半月板のすべて 解剖から手術、再生医療まで

出版社: メジカルビュー社
著者:
発行日: 2019-09-10
分野: 臨床医学:外科  >  整形外科学
ISBN: 9784758318693
電子書籍版: 2019-09-10 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

13,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

13,200 円(税込)

商品紹介

解剖,疫学から病態,治療(手術,リハ,再生治療含む)まで,半月板のすべてを網羅。基礎研究の内容はなるべく平易に,治療(手術・リハ)ではすぐに臨床に役立つよう具体的な手技を,スペシャリストの執筆陣がしっかり解説している。

目次

  • ■1 半月板と治療の歴史
    ■2 半月板の解剖
    ■3 半月板損傷のメカニズム
    ■4 半月板のバイオメカニクス
    ■5 半月板損傷の評価・診断
    ■6 前十字靱帯損傷との関係および変形性膝関節症における位置づけと治療方針
    ■7 半月板手術の統計情報
    ■8 外側円板状半月板とその問題
    ■9 半月板切除とその問題
    ■10 半月板温存とその残された問題
    ■11 私たちの半月板機能温存の取り組み・手術法のすべて
    ■12 半月板温存術の短期成績と課題
    ■13 半月板の再生医療と基礎研究
    ■14 半月板修復と滑膜幹細胞を組み合わせた関節機能改善法
    ■15 半月板損傷の保存治療
    ■16 半月板温存術後のリハビリテーション
    ■17 ケーススタディ

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

[1] 半月板と治療の歴史

P.6 掲載の参考文献
1) Di Matteo B, Moran CJ, Tarabella V. A history of meniscal surgery : from ancient times to the twenty-first century. Knee Surg Sports Traumatol Arthrosc 2016 ; 24 : 1510-8.
2) 小林晶. 膝半月板を巡る小史. 2015 臨整外 ; 50 : 265-72.
3) Eycleshymer AC, Schoemaker DM. Anatomical Names, Especially the Basle Nomina Anatomica. New York : W. Wood & Company ; 1917.
4) 坂井建雄. 我が国の近代解剖学教育の成立過程. 解剖学雑誌 2008 ; 83 : 105-16.
5) 月澤美代子. 明治初期日本における西洋解剖学的人体像の民衆への普及 -1875-7 (明治8-10) 年刊行「人体問答」書掲載の内臓図-. 日本医史学雑誌 2013 ; 59 : 533-46.
6) 澤井直, 坂井建雄. 昭和初期解剖学用語の改良と国語運動. 日本医史学雑誌 2010 ; 56 : 39-52.
P.11 掲載の参考文献
1) Annandale T. An operation for displaced semilunar cartilage. Br Med J 1885 ; 1 : 779.
2) Annandale T. Excision of the internal semilunar cartilage, resulting in perfect restoration of the joint-movements. Br Med J 1889 ; 1 : 291-2.
3) Bick EM. Source Book of Orthopaedics. New York : Hafner Publishing Company ; 1968 : p355-61.
4) McKeever DC. Total excision of semilunar cartilages through a small anterior incision. Clin Orthop 1957 ; 9 : 227-32.
5) 50 years ago in CORR : total excision of semilunar cartilages through a small anterior incision. Clin Orthop Relat Res 2007 ; 455 : 285.
6) Johnson RJ, Kettelkamp DB, Clark W, et al. Factors effecting late results after meniscectomy. J Bone Joint Surg Am 1974 ; 56 : 719-29.
7) Watanabe M, Takeda S, Ikeuchi H. Atlas of Arthroscopy. Tokyo : Igaku-Shoin ; 1957.
8) Jackson RW. The introduction of arthroscopy to North America. Clin Orthop Relat Res 2000 ; (374) : 183-6.
9) Scott GA, Jolly BL, Henning CE. Combined posterior incision and arthroscopic intra-articular repair of the meniscus. An examination of factors affecting healing. J Bone Joint Surg Am 1986 ; 68 : 847-61.
10) 渡辺正毅. 関節鏡診断 1. 臨整外 1975 ; 10 : 370-3.

