基本的知識
  • (3) 基本的技術
  • (4) 発展的知識
  • (5) 発展的技術
  • 3-4-2 携帯型エコー
  • (1) カテーテル挿入時の補助として
  • (2) 急変時の即時診断のツール : 経胸壁心エコー ( TTE ) や肺エコーとして
  • (3) 神経ブロックや硬膜外穿刺のガイドとして
  • 4章 筋弛緩モニター
  • 4-1 筋弛緩モニター
  • (1) 筋弛緩モニタリングの意義
  • (2) 筋弛緩モニター測定方法の種類と原理
  • (3) 神経刺激の原則とパターン
  • Column 最大上刺激とは
  • (4) モニタリング部位
  • (5) モニタリングの実際 ( セットアップ )
  • Column 現時点では加速度感知型筋弛緩モニターにおける AMG モニタリングがゴールドスタンダード
  • Column なぜキャリブレーションが必要か ?
  • Column なぜ TOF 比で至適回復を評価するか ?
  • 5章 パルスオキシメータ
  • 5-1 通常型パルスオキシメータ
  • (1) 基本原理
  • (2) 使用目的
  • 5-2 進化型パルスオキシメータ
  • (1) 体動時にうまく SpO2 を計測する
  • (2) パルスオキシメータから得られる指標
  • (3) メトヘモグロビン濃度
  • (4) カルボキシヘモグロビン ( 一酸化炭素ヘモグロビン ) 濃度
  • (5) トータルヘモグロビン濃度
  • 6章 体温
  • 6-1 深部体温計
  • (1) 深部体温の測定の意義
  • Column 体温モニタリング
  • Column 体温調節の仕組み
  • (2) 深部体温の測定の実際
  • Column 熱流補償式体温測定
  • 6-2 末梢温測定
  • (1) 末梢温測定の意義
  • (2) 末梢温測定の実際
  • Column 麻酔管理中の体温低下の仕組み
  • Column 体温は厳密に管理すべき ?
  • 付録 本書で紹介しているモニタリング機器
  • 索引
  • 奥付

