脳と栄養 ―行動の分子基盤を求めて―

出版社: 建帛社
著者:
発行日: 2003-05-15
分野: 臨床医学:一般  >  栄養/食事/輸血
ISBN: 9784767961019
電子書籍版: 2003-05-15 (初版)
電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

2,090 円(税込)

商品紹介

第56回日本栄養・食糧学会のシンポジウムを基に、脳によって栄養代謝がどのように影響されるのか、脳と栄養の全体像を明らかにする。気鋭の研究者による9本の論文を掲載。
脳と栄養のクロストーク 食事アミノ酸と脳機能 ビタミンによる脳機能制御 行動の分子基盤を求めて 脳内ヒスタミンとエネルギー代謝 胃ペプチドグレリンと食行動 ほか

目次

  • 表紙
  • はしがき
  • 目次
  • 序章 脳と栄養のクロストーク
  • 1. はじめに
  • 2. 制御中枢としての間脳視床下部
  • 3. 末梢栄養・代謝シグナルと視床下部への入力
  • 4. 視床下部でのシグナル受容・伝達のネットワーク
  • 5. 視床下部からの出力と末梢での栄養・代謝応答
  • 6. おわりに
  • 第1章 食事アミノ酸と脳機能
  • 1. はじめに
  • 2. 味覚の発達と嗜好性の形成
  • 3. 味覚の栄養生理学的役割
  • 4. 味覚と消化吸収
  • 5. 嗜好性と栄養状態との関係
  • 6. 必須栄養素の欠乏の認知と適応
  • 7. リジン欠乏認知の脳内機序とリジン嗜好性
  • 8. 脳におけるリジン欠乏および摂取の認知
  • 9. リジン欠乏の認知における液性因子の役割
  • 10. おわりに
  • 第2章 ビタミンによる脳機能制御
  • 1. はじめに
  • 2. 脳機能の解析方法
  • 3. ビタミンA
  • 4. ビタミンB1の学習・記憶に対する役割
  • 5. 必須脂肪酸
  • 6. ビタミンC
  • 7. ビタミンE
  • 第3章 行動の分子基盤を求めて ─非栄養素による脳内物質代謝と機能の変化─ (緑茶, キノコ, 香辛料などに含まれる非栄養素と脳との関連)
  • 1. はじめに
  • 2. 緑茶成分テアニン
  • 3. ブナハリタケ
  • 4. 香辛料
  • 5. おわりに
  • 第4章 脳内ヒスタミンとエネルギー代謝
  • 1. はじめに
  • 2. 肥満とレプチン抵抗性
  • 3. 神経ヒスタミンとエネルギー代謝調節機構
  • 4. 神経ヒスタミンとレプチンとの関連
  • 5. ヒスチジンによるエネルギー代謝調節機構と神経ヒスタミンとの関連
  • 第5章 胃ペプチドグレリンと食行動
  • 1. はじめに
  • 2. グレリンの発見
  • 3. グレリンの分布と受容体
  • 4. グレリンの摂食亢進作用
  • 5. グレリンのその他の生理作用
  • 6. おわりに
  • 第6章 エネルギー消費の自律的調節と食事・栄養
  • 1. はじめに
  • 2. エネルギーの消費と蓄積: 2種類の脂肪組織
  • 3. 褐色脂肪組織でのUCPによるエネルギー消費
  • 4. 視床下部 ―交感神経系による褐色脂肪の制御
  • 5. 褐色脂肪の生理的重要性: 寒冷暴露と多食に対する応答
  • 6. 褐色脂肪の機能障害と肥満
  • 7. 薬物によるUCP1の活性化
  • 8. 食事による交感神経 ―褐色脂肪の活性化: 口腔咽頭感覚の重要性
  • 9. 骨格筋のUCP
  • 10. UCP発現と核内受容体: 脂肪酸による活性化
  • 11. おわりに
  • 第7章 レプチンによる糖・脂肪代謝調節作用
  • 1. はじめに
  • 2. レプチンとレプチン受容体
  • 3. レプチンによるグルコース利用の促進作用
  • 4. レプチンによる脂肪利用の促進作用とその機構
  • 5. 肥満とレプチン抵抗性
  • 6. おわりに
  • 第8章 運動・栄養と中枢性疲労
  • 1. 疲労とは
  • 2. 活性本体のヒドラによる同定, TGF-βの作用の発見
  • 3. TGF-βは本当に疲労感を引き起こすのか?
  • 4. TGF-βは本当に脳に作用するのか?
  • 5. TGF-βを脳に投与したとき末梢組織で起こる変化
  • 6. おわりに
  • 索引
  • 責任編集者 / 著者
  • 奥付