[2] 半月板の解剖

P.21 掲載の参考文献
1) Schleip R, Jager H, Klingler W. What is 'fascia'? A review of different nomenclatures. J Bodyw Mov Ther 2012 ; 16 : 496-502.
2) Fujishiro H, Tsukada S, Nakamura T, et al. Attachment area of fibres from the horns of lateral meniscus : anatomic study with special reference to the positional relationship of anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 368-73.
3) Nimura A, Kato A, Yamaguchi K, et al. The superior capsule of the shoulder joint complements the insertion of the rotator cuff. J Shoulder Elbow Surg 2012 ; 21 : 867-72.
4) Nimura A, Fujishiro H, Wakabayashi Y, et al. Joint capsule attachment to the extensor carpi radialis brevis origin : an anatomical study with possible implications regarding the etiology of lateral epicondylitis. J Hand Surg Am 2014 ; 39 : 219-25.
5) Momma D, Nimura A, Muro S, et al. Anatomic analysis of the whole articular capsule of the shoulder joint, with reference to the capsular attachment and thickness. J Exp Orthop 2018 ; 5 : 16.
6) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
7) Weiss CB, Lundberg M, Hamberg P, et al. Non-operative treatment of meniscal tears. J Bone Joint Surg Am 1989 ; 71 : 811-22.
8) Yagishita K, Muneta T, Ogiuchi T, et al. Healing potential of meniscal tears without repair in knees with anterior cruciate ligament reconstruction. Am J Sports Med 2004 ; 32 : 1953-61.
9) Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med 1982 ; 10 : 90-5.

[3] 半月板損傷のメカニズム

P.33 掲載の参考文献
1) Stein G, Koebke J, Faymonville C, et al. The relationship between the medial collateral ligament and the medial meniscus : a topographical and biomechanical study. Surg Radiol Anat 2011 ; 33 : 763-6.
2) Crema MD, Roemer FW, Felson DT, et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis : the multicenter osteoarthritis study. Radiology 2012 ; 264 : 494-503.
3) Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991 ; 19 : 210-5.
4) Harrington IJ. Static and dynamic loading patterns in knee joints with deformities. J Bone Joint Surg Am 1983 ; 65 : 247-59.
5) Kolaczek S, Hewison C, Caterine S, et al. Analysis of 3D strain in the human medial meniscus. J Mech Behav Biomed Mater 2016 ; 63 : 470-5.
6) Hsu RW, Himeno S, Coventry MB, et al. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res 1990 ; 255 : 215-27.
7) Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 1998 ; 193 : 161-78.
8) Jones RS, Keene GC, Learmonth DJ, et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon) 1996 ; 11 : 295-300.
9) Drosos GI, Pozo JL. The causes and mechanisms of meniscal injuries in the sporting and non-sporting environment in an unselected population. Knee 2004 ; 11 : 143-9.
10) Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci : structure, composition, and function. Sports Health 2012 ; 4 : 340-51.
11) Amano H, Iwahashi T, Suzuki T, et al. Analysis of displacement and deformation of the medial meniscus with a horizontal tear using a three-dimensional computer model. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 1153-60.
12) Carreau JH, Sitton SE, Bollier M. Medial meniscus root tear in the middle aged patient : a case based review. Iowa Orthop J 2017 ; 37 : 123-32.
13) Hussain ZB, Chahla J, Mandelbaum BR, et al. The role of meniscal tears in spontaneous osteonecrosis of the knee : a systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med 2019 ; 47 : 501-7.
14) Guermazi A, Hayashi D, Jarraya M, et al. Medial posterior meniscal root tears are associated with development or worsening of medial tibiofemoral cartilage damage : the multicenter osteoarthritis study. Radiology 2013 ; 268 : 814-21.
15) Brambilla L, Pulici L, Carimati G, et al. Prevalence of associated lesions in anterior cruciate ligament reconstruction : correlation with surgical timing and with patient age, sex, and body mass index. Am J Sports Med 2015 ; 43 : 2966-73.
16) Magnussen RA, Pedroza AD, Donaldson CT, et al. Time from ACL injury to reconstruction and the prevalence of additional intra-articular pathology : is patient age an important factor? Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 2029-34.
17) DePhillipo NN, Cinque ME, Chahla J, et al. Incidence and detection of meniscal ramp lesions on magnetic resonance imaging in patients with anterior cruciate ligament reconstruction. Am J Sports Med 2017 ; 45 : 2233-7.
18) Kumar NS, Spencer T, Cote MP, et al. Is edema at the posterior medial tibial plateau indicative of a ramp lesion? An examination of 307 patients with anterior cruciate ligament reconstruction and medial meniscal tears. Orthop J Sports Med 2018 ; 6 : 2325967118780089.
19) Liu X, Feng H, Zhang H, et al. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 2011 ; 39 : 832-7.
20) Shelbourne KD, Nitz PA. The O'Donoghue triad revisited. Combined knee injuries involving anterior cruciate and medial collateral ligament tears. Am J Sports Med 1991 ; 19 : 474-7.
21) Ferretti A, Monaco E, Ponzo A, et al. The unhappy triad of the knee re-revisited. Int Orthop 2019 ; 43 : 223-8.
22) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
23) Van Steyn MO, Mariscalco MW, Pedroza AD, et al. The hypermobile lateral meniscus : a retrospective review of presentation, imaging, treatment, and results. Knee Surg Sports Traumatol Arthrosc. 2016 ; 24 : 1555-9.
24) LaPrade RF, Ho CP, James E, et al. Diagnostic accuracy of 3.0 T magnetic resonance imaging for the detection of meniscus posterior root pathology. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 152-7.
25) Forkel P, Reuter S, Sprenker F, et al. Different patterns of lateral meniscus root tears in ACL injuries : application of a differentiated classification system. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 112-8.
26) Moatshe G, Chahla J, Slette E, et al. Posterior meniscal root injuries. Acta Orthop 2016 ; 87 : 452-8.
27) Tachibana Y, Mae T, Fujie H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 355-61.
28) Khan N, McMahon P, Obaid H. Bony morphology of the knee and non-traumatic meniscal tears : is there a role for meniscal impingement? Skeletal Radiol 2014 ; 43 : 955-62.
29) Ahn JH, Lee YS, Ha HC, et al. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 2009 ; 37 : 1564-9.