おすすめ商品

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 神経系モニター

P.14 掲載の参考文献
1) Sigl JC, Chamoun NG. An introduction to bispectral analysis for the electroencephalogram. J Clin Monit 1994 ; 10 : 392-404.
2) Glass PS, et al. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997 ; 86 : 836-47.
3) Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998 ; 89 : 980-1002.
4) Hagihira S, et al. Practical issues in bispectral analysis of electroencephalographic signals. Anesth Analg 2001 ; 93 : 966-70.
5) Miller A, et al. Does bispectral analysis of the electroencephalogram add anything but complexity? Br J Anaesth 2004 ; 92 : 8-13.
6) Morimoto Y, et al. The relationship between bispectral index and electroencephalographic parameters during isoflurane anesthesia. Anesth Analg 2004 ; 98 : 1336-40.
7) 山中寛男, ほか. 麻酔深度モニターを理解しよう-第2回 BISモニターの原理と限界. LiSA 2005 ; 12 : 1168-76.
8) Hagihira S, et al. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology 2004 ; 100 : 818-25.
9) Katoh T, et al. Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane. Anesthesiology 1998 ; 88 : 642-50.
10) 横山武志, ほか. レミフェンタニルの催眠作用とその特徴-レミフェンタニル単独で麻酔導入は可能か? LiSA 2007 ; 14 : 874-8.
11) Katoh T, Ideda K. The effect of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Anesthesiology 1998 ; 88 : 18-24.
P.23 掲載の参考文献
1) Urhonen E, et al. Changes in rapidly extracted auditory evoked potentials during tracheal intubation. Acta Anaesthesiol Scand 2000 ; 44 : 743-8.
2) Manninen PH, et al. The effects of isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesth Analg 1985 ; 64 : 43-7.
3) 大熊輝雄. 臨床脳波学. 第5版. 東京 : 医学書院 ; 1999.
4) Banoub M, et al. Pharmacologic and physiologic influences affecting sensory evoked potentials : Implications for perioperative monitoring. Anesthesiology 2003 ; 99 : 713-37.
5) Mantzaridis H, Kenny GNC. Auditory evoked potential index : A quantitative measure of changes in auditory evoked potentials during general anaesthesia. Anaesthesia 1997 ; 52 : 1030-6.
6) Jensen EW, et al. Autoregressive modeling with exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in depth of anesthesia. Methods Inf Med 1996 : 35 : 256-60.
7) Weber F, et al. Impact of the AEP-Monitor/2-derived composite auditory-evoked potential index on propofol consumption and emergence times during total intravenous aneaesthesia with propofol and remifentanil in children. Acta Anaesthesiol Scand 2005 ; 49 : 277-83.
9) Kurita T, et al. Auditory evoked potential index predicts the depth of sedation and movement in response to skin incision during sevoflurane anesthesia. Anesthesiology 2001 ; 95 : 364-70.
10) Litvan H, et al. Comparison of conventional averaged and rapid averaged, autoregressive-based extracted auditory evoked potentials for monitoring the hypnotic level during propofol induction. Anesthesiology 2002 ; 97 : 351-8.
12) Iselin-Chaves IA, et al. Changes in the auditory evoked potentials and the bispectral index following propofol or propofol and alfentanil. Anesthesiology 2000 ; 92 : 1300-10.
13) Struys MMRF, et al. Performance of the ARX-derived auditory evoked potential index as an indicator of anesthetic depth : A comparison with bispectral index and hemodynamic measures during propofol administration. Anesthesiology 2002 ; 96 : 803-16.
14) Alpiger S, et al. Effect of sevoflurane on the mid-latency auditory evoked potentials measured by a new fast extracting monitor. Acta Anaesthesiol Scand 2002 ; 46 : 252-6.
16) Schwender D, et al. Mid-latency auditory evoked potentials in humanes during anesthesia with S (+) ketamine--a double-blind, randomized comparison with racemic ketamine. Anesth Analg 1994 ; 78 : 267-74.
17) Matsushita S, et al. Changes in auditory evoked potential index and bispectral index during induction of anesthesia with anesthetic drugs. J Clin Monit Comput 2015 ; 29 : 621-6.
20) Crabb I, et al. Remifentanil reduces auditory and somatosensory evoked responses druing isoflurane anesthesia in a dose-dependent manner. Br J Anaesth 1996 ; 76 : 795-801.
P.38 掲載の参考文献
1) 川口昌彦, 中瀬裕之, 編. 術中神経モニタリングバイブル-術後神経合併症予防のための実践的手法とその解釈. 東京 : 羊土社 ; 2014.
2) Stevens JB, Wheatley L. Tracheal intubation in ambulatory surgery patients : Using remifentanil and propofol without muscle relaxants. Anesth Analg 1998 ; 86 : 45-9.
4) 福岡尚和, ほか. 基礎から始める運動誘発電位モニタリング-脳外科, 脊椎・脊髄外科手術. 日臨麻会誌 2014 ; 34 : 875-84.
5) 山下敦生, ほか. 胸部下行・胸腹部大動脈瘤人工血管置換術における運動誘発電位の現状と問題点. 日臨麻会誌 2014 ; 34 : 868-74.
6) Kothbauer KF. Intraoperative neurophysiologic monitoring for intramedullary spinalcord tumor surgery. Neurophysiol Clin 2007 ; 37 : 407-14.
7) Kakimoto M, et al. Tetanic stimulation of the peripheral nerve before transcranial electrical stimulation can enlarge amplitudes of myogenic motor evoked potentials during general anesthesia with neuromuscular blockade. Anesthesiology 2005 ; 102 : 733-8.
8) 日本集中治療教育研究会. 胸腹部大動脈手術脊髄虚血予防・治療マニュアル. 改訂第2版. 2011. http://www.jseptic.com/journal/mm110602_01.pdf
P.50 掲載の参考文献
1) 羽田康司. 体性感覚誘発電位と深部感覚障害. JOURNAL OF CLINICAL REHABILITATION 2013 ; 22 : 611-9.