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序章 脳と栄養のクロストーク

P.22 掲載の参考文献
1) 本郷利憲, 広重 力(監修): 標準生理学第5版. 医学書院, 2000.
2) 嶋津 孝, 斉藤昌之(編): 神経と代謝調節. 朝倉書店, 1988.
3) 嶋津 孝: 脳の中の視床下部, ブレーン出版, 1999.
4) 中川八郎: ブレインサイエンスシリーズ1 脳の栄養. 共立出版, 1988.
5) 大村 裕, 坂田利家: ブレインサイエンスシリーズ9 脳と食欲, 共立出版, 1999.
6) Schwartz M.W., Woods S.C., Prote Jr D. et al:Central nervous system control of food intake. Nature 2000; 404; 661-671.

第1章 食事アミノ酸と脳機能

P.59 掲載の参考文献
1) 鳥居邦夫: 嗜好形成とその変化. 臨床栄養 / 臨時増刊号 1990; 76; 608-617.
3) Mori M., Kawada T., Torii K. et al:Taste preference and protein nutrition and L-amino acid homeostasis in male Sprague-Dawley rats. Physiol Behav 1991; 49;987-995.
4) Torii K., Mimura T., Yugari Y.:Biochemical mechanism of umami taste perception and effect of dietary protein on the taste preference for amino acids and sodium chloride in rats. In Umami:A basic taste, Kawamura Y., Kare M.R. et al (ed), Marcel Dekker, New York, 1987, p.513-564.
9) Ono T., Tabuchi E., Torii K. et al; Rat hypothalamic neuron responses during amino acid ingestion and to iontophoretic amino acid. Chem Senses 1990; 15; 392.
10) Torii K., Niijima A.:Effect of lysine on afferent activity of the physiological behaviour hepatic branch of the vagus nerve in hormal and L-lysine deficient rats. Physiol Behav 2001; 72; 685-690.
11) Hawkins R.L., Inoue M., Torii K. et al:Lysine deficient diet and lysine replacement affect food direted operant behavior. Physiol Behav 1994; 56; 1061-1068.
12) Torii K., Hanai K., Oosawa M. et al:Activin A:Serum lecels and immunohistochemical brain localization in rats given diets deficient in L-lysine or protein. Physiol Behav 1993; 54; 459-466.
14) Hashimoto M., Kondoh S., Sakurai S. et al:Activin/EDF as an inhibitor of neural differentiation. Biochem. Biophys Res Commun 1990; 173; 193-200.
15) 上野直人: アクチビンの構造と生理機能. 実験医学 1992; 10; 104-108
16) Hawkins R. L., Inoue M., Torii K. et al:Effect of inhibin, follistatin, or activin infusion into the lateral hypothalamus on operant behavior of rats fed lysine deficient deit. Brain Res., in print.
17) Tabuchi E., Ono Torii K. et al:Amino acid and NaCl appetite, and LHA neuron responses of lysine-deficient rat. Physiol Behav 1991; 49; 951-964.
19) 鳥居邦夫: おいしさの科学. 調理とおいしさの科学 (島田淳子, 下村道子編), 朝倉書店, 1993, p53-97.
20) 鳥居邦夫: 食行動における脳の働き -栄養と嗜好-. 健康の科学シリーズ2 (食と健康監修, 武藤泰敏編), 学会センター関西, 1996, p75-124.

第2章 ビタミンによる脳機能制御

P.89 掲載の参考文献
1) Chiang M.Y., Misner D., Kempermann G. et al:An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression Neuron 1998; 21; 1353-61.
3) de Urquiza A.M., Liu S., Sjoberg M. et al:Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000; 290; 2140-2144.
4) Krezel W., Ghyselinck N., Samad T.A. et al:Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 1998; 279; 863-867.
5) Kida S., Josselyn S., Pe_a de Ortiz S. et al:CREB required for the stability of new and reactivated fear memory. Nat Neurosci 2002; 5; 348-355.
6) 喜田聡, 内田周作, 舛重正一: レチノイン酸による情動行動制御. 細胞 2002; 34; 12-15.
7) King D.P., Zhao Y., Sangoram A.M. et al:Positional cloning of the mouse circadian clock gene. Cell 1997; 89; 641-653.
8) McNamara P., Seo S.P., Rudic R.D. et al:Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature:a humoral mechanism to reset a peripheral clock. Cell 2001; 105; 877-889.
9) Zheng B., Albrecht U., Kaasik K. et al:Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105; 683-694.