[4] 半月板のバイオメカニクス

P.50 掲載の参考文献
1) Tissakht M, Ahmed AM, Chan KC. Calculated stress-shielding in the distal femur after total knee replacement corresponds to the reported location of bone loss. J Orthop Res 1996 ; 14 : 778-85.
2) Zhu W, Chern KY, Mow VC. Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res 1994 ; 306 : 34-45.
3) Newman AP, Anderson DR, Daniels AU, et al. Mechanics of the healed meniscus in a canine model. Am J Sports Med 1989 ; 17 : 164-75.
4) Proctor CS, Schmidt MB, Whipple RR, et al. Material properties of the normal medial bovine meniscus. J Orthop Res 1989 ; 7 : 771-82.
5) Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 1984 ; 43 : 635-40.
6) Eyre DR, Wu JJ. Collagen of fibrocartilage : a distinctive molecular phenotype in bovine meniscus. FEBS Lett 1983 ; 158 : 265-70.
7) McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res 1990 ; 252 : 8-18.
8) Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 1987 ; 16 : 343-56.
9) Bullough PG, Munuera L, Murphy J, et al. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br 1970 ; 52 : 564-7.
10) Sanchez-Adams J, Wilusz RE, Guilak F. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res 2013 ; 31 : 1218-25.
11) Collier S, Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 1995 ; 3 : 127-38.
12) Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage : a review. J Biomech 1984 ; 17 : 377-94.
13) Makris EA, Hadidi P, Athanasiou KA. The knee meniscus : structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011 ; 32 : 7411-31.
14) Mow VC, Gibbs MC, Lai WM, et al. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study. J Biomech 1989 ; 22 : 853-61.
15) LeRoux MA, Setton LA. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 2002 ; 124 : 315-21.
16) Fithian, DC, Zhu, WB, Ratcliffe A, et al. Exponential law representation of tensile properties of human meniscus. Proceedings of the Institute of Mechanical Engineers. The Changing Role of Orthopaedics, London ; Mechanical Engineering Publications Limited : p85-90. 1989.
17) Skaggs DL, Warden WH, Mow VC. Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 1994 ; 12 : 176-85.
18) Kleinhans KL, Jackson AR. Hydraulic permeability of meniscus fibrocartilage measured via direct permeation : Effects of tissue anisotropy, water volume content, and compressive strain. J Biomech 2018 ; 72 : 215-21.
19) Kleinhans KL, Jaworski LM, Schneiderbauer MM, et al. Effect of static compressive strain, anisotropy, and tissue region on the diffusion of glucose in meniscus fibrocartilage. J Biomech Eng 2015 ; 137 : 101004.
20) Haemer JM, Carter DR, Giori NJ. The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip. J Biomech 2012 ; 45 : 1450-6.
21) Ghadially FN, Thomas I, Yong N, et al. Ultrastructure of rabbit semilunar cartilages. J Anat 1978 ; 125 : 499-517.
22) Van der Bracht H, Verdonk R, Verbruggen G, et al. Cell-based meniscus tissue engineering. Topics in Tissue Engineering 2007 ; 3 : 1-13.
23) Hanaoka T, Kamimura N, Yokota T, et al. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med Gas Res 2011 ; 1 : 10.1186/2045-9912-1-18.
24) Bhargava MM, Attia ET, Murrell GA, et al. The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 1999 ; 27 : 636-43.
25) Aufderheide AC, Athanasiou KA. A direct compression stimulator for articular cartilage and meniscal explants. Ann Biomed Eng 2006 ; 34 : 1463-74.
26) Shin SJ, Fermor B, Weinberg JB, et al. Regulation of matrix turnover in meniscal explants : role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol (1985) 2003 ; 95 : 308-13.
27) Fink C, Fermor B, Weinberg JB, et al. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 2001 ; 9 : 481-7.
28) Kanazawa T, Furumatsu T, Hachioji M, et al. Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res 2012 ; 30 : 468-74.