3) 山本さよみ. 上肢体性感覚誘発電位 (上肢SEP), 下肢体性感覚誘発電位 (下肢SEP). 川口昌彦, 中瀬裕之, 編. 術中神経モニタリングバイブル-術後神経合併症予防のための実践的手法とその解釈. 東京 : 羊土社 ; 2014. p.186-98.
4) 飛松省三. 早わかり誘発電位 (3) -体性感覚誘発電位と運動誘発電位. 臨床脳波 2005 ; 47 : 717-26.
5) Yamada T, et al. Practical Guide for Clinical Neurophysiologic Testing. EP, LTM, IOM, PSG, and NCS. Philadelphia : Lippincott Williams & Wilkins ; 2011.
6) 山田徹. 正中神経刺激短潜時体性感覚誘発電位 (SSEP) の起源を探る. 脳波と筋電図 1997 ; 25 : 291-301.
7) Banoub M, et al. Pharmacologic and physiologic influences affecting sensory evoked potentials : Implications for perioperative monitoring. Anesthesiology 2003 ; 99 : 716-37.
9) Gharagozloo F, et al. Spinal cord protection during surgical procedures on the descending thoracic and thoracoabdominal aorta : A critical overview. Semin Thorac Cardiovasc Surg 1998 ; 10 : 73-86.
10) Crawford ES, et al. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg 1988 ; 95 : 357-67.
12) 福田悟. 体性感覚誘発電位. 麻酔 2006 ; 55 : 280-93.
15) 佐々木達也, 鈴木恭一. はじめての上肢SEP モニタリング. 脳神経外科速報2010 ; 20 : 544-551.
P.66 掲載の参考文献
1) Wright JE, et al. Continuous monitoring of the visually evoked response during intraorbital surgery. Trans Ophthalmol Soc U K 1973 ; 93 : 311-4.
2) Cedzich C, Schramm J. Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin 1990 ; 28 : 165-9.
3) Sasaki T, et al. Intraoperative monitoring of visual evoked potential : Introduction of a clinically useful method. J Neurosurg 2010 ; 112 : 273-84.
5) Russ W, et al. Effects of hypothermia on somatosensory evoked responses in man. Br J Anaesth 1987 ; 59 : 1484-91.
7) Russ W, et al. Effect of hypothermia on visual evoked potentials (VEP) in humans. Anesthesiology 1984 ; 61 : 207-10.
9) Kobrine AI, et al. Relative vulnerability of the brain and spinal cord to ischemia. J Neurol Sci 1980 ; 45 : 65-72.
10) Nagao S, et al. The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials. J Surg Res 1978 ; 25 : 530-7.
11) Chi OZ, Field C. Effects of isoflurane on visual evoked potentials in humans. Anesthesiology 1986 ; 65 : 328-30.
12) 亀山佳之. イソフルレン, セボフルレンの誘発電位, 脳波に及ぼす影響に関する臨床的研究. 麻酔 1994 ; 43 : 657-64.
13) Sebel PS, et al. Effect of nitrous oxide on visual, auditory and somatosensory evoked potentials. Br J Anaesth 1984 ; 56 : 1403-7.
14) Sebel PS, et al. Evoked potentials during isoflurane anaesthesia. Br J Anaesth 1986 ; 58 : 580-5.
16) Hou WY, et al. The effects of ketamine, propofol and nitrous oxide on visual evoked potential during fentanyl anesthesia. Ma Zui Xue Za Zhi 1993 ; 31 : 97-102.
17) Chi OZ, et al. Effects of fentanyl anesthesia on visual evoked potentials in humans. Anesthesiology 1987 ; 67 : 827-30.
P.79 掲載の参考文献
2) Thavasothy M, et al. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers. Anaesthesia 2002 ; 57 : 999-1006.
3) Kishi K, et al. Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol 2003 ; 15 : 302-6.
4) Yoshitani K, et al. Effects of hemoglobin concentration, skull thickness, and the area of the cerebrospinal fluid layer on near-infrared spectroscopy measurements. Anesthesiology 2007 ; 106 : 458-62.
6) Al-Rawi PG, et al. Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head. Stroke 2001 ; 32 : 2492-500.
7) Kadoi Y, et al. Effects of hypothermic and normothermic cardiopulmonary bypass on brain oxygenation. Ann Thorac Surg 1999 ; 68 : 34-9.
10) Aron JH, et al. Cerebral oxygen desaturation after cardiopulmonary bypass in a patient with raynaud's phenomenon detected by near-infrared cerebral oximetry. Anesth Analg 2007 ; 104 : 1034-6.
11) Vretzakis G, et al. Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery : A prospective randomized clinical trial. J Cardiothorac Surg 2013 ; 8 : 145.
12) 位田みつる, 川口昌彦. 脳血管障害患者. 澄川耕二, 編. 麻酔前の評価・準備と予後予測-病態に応じた周術期管理のために. 東京 : 克誠堂出版 ; 2012. p. 94-100.
13) Roach GW, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med 1996 ; 335 : 1857-63.
14) Newman MF, et al. Longitudinal assessment of neurocognitive function after coronaryartery bypass surgery. N Engl J Med 2001 ; 344 : 395-402.
32) Samra SK, et al. Evaluation of a cerebral oximeter as a monitor of cerebral ischemia during carotid endarterectomy. Anesthesiology 2000 ; 93 : 964-70.
33) Moritz S, et al. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy : A comparison of transcranial Doppler sonography, nearinfrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 2007 ; 107 : 563-9.
38) Bhatia R, et al. The application of near-infrared oximetry to cerebral monitoring during aneurysm embolization : A comparison with intraprocedural angiography. J Neurosurg Anesthesiol 2007 ; 19 : 97-104.
39) Yokose N, et al. Bedside monitoring of cerebral blood oxygenation and hemodynamics after aneurysmal subarachnoid hemorrhage by quantitative time-resolved nearinfrared spectroscopy. World Neurosurg 2010 ; 73 : 508-13.
42) Casati A, et al ; Collaborative Italian Study Group on Anaesthesia in Elderly Patients. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery : A prospective cohort study. Eur J Anaesthesiol 2007 ; 24 : 59-65.