第3章 行動の分子基盤を求めて ─非栄養素による脳内物質代謝と機能の変化─ (緑茶, キノコ, 香辛料などに含まれる非栄養素と脳との関連)

P.108 掲載の参考文献
3) Yokogoshi H., Kobayashi M., Mochizuki M. et al:Effect of theanine, γ-glutamylethylamide, on brain monoamines and striatal dopamine release in conscious rats. Neurochem Res 1998; 23; 667-673.
7) Yokogoshi H., Kato Y.et al:Reduction effect of theanine on blood pressure and brain 5-hydroxyindoles in spontaneously hypertensive rats. Biosci Biotechnol Biochem 1995; 59; 615-618.
8) Yokogoshi H, Kobayashi M.:Hypotensive effect of γ-glutamylmethylamide in spontaneously hypertensive rats. Life Sci 1998; 62; 1065-1068.
9) Sato T., Takeuchi A., Ishida T. et al:Antihypertensive effect of an aqueous extract from fruit body of Mycoleptodonoides aitchisonii in spontaneously hypertensive rats. Oyo Yakuri/Pharmacometrics 2001; 61 (1); 177-183.
10) Sakamoto Y., Takeuchi A., Sato T. et al:Identification of antihypertensive substance in an aqueous extract from fruit body of Mycoleptodonoides aitchisonii. Oyo Yakuri/Pharmacometrics 2001; 61(4/5); 221-229.
11) Large H.L., Bodary S.C., Clegg D.O. et al:Nerve growth factor gene expression in the developing rat brain. Science 1986; 234; 352-355.
12) Furukawa Y., Furukawa S., Satoyoshi E. et al:Catecholamines induce an increase in nerve growth factor content in the medium of mouse L-M cells. J Biol Chem 1986; 261 (13); 6063-6047.
13) Furukawa Y., Furukawa S., Ikeda F. et al:Aliphatic side chain of catecholamine potentiates the stimulatory effect of the catechol part on the systhesis of nerve growth factor. FEBS Lett 1986; 208; 258-262.
14) Furukawa Y., Tomioka N., Sato W. et al:Catecholamines increase nerve growth factor mRNA content in both mouse astroglial cells and fibroblast cells. FEBS Lett 1989; 247; 463-467.
15) Kawagishi H., Ando M., Shinba K. et al:Chromans, hericenones F, G and H from the mushroom Hericium erinaceum. Phytochemistry 1993; 32; 175-178.
16) Kawagishi H., Shimada A., Shirai R. et al:Erinacines A, B and C, strong stimulators of nerve growth factor NGF-synthesis, from the mycelia of Hericium erinaceum. Tetrahed Lett 1994; 35 (10); 1569-1572.
17) Kittner H., Krugel U., Poelchen W. et al:P2 receptor-mediated activation of noradrenergic and dopaminergic neurons in the rat brain. Progr Brain Res 1999; 120; 223-235.
18) Krugel U., Kittner H., Illes P.:Adenosine 5-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci Lett 1999; 265; 49-52.
19) Krugel U., Kittner H., Franke H. et al:Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 2001; 40; 1084-1093.
20) Zhang Y-X., Yamashita H., Ohshita T. et al:ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Research 1995; 691; 205-212.
21) Pardridge W.M., Yoshikawa T., Kang Y.S. et al:Blood-brain barrier transport and brain metabolism of adenosine and adenosine analogs. J Pharmacol Exp Theraps 1994; 268 (1); 14-18.
25) Maisonpierre P.C., Belluscio L., Friedman B. et al:NT-3, BDNF, and NGF in the developing rat nervous system:Parallel as well as reciprocal patterns of expression. Neuron 1990; 5; 501-509.
26) Xia Y.X., Ikeda T., Xia X.Y. et al:Differential neurotrophin levels in cerebrospinal fluid and their changes during development in newborn rat. Neurosci Lett 2001; 280; 220-222.
29) Knusel B., Winslow J. W., Rosenthal A. et al:Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Nat Acad Sci U States A 1991; 88 (3); 961-965.
34) Sasamura T., Sasaki M., Tohda C. et al:Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus. Neuro Report 1998; 9; 2045-2048.
36) 森 寿, 真鍋俊也, 渡辺雅彦ほか: 脳神経化学イラストレイテッド. 羊土社, 2000, p186-192.