29) Natsu-Ume T, Majima T, Reno C, et al. Menisci of the rabbit knee require mechanical loading to maintain homeostasis : cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J Orthop Sci 2005 ; 10 : 396-405.
30) Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds. J Biomed Mater Res A 2010 ; 92 : 896-905.
31) Eifler RL, Blough ER, Dehlin JM, et al. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res 2006 ; 24 : 375-84.
32) Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980 ; 51 : 871-9.
33) Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech 1970 ; 3 : 51-61.
34) Morrison JB. Function of the knee joint in various activities. Biomed Eng 1969 ; 4 : 573-80.
35) Kozanek M, Hosseini A, Liu F, et al. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech 2009 ; 42 : 1877-84.
36) Lin Z, Huang W, Ma L, et al. Kinematic features in patients with lateral discoid meniscus injury during walking. Sci Rep 2018 ; 8 : 5053.
37) Li JS, Tsai TY, Felson DT, et al. Six degree-of-freedom knee joint kinematics in obese individuals with knee pain during gait. PLoS One 2017 ; 12 : e0174663.
38) Vedi V, Williams A, Tennant SJ, et al. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 1999 ; 81 : 37-41.
39) Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991 ; 19 : 210-6.
40) Shapeero LG, Dye SF, Lipton MJ, et al. Functional dynamics of the knee joint by ultrafast, cine-CT. Invest Radiol 1988 ; 23 : 118-23.
41) Muhle C, Thompson WO, Sciulli R, et al. Transverse ligament and its effect on meniscal motion. Correlation of kinematic MR imaging and anatomic sections. Invest Radiol 1999 ; 34 : 558-65.
42) McDonald LS, Boorman-Padgett J, Kent R, et al. ACL deficiency increases forces on the medial femoral condyle and the lateral meniscus with applied rotatory loads. J Bone Joint Surg Am 2016 ; 98 : 1713-21.
43) Beveridge JE, Atarod M, Heard BJ, et al. Relationship between increased in vivo meniscal loads and abnormal tibiofemoral surface alignment in ACL deficient sheep is varied. J Biomech. 2016 ; 49 : 3824-32.
44) Griffith CJ, LaPrade RF, Johansen S, et al. Medial knee injury : Part 1, static function of the individual components of the main medial knee structures. Am J Sports Med 2009 ; 37 : 1762-70.
45) Tachibana Y, Mae T, Fujie H, et al. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 355-61.
46) Gaugler M, Wirz D, Ronken S, et al. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 1141-6.
47) Kessler O, Sommers M, Augustin T, et al. Higher strains in the inner region of the meniscus indicate a potential source for degeneration. J Biomech 2015 ; 48 : 1377-82.
48) Lai JH, Levenston ME. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression. Osteoarthritis Cartilage 2010 ; 18 : 1291-9.
49) 星野明穂. 膝関節の衝撃吸収特性. バイオメカニズム学会誌 1990 ; 14 : 86-91.
50) Huiskes R, Chao EY. A survey of finite element analysis in orthopedic biomechanics : the first decade. J Biomech 1983 ; 16 : 385-409.
51) Yoon KH, Kim YH, Ha JH, et al. Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech 2010 ; 25 : 1042-6.
52) Carey JJ, Buehring B. Current imaging techniques in osteoporosis. Clin Exp Rheumatol 2018 ; 36 Suppl 114 : 115-26.
53) Guo H, Santner TJ, Chen T, et al. A statistically-augmented computational platform for evaluating meniscal function. J Biomech 2015 ; 48 : 1444-53.
54) Wheatley BB, Fischenich KM, Button KD, et al. An optimized transversely isotropic, hyper-poro-viscoelastic finite element model of the meniscus to evaluate mechanical degradation following traumatic loading. J Biomech 2015 ; 48 : 1454-60.
55) Meng Q, Fisher J, Wilcox R. The effects of geometric uncertainties on computational modelling of knee biomechanics. R Soc Open Sci 2017 ; 4 : 170670.