2章 呼吸器系モニター

P.98 掲載の参考文献
1) Mogue LR, Rantala B. Capnometers. J Clin Monit 1988 ; 4 : 115-21.
3) 篠塚典弘, 磯野史朗. カプノグラム-測定原理と臨床での有用性. 佐藤重仁, ほか編. 周術期モニタリング. 東京 : 克誠堂出版 ; 2012.
4) Mandal NG. Measurement of gas concentrations : Oxygen, carbon dioxide, nitrogen, nitrous oxide and volatile anaesthetic agents. Anaesthesia & Intensive Care Medicine 2008 ; 9 : 559-63.
5) Block FE Jr, McDonald JS. Sidestream versus mainstream carbon dioxide analyzers. J Clin Monit 1992 ; 8 : 139-41.
8) Kennell EM, et al. Correction factors for nitrous oxide in the infrared analysis of carbon dioxide. Anesthesiology 1973 ; 39 : 441-3.
10) Shibutani K, et al. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesth Analg 1994 ; 79 : 829-33.
11) Fletcher R, et al. The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 1981 ; 53 : 77-88.
12) Shankar KB, et al. Arterial to end tidal carbon dioxide tension difference during caesarean section anaesthesia. Anaesthesia 1986 ; 41 : 698-702.
P.108 掲載の参考文献
1) Eger EI II, Saidman LJ. Illustrations of inhaled anesthetic uptake, including intertissue diffusion to and from fat. Anesth Analg 2005 ; 100 : 1020-33.
2) Bailey JM. Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 1997 ; 85 : 681-6.
3) Pandit JJ. The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans : A quantitative review. Anaesthesia 2002 ; 57 : 632-43.
4) Isono S, et al. Differential effects of vecuronium on diaphragm and geniohyoid muscle in anaesthetized dogs. Br J Anaesth 1992 ; 68 : 239-43.
6) La Colla G, et al. Effects of morbid obesity on kinetic of desflurane : Wash-in wash-out curves and recovery times. Minerva Anestesiol 2007 ; 73 : 275-9.
P.117 掲載の参考文献
2) 福島奏資. 毛細血管顕微鏡による微小循環の臨床的研究-諸種血液疾患における爪廓微小血管の毛細血管顕微鏡的研究. ousar.lib.okayama-u.ac.jp/file/17588/88_305.pdf
3) 伊藤聡, ほか. 成人皮膚のガス透過係数の計測. 医用電子と生体工学 1987 ; 25 : 227-31.
4) 香川草平. 経皮的CO2ガスモニター-歴史, 測定原理とその臨床応用. 日臨麻会誌 2014 ; 34 : 117-23.
5) 葛田憲道, ほか. 経皮的動脈血炭酸ガス分圧 (TcPCO2) は1ないし2分前のPaCO2を反映している. 麻酔 2012 ; 61 : 638-42.
6) Kagawa S, et al. Initial transcutaneous PCO2 overshoot with ear probe at 42℃. J Clin Monit Comput 2004 ; 18 : 343-5.
7) Sauty A, et al. Differences in PO2 and PCO2 between arterial and arterialized earlobe samples. Eur Respir J 1996 ; 9 : 186-9.
8) Tremper KK, Shoemaker WC. Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock. Crit Care Med 1981 ; 9 : 706-9.
P.134 掲載の参考文献
6) Maggiore SM, Brochard L. Pressure-volume curve : Methods and meaning. Minerva Anestesiol 2001 ; 67 : 228-37.