第4章 脳内ヒスタミンとエネルギー代謝

P.135 掲載の参考文献
8) 日高周次, 小川佳宏, 海老原健ほか:肥満におけるレプチン抵抗性の病態とその意義. 日本臨床 2001; 59(3);472-480.
9) Schwartz M.W., Peskind E., Raskind M. et al:Cerebrospinal fluid levels:Relationship to plasma levels and to adiposity in humans. Nat Med 1996; 2; 589-593.
10) Sakata T., Ookuma K., Fukagawa K. et al:Blockade of the histamine H1-receptor in the rat ventromedial hypothalamus and feeding elicitation. Brain Res 1988; 16; 403-40.
12) Tohyama M., Tamiya R., Inagaki N. et al:In Histaminergic Neurons:Morphology and Function, Watanabe T and Wada H.(ed), CRC Press, Boca Raton, 1991 p107-126.
16) Ookuma K., Sakata T., Fukagawa K. et al:Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res 1993; 628; 235-242.
17) Tsuda K., Yoshimatsu Y., Niijima A. et al:Hypothalamic histamine neurons activate lipolysis in rat adipose tissue. Exp Biol Med 2002; 227; 208-213.
18) 坂田利家, 吉松博信, 正木孝幸: 中枢性摂食異常症における神経ヒスタミン機能のH1受容体欠損動物による解析. 厚生科学研究費補助金分担研究報告書, 2000.
19) Yoshimatsu H., Itateyama E., Kondou S. et al:Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes 1999; 48; 2286-2291.
20) 坂田利家, 吉松博信, 桶田俊光ほか: 糖尿病における高次脳機能障害の解析と中枢神経ヒスタミンの役割. 平成8年度科学研究補助金研究成果報告書, 1998.
21) 中島 滋, 田中 香, 濱田 稔ほか: 瀬戸内海浜地区の女性におけるエネルギー摂取量とヒスチジン摂取量との相関. 肥満研究 2001; 7(3) ; 276-282.

第5章 胃ペプチドグレリンと食行動

P.151 掲載の参考文献
1) Kojima M., Hosoda H., Date Y. et al:Ghrelin is a novel growth hormone releasing acylated peptide from stomach. Nature 1999; 402; 656-660.
10) Smith R.G., Cheng K., Schoen W.R. et al:A nonpeptidyl growth hormone secretagogue. Science 1993; 260; 1640-1643.
11) Pong S.S., Chaung L.Y., Dean D.C. et al:Identifi cation of a new G-protein-linked receptor for growth hormone secretagogues. Mol Endocrinol 1996; 10; 7-61.
13) Kaiya H., Kojima M., Hosoda H. et al:Bullfrog ghrelin is modifi ed by n-octanoic acid at its third threonine residue. J Biol Chem 2001; 276; 40441-40448.
16) Date Y., Kojima M., Hosoda H. et al:Ghrelin, a novel growth-hormonereleasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141; 4255-4261.
17) Hayashida T., Nakahara K., Mondal M.S. et al:Ghrelin in neonatal rats:distribution in stomach and its possible role. J Endocrinol 2002; 173; 239-245.
18) Lu S., Guan JL., Wang Q.P. et al:Immunocytochemical observation of ghrelincontaining neurons in the rat arcuate nucleus. Neurosci Lett 2002; 321; 157-160.
19) McKee K.K., Palyha O.C., Feighner S.D. et al:Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol 2002; 11; 415-123.
25) Stanley B.G., Kyrkouli S.E., Lampert S. et al:Neuropeptide Y chronically injected into the hypothalamus:a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986;7;1189-1192.
28) Sakurai T., Amemiya A., Ishii M. et al:Orexins and orexin receptors:a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92; 573-585.
29) Qu D., Ludwig D.S., Gammeltoft S. et al:A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380; 243-247.
32) Elmquist J.K.:Anatomic basis of leptin action in the hypothalamus. Front Horm Res 2000; 26; 21-41.
40) Lin L., Faraco J., Li R. et al:The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98; 365-376.
41) Chemelli R.M., Willie J.T., Sinton C.M. et al:Narcolepsy in orexin knockout mice:molecular genetics of sleep regulation. Cell 1999; 98; 437-451.
42) Lu S., Guan J.L., Wang Q.P. et al:Immunocytochemical observation of ghrelincontaining neurons in the rat arcuate nucleus. Neurosci Lett 2001; 321; 157-160.
44) Date Y., Murakami N., Toshinai K. et al:The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion. Gastroenterology 2002; 123; 1120-1128.
47) Cummings D.E., Purnell J.Q., Frayo R.S. et al:A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50; 1714-1719.
48) Tschop M., Wawarta R., Riepl R.L. et al Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest 2001; 24; RC19-21.
50) Hayashida T., Murakami K., Mogi K. et al:Ghrelin in domestic animals:distribution in stomach and its possible role. Domest Anim Endocrinol 2001; 21; 17-24.
51) Norrelund H., Hansen T.K., Orskov H. et al:Ghrelin immunoreactivity in human plasma is suppressed by somatostatin. Clin Endocrinol 2002; 57; 539-546.
52) Date Y., Nakazato M., Hashiguchi S. et al:Ghrelin is present in pancreatic a-cells of humans and rats and stimulates insulin secretion. Diabetes 2002; 51; 124-129.
53) Murata M., Okimura Y., Iida K. et al:Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem 2002; 277; 5667-5674.
57) Nagaya N., Uematsu M., Kojima M. et al:Elevated circulating level of ghrelin in cachexia associated with chronic heart failure:relationships between ghrelin and anabolic/catabolic factors. Circulation 2001; 104; 2034-2038.
58) Nagaya N., Uematsu M., Kojima M. et al:Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 2001; 104; 1430-1435.