56) Pena E, Calvo B, Martinez MA, et al. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 2005 ; 20 : 498-507.
57) Georgoulis AD, Ristanis S, Moraiti CO, et al. ACL injury and reconstruction : Clinical related in vivo biomechanics. Orthop Traumatol Surg Res 2010 ; 96 : S119-28.
58) Papaioannou G, Nianios G, Mitrogiannis C, et al. Patient-specific knee joint finite element model validation with high-accuracy kinematics from biplane dynamic Roentgen stereogrammetric analysis. J Biomech 2008 ; 41 : 2633-8.
59) Luczkiewicz P, Daszkiewicz K, Chros´cielewski J, et al. The influence of articular cartilage thickness reduction on meniscus biomechanics. PLoS One 2016 ; 11 : e0167733.
60) Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, et al. Preliminary analysis of knee stress in full extension landing. Clinics (Sao Paulo) 2013 ; 68 : 1180-8.
61) Kedgley AE, Saw TH, Segal NA, et al. Predicting meniscal tear stability across knee-joint flexion using finite-element analysis. Knee Surg Sports Traumatol Arthrosc 2019 ; 27 : 206-214.
62) Aufderheide AC, Athanasiou KA, Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng 2005 ; 11 : 1095-104.
63) Li WJ, Mauck RL, Cooper JA, et al. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007 ; 40 : 1686-93.
64) Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly (vinyl alcohol) -based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 2010 ; 6 : 4716-24.
65) Dhollander A, Verdonk P, Verdonk R. Treatment of Painful, Irreparable Partial Meniscal Defects With a Polyurethane Scaffold : Midterm Clinical Outcomes and Survival Analysis. Am J Sports Med 2016 ; 44 : 2615-21.
66) Verhaeghe L, Boeren K. A Rare Complication after Synthetic Meniscus Replacement. J Belg Soc Radiol 2018 ; 102 : 63.
67) Chen JP, Cheng TH. Thermo-responsive chitosan-graft-poly (N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 2006 ; 6 : 1026-39.
68) Maier D, Braeun K, Steinhauser E, et al. In vitro analysis of an allogenic scaffold for tissue-engineered meniscus replacement. J Orthop Res 2007 ; 25 : 1598-608.
69) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthroscopy techniques 2012 ; 1 : e209-12.
70) Koga H, Muneta T, Watanabe T et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
71) Ozeki N, Koga H, Matsuda J, et al. Biomechanical analysis of the centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model. J Orthop Sci. 2019 ; S0949-2658 ; 19 ; 30064-8. (in press)
72) Wolff J. Ueber die Bedeutung der Architectur der spongiosen Substanz fur die Frage vom Knochenwachsthum. Centralblatt fur die medicinischen Wissenschaften 1869 ; 54 : 849-51.
P.59 掲載の参考文献
1) Englund M, Roemer FW, Hayashi D, et al. Meniscus pathology, osteoarthritis and the treatment controversy. Nat Rev Rheumatol 2012 ; 8 : 412-9.
2) Englund M, Guermazi A, Roemer FW, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons : The Multicenter Osteoarthritis Study. Arthritis Rheum 2009 ; 60 : 831-9.
3) Khan H, Chou L, Aitken D, et al. Correlation between changes in global knee structures assessed by magnetic resonance imaging and radiographic osteoarthritis changes over ten years in a midlife cohort. Arthritis Care Res 2016 ; 68 : 958-64.
4) Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med 2008 ; 359 : 1108-15.
5) Katz JN, Losina E. Surgery versus physical therapy for meniscal tear and osteoarthritis. N Engl J Med 2013 ; 369 : 677-8.
6) Yim JH, Seon JK, Song EK, et al. A comparative study of meniscectomy and nonoperative treatment for degenerative horizontal tears of the medial meniscus. Am J Sports Med 2013 ; 41 : 1565-70.
7) Herrlin SV, Wange PO, Lapidus G, et al. Is arthroscopic surgery beneficial in treating non-traumatic, degenerative medial meniscal tears? A five year follow-up. Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 358-64.