3章 循環器系モニター

P.147 掲載の参考文献
1) Pauca AL, et al. Reliability of the radial arterial pressure during anesthesia. Is wrist compression a possible diagnostic test? Chest 1994 ; 105 : 69-75.
2) Gardner RM. Direct blood pressure measurement--dynamic response requirements. Anesthesiology 1981 ; 54 : 227-36.
P.163 掲載の参考文献
1) Dalen JE. The pulmonary artery catheter-friend, foe, or accomplice? JAMA 2001 ; 286 : 348-50.
3) Litton E, Morga M. The PiCCO monitor : A review. Anaesth Intensive Care 2012 ; 40 : 393-409.
4) 舩木一美, 稲垣喜三. NICOモニターの原理と体液量測定の限界. 麻酔・集中治療テクノロジー 2011 ; 59-68.
5) Tachibana K, et al. Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present. Anesthesiology 2003 ; 98 : 830-7.
6) Thomas SH. Impedance cardiography using the Sramek-Bernstein method : Accuracy and variability at rest and during exercise. Br J Clin Pharmacol 1992 ; 34 : 467-76.
P.180 掲載の参考文献
2) Fleisher LA, et al. 2014 ACC/AHA Guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac sugery : A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014 ; 130 : 2215-45.
5) Lang RM, et al. Recommendations for chamber quantification : A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005 ; 18 : 1440-63.
6) Zoghbi WA, et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultarasound : A report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr 2009 ; 22 : 975-1014.
8) Nishimura RA, et al. 2014 ACC/AHA guidelines for management of patients with valvular heart disease : A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014 ; 129 : e521-643.
P.184 掲載の参考文献

4章 筋弛緩モニター

P.199 掲載の参考文献
1) Viby-Mogensen J, et al. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 1985 ; 63 : 440-3.
2) Helbo-Hansen HS, et al. The accuracy of train-of-four monitoring at varying stimulating currents. Anesthesiology 1992 ; 76 : 199-203.
3) Ali HH, et al. Stimulus frequency in the detection of neuromuscular block in humans. Br J Anaesth 1970 ; 42 : 967-78.
4) Baillard C, et al. Assessing residual neuromuscular blockade using acceleromyography can be deceptive in postoperative awake patients. Anesth Analg 2004 ; 98 : 854-7.
5) Viby-Mogensen J, et al. Post-tetanic count (PTC) : A new method of evaluating an intense nondepolarizing neuromascular blockade. Anesthesiology 1981 55 : 458-61.
6) Engbaek J, et al. Double-burst stimulation (DBS) : A new pattern of nerve stimulation to identify residual nuromuscular block. Br J Anaesth 1989 ; 62 : 274-8.
7) Fuchs-Buder T. 鈴木孝浩, 訳. 臨床麻酔と研究における筋弛緩モニタリング. 真興交易医書出版部 : 2013. p. 30.
8) Plaud B, et al. The corrugator supercilii, not the orbicularis occuli, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology 2001 ; 95 : 96-101.
10) Heier T, Caldwell JE. Impact of hypothermia on the response to neuromuscular blocking drugs. Anesthesiology 2006 ; 104 : 1070-80.
11) Cantineau JP, et al. Neuromuscular effects of rocuronium on the diaphragm and adductor pollicis muscles in anesthetized patients. Anesthesiology 1994 ; 81 : 585-90.
12) Werba A, et al. The level of neuromuscular block needed to suppress diaphragmatic movement during tracheal suction in patients with raised intracranial pressure : A study with vecuronium and atracurium. Anaesthesia 1993 ; 48 : 301-3.
13) El-Orbany MI, et al. The relationship of posttetanic count and train-of-four responses during recovery from intense cisatracurium-induced neuromuscular blockade. Anesth Analg 2003 ; 97 : 80-4.
14) Furuya T, et al. The effects of age on maintenance of intense neuromuscular block with rocuronium. Acta Anesthesiol Scand 2012 ; 56 : 236-9.
15) Brull SJ, Silverman DG. Tetanus-induced changes in apparent recovery after Bolus doses of atracurium or vecuronium. Anesthesiology 1992 ; 77 : 642-5.
17) Capron F, et al. Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 2004 ; 100 : 1119-24.
18) Kopman AF, et al. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 1997 ; 86 : 765-71.
19) Viby-Mogensen J, et al. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 1985 ; 63 : 440-3.
20) Drenck NE, et al. Manual evaluation of residual curarization using double burst stimulation : A comparison with train-of-four. Anesthesiology 1989 ; 70 : 578-81.
21) Ali HH, et al. The effect of tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans. Br J Anaesth 1975 ; 47 : 570-4.
22) Eriksson LI, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans : Simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997 ; 87 : 1035-43.
23) Eikermann M, et al. Muscle weakness after administration of neuromuscular blocking agents : Do not immobilize the diaphragm unnecessarily. Crit Care Med 2007 ; 35 : 1634-5.
24) Eriksson LI, et al. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology 1993 ; 78 : 693-9.
25) Eriksson LI, et al. Attenuated ventilatory response to hypoxaemia at vecuroniuminduced partial neuromuscular block. Acta Anaesthesiol Scand 1992 ; 36 : 710-5.
26) Eriksson LI. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 1996 ; 40 : 520-3.
27) Kotake Y, et al. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg 2013 ; 117 : 345-51.