第6章 エネルギー消費の自律的調節と食事・栄養

P.179 掲載の参考文献
4) Stuart J.A., Cadenas S., Jekabsons M.B. et al:Mitochondrial proton leak and the uncoupling protein 1 homologues. Biochim Biophys Acta 2001; 1504; 144-158.
7) Minokoshi Y., Saito M., Shimazu T.:Sympathetic activation of lipid synthesis in brown adipose tissue in the rat. J Physiol 1998; 398; 361-370.
10) Shimazu T., Takahashi A.:Stimulation of hypothalamic nuclei has differential effects on lipid synthesis in brown and white adipose tissue. Nature 286; 62-63.
15) Nikami H., Shimizu Y., Saito M. et al:Cold exposure increases glucose utilization and glucose transporter expression in brown adipose tissue. Biochem Biophys Res Commun 1992; 185; 1078-1082.
16) Shimizu Y., Nikami H., Saito M. et al:Increased expression of glucose transporter GLUT-4 in brown adipose tissue of fasted rats after cold exposure. Am J Physiol 1993;264;E 890-E 895.
17) Tsukazaki K., Nikami H.,Saito M.et al:Chronic administration of??-adrenergic agonists can mimic the stimulative effect of cold exposure on protein synthesis in rat brown adipose tissue. J Biochem 1995; 117; 96-100.
18) Asano A., Morimatsu M., Saito M.et al:Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue:implication in cold-induced angiogenesis. Biochem J 1997; 328; 179-183.
24) Enerback S., Jacobsson A., Simpson E.M. et al:Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997; 387; 90-94
25) 山下均, 紺谷靖英, 王幼学ほか: 加齢にともなう肥満の進展とUCP1の役割. 肥満研究 2002; 8; 131-135.
26) Nagase I., Yoshida T., Kumamoto K. et al:Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic β3-adrenergic agonist. J Clin Invest 1996; 97; 2898-2904.
27) Umekawa T., Yoshida T., Sakane N. et al:Anti-obesity and anti-diabetic effecs of CL316,243, a highly specific β3-adrenoceptor agonist, in Otsuka Long-Evans Tokushima Fatty rats:induction of uncoupling protein and activation of glucose transporter 4 in white fat. Eur J Endocrinol 1997; 136; 429-437.
28) Yoshida T., Umekawa T., Kumamoto K. et al:β3-Adrenergic agonist induces a functionally active uncoupling protein in fat and slo-twitch muscle fibers. Am J Physiol 1998;274;E469-E475.
29) Sasaki N., Uchida E., Niiyama M. et al; Anti-obesity effects of selective agonists to β3-adrenergic receptor in dogs. II. Recruitment of thermogenic brown adipocytes and reduction of adiposity after chronic treatment with a β3-adrenergic agonist. J Vet Med Sci 1998; 60; 465-469.
34) Saito M., Minokoshi Y., Shimazu T.:Metabolic and sympathetic nerve activities of brown adipose tissue in tube-fed rats. Am J Physiol 21989; 57;E374-E378.
37) Nagase I., Yoshida S., Canas X. et al:Up-regulation of uncoupling protein 3 by thyroid hormone, peroxisome proliferator-activated receptor ligands and 9-cis retinoic acid in L6 myotubes. FEBS Lett 1999; 461; 319-322.
38) Nagase I., Yoshida T., Saito M.:Up-regulation of uncoupling proteins by βadrenergic stimulation in L6 myotubes. FEBS Lett 2001; 494; 175-180.
40) Tsuboyama-Kasaoka N., Takahashi M., Tanemura K. et al:Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 2000; 49; 1534-1542.