5章 パルスオキシメータ

P.206 掲載の参考文献
1) 小原勝敏, ほか. 内視鏡診療における鎮静に関するガイドライン. 日本消化器内視鏡学会雑誌 2013 ; 55 : 3822-47.
P.213 掲載の参考文献

6章 体温

P.225 掲載の参考文献
1) 御手洗玄洋, 総監訳. 小川徳雄, ほか監訳. 第73章. 体温, 体温調節, 発熱. ガイトン生理学 原著第11版. 東京 : エルゼビア・ジャパン ; 2010. p. 941-53.
2) Rubinstein EH, Sessler DI. Skin-surface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology 1990 ; 73 : 541-5.
3) National Institute for Health and Care Excellence. Inadvertent perioperative hypothermia : The management of inadvertent perioperative hypothermia in adults. http://guidance.nice.org.uk/CG65
5) Shinozaki T, et al. Infrared tympanic thermometer : Evaluation of a new clinical thermometer. Crit Care Med 1988 ; 16 : 148-50.
6) 早瀬知, ほか. 術中体温モニターとしてのイヤホン型赤外線式鼓膜温測定の有用性. 麻酔 2007 ; 56 : 459-63.
8) 及川慶浩, ほか. 目的にかなった手術中の体温測定部位はどこか? 臨床麻酔 2009 ; 33 : 399-411.
9) 鎌田康宏, ほか. 赤外線式耳式体温計の術中体温モニターとしての有用性. 麻酔 1999 ; 48 : 1121-5.
10) Runciman WB, et al. An evaluation of thermodilution cardiac output measurement using Swan-Ganz catheter. Anaesth Intesive Care 1981 ; 9 : 208-20.
11) Sessler DI. A proposal for new temperature monitoring and thermal management guidelines. Anesthesiology 1998 ; 89 : 1298-300.
12) 石川豊子, ほか. 腹腔鏡下胆嚢摘出術中の腹腔内温の指標としての膀胱温と直腸温の比較検討. 臨床体温 2001 ; 19 : 19-23.
13) Yamakage M, et al. The utility of tracheal temperature monitoring. Anesth Analg 1993 ; 76 : 795-9.
14) Cooper KE, Kenyon JR. A comparison of temperatures measured on the rectum, oesophagus, and on the surface of the aorta during hypothermia in man. Br J Surg 1957 ; 44 : 616-9.
15) 播岡徳也, ほか. 食道温を基準とした非侵襲的体温測定法の評価- First Temp(TM) とテルモ社製深部温計の比較. 麻酔 1993 ; 42 : 856-61.
16) Tsuji T. Patient monitoring during and after open heart surgery by an improved deep body thermometer. Med Prog Technol 1987 ; 12 : 25-38.
P.229 掲載の参考文献
1) Matsukawa T, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology 1995 ; 82 : 662-73.
2) Sessler DI. Perioperative heat balance. Anesthesiology 2000 ; 92 : 578-96.
4) 山崎正明. 荏原実業株式会社 皮膚赤外線体温計「サーモフォーカス」. MEDICAL QOL 2006 ; 139 : 42-6.

最近チェックした商品履歴

Loading...