第7章 レプチンによる糖・脂肪代謝調節作用

P.210 掲載の参考文献
4) Pelleymounter M.A., Cullen M.J., Baker M.B. et al:Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269; 540-543.
7) Haque M.S., Minokoshi Y., Hamai M. et al:Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 1999; 48; 1706-1712.
9) Tartaglia L.A., Dembski M., Weng X. et al:Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83; 1263-1271.
15) Vaisse C., Halaas J.L., Horvath C.M. et al:leptin activation of stat 3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14; 95-97.
16) Banks W.A.:Leptin transport across the blood-brain barrier:implications for the cause and treatment of obesity. Curr Pharm Des 2001; 7; 125-133.
19) Morimoto A., Murakami N:[14C]deoxyglucose incorporation in to rat brain reginos during hypothalamic or peripheral thermal stimulation. Am J Physiol Regul Integr Comp Physiol 1985; 248; R84-R92.
22) DeFronzo R.A., Jacot E., Jequier E. et al:The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981;30;1000-1007.
23) Hynes W.G., Morgan D.A., Walsh S.A. et al:Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997; 100; 270-278.
24) Scarpace P.S., Matheny M., Pollock B.H. et al:Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol Endocrinol Metab 1997; 273; E226-E230.
25) Elmquist J.K., Bjorbaek C., Ahima R.S. et al:Distribution of leptin receptor mRNA isoforms in the rat brain. J Com Neurol 1998;395;535-547.
26) Ogawa Y., Masuzaki H., Hosoda K. et al:Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes 1999; 48; 1822-1829.
27) Shimomura I., Hammer R., Ikemoto S. et al:Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nautre 1999; 401; 73-76.
28) Lin C., Higginbotham A., Judd R.L. et al:Central leptin increases insulin sensitivity in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2002; 282;E1084-E1091.
29) Oarl A.E., Simha V., Ruiz E. et al:Leptin-replacement therapy for lipodystrophy. N Eng J Med 2002; 8; 570-578.
30) Peterson K.F., Oral E.A., Dufour S. et al:Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109; 1345-1350.
31) Halaas J.L, Gajiwaka K.S. Mafei M. et al:Weight reducing effects of the plasma protein encoded by he obese gene. Science 1995; 269; 543-546.
32) Haw J.J., Ghibaudi L., Compton D. et al:Intracerebroventricular injection of leptin increases thermogenesis and mobilizes fat metabolism in ob/ob mice. Horm Metab Res 1996; 28; 659-663.
42) Hayashi T., Jogen F.P., Wojtaszewski J.F.P.et al:Exercise regulation of glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab 1997; 273; E1039-E1051.
44) Musi N., Hayashi T., Fugii N. et al:AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280;E677-E684.
46) Kurth-Kraczek J.E., Hirshman M.F., Goodyear L.J. et al:5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48; 1667-1671.
47) Hayashi T., Hirshman M.F., Kurth E.J. et al:Evidence for 5' AMP activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47; 1369-1373.
49) Iglesias M.A., Ye J.M., Frangioudakis G. et al:AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant highfat-fed rats. Diabetes 2002; 51; 2886-2894.
50) Vavvas D., Apazidis A., Saha A.K. et al:Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem 1997; 272; 13256-13261.
52) Terada S., Goto M., Kato M. et al:Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 2002; 296; 350-354.
53) Mu J., Brozinick J.T. Jr., Valladares O. et al:A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 2001; 7; 1085-1094.
54) Derave W., Ai H., Ihlemann J. et al:Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes 2000; 49; 1281-1287.
56) Oakes N.D., Kjellstedt A., Forsberg G-B. et al:Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J Lipid Res 1999; 40; 1155-1169.
57) Unger R.H., Zhou Y-T., Orci L. et al:Regulation of fatty acid homeostasis in cells:novel role of leptin. Proc Natl Acad Sci USA 1999; 96; 2327-2332.
58) Steinberg G.R., Rush J.W.E., Dyck D.J. et al:AMPK. expression and phosphorylation are increased in rodent muscle following chronic leptin treatment. Am J Physiol Endocrinol Metab 2002;284;E648-E654.
59) Muoio D.M., Dohm G.L., Fiedoreck F.T.Jr. et al:Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 1997; 46; 1360-1363.
60) Zierath J.R., Frevert E.U., Ryder J.W. et al:Evidence against a direct effect of leptin on glucose transport in skeletal muscle and adipocytes. Diabetes 1998; 47;1-4.
61) Steinberg G.R., Parolin M.L., Heigenhauser G.J.F. et al:Leptin increases FA oxidation in lean but not obese human skeletal muscle:evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 2002; 283; E187-E192.

第8章 運動・栄養と中枢性疲労

P.246 掲載の参考文献
1) 森谷敏夫: 筋疲労. 呼吸 1990; 9; 965-972.
3) Blomstrand E., Perrett D., Parry-Billings M. et al:Effect of sutained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand 1989; 136; 473-481.
8) Inoue K., Yamazaki H., Manabe Y. et al:Release of a substance that suppresses spontaneous motor activity in the brain by physical exercise. Physiol Behav 1998; 64; 185-190.
10) Ueda H., Amano H., Shiomi H. et al:Comparison of the analgesic effects of various opioid pepteides by a newly devised intracisternal injection technique in conscious mice. Eur J Pharmacol 1979;56;265-268.
11) Inoue K., Yamazaki H., Manabe Y. et al:Transforming growth factor-beta activated during exercise in brain depresses spontaneous motor activity of animals. Relevance to central fatigue. Brain Res 1999;846;145-153.
12) Manabe Y., Yamazaki H., Fukuda C. et al:Suppression of S-methylglutathioneinduced tentacle ball formation by peptides and nullification of the suppression by TGF-beta in Hydra. Chem Senses 2000; 25; 173-180.
13) Hanai K., Kato H., Matsuhashi S. et al:Platelet protein, including plateletderived growth factor, specifically depress a subset of the multiple components of the response elicited by glutathione in Hydra. J Cell Biol 1987; 104; 1675-1681.
15) Manabe Y., Yamazaki H., Fukuda C. et al:Hydra biological detection of biologically active peptides in rat cerebrospinal fluid. Brain Res Protcol 2000; 5; 312-317.
17) Massague J.:The transforming growth factor-β. Annu Rev Cell Biol 1990; 597-641.
18) Massague J., Chen Y-G.:Controlling TGF-β signaling. Genes Develop. 2000; 14; 627-644.
19) Lyons R.M., Gentry L.E., Purchio A.F. et al:Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol 1990; 110; 1361-1367.
20) Yu Q., Stamenkovic I.:Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Develop. 2000; 14; 163-176.
21) Ribeiro S.M.F., Poczatek M., Schultz-Cherry S. et al.:The activation sequence of thrombospondin-1 interacts with the latancy-associated peptide to regulate activation of latent transforming growth factor-β. J Biol Chem 1999;274; 13586-13593.
22) Annes J.P., Rifkin D.B., Munger J.S.:The integrin a Vβ6 binds and activates latent TGFb3. FEBS Lett. 2002; 511; 65-68.
23) Derynck R., Feng X-H.:TGF-β receptor signaling. Biochim Biophys Acta 1997; 1333; F105-F150.
28) Saito M., Ishihara K., Onuki K., et al:Effects of Nanpao, a mixture of 31 Chinese crude drugs, on increasing endurance exercise performance of swimming mice.(in Japanese). Natural Medicine 1998; 52; 14-21.

最近チェックした商品履歴

Loading...