8) Biedert RM. Treatment of intrasubstance meniscal lesions : a randomized prospective study of four different methods. Knee Surg Sports Traumatol Arthrosc 2000 ; 8 : 104-8.
9) van de Graaf VA, Noorduyn JCA, Willigenburg NW, et al. effect of early surgery vs physical therapy on knee function among patients with nonobstructive meniscal tears : the ESCAPE randomized clinical trial. JAMA 2018 ; 320 : 1328-37.
10) Sihvonen R, Paavola M, Malmivaara A, et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med 2013 ; 369 : 2515-24.
11) Lee DH, Lee BS, Kim JM, et al. Predictors of degenerative medial meniscus extrusion : radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011 ; 19 : 222-9.
12) Lerer DB, Umans HR, Hu MX, et al. The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol 2004 ; 33 : 569-74.
14) Allaire R, Muriuki M, Gilbertson L, et al. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 2008 ; 90 : 1922-31.
15) Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med 2009 ; 37 : 124-9.
16) Teichtahl AJ, Wluka AE, Wang Y, et al. The longitudinal relationship between changes in body weight and changes in medial tibial cartilage, and pain among community-based adults with and without meniscal tears. Ann Rheum Dis 2014 ; 73 : 1652-8.
17) Hada S, Ishijima M, Kaneko H, et al. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res Ther 2017 ; 19 : 201.
18) Adams JG, McAlindon T, Dimasi M, et al. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol 1999 ; 54 : 502-6.
19) Gale DR, Chaisson CE, Totterman SM, et al. Meniscal subluxation : association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage 1999 ; 7 : 526-32.
20) Emmanuel K, Quinn E, Niu J, et al. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2016 ; 24 : 262-9.
21) Hunter DJ, Zhang YQ, Tu X, et al. Change in joint space width : hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum 2006 ; 54 : 2488-95.
22) Raynauld JP, Martel-Pelletier J, Berthiaume MJ, et al. Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients : correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 2006 ; 8 : R21.
23) Wenger A, Englund M, Wirth W, et al. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis : a pilot study. Eur Radiol 2012 ; 22 : 211-20.
24) Sharma L, Chmiel JS, Almagor O, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 2014 ; 66 : 1811-9.
25) Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br 1948 ; 30B : 664-70.
26) Roos H, Lauren M, Adalberth T, et al. Knee osteoarthritis after meniscectomy : prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998 ; 41 : 687-93.
27) Pengas IP, Assiotis A, Nash W, et al. Total meniscectomy in adolescents : a 40-year follow-up. J Bone Joint Surg Br 2012 ; 94 : 1649-54.
28) Hede A, Larsen E, Sandberg H. Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J Bone Joint Surg Br 1992 ; 74 : 118-21.
29) Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 2004 ; 50 : 2811-9.
30) Englund M, Paradowski PT, Lohmander LS. Association of radiographic hand osteoarthritis with radiographic knee osteoarthritis after meniscectomy. Arthritis Rheum 2004 ; 50 : 469-75.
31) Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear on radiographic and symptomatic knee osteoarthritis : a sixteen-year follow-up of meniscectomy with matched controls. Arthritis Rheum 2003 ; 48 : 2178-87.
32) Chatain F, Robinson AH, Adeleine P, et al. The natural history of the knee following arthroscopic medial meniscectomy. Knee Surg Sports Traumatol Arthrosc 2001 ; 9 : 15-8.
33) Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 1980 ; 51 : 871-9.
34) Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint : physical behavior of the knee joint with or without menisci. Clin Orthop Relat Res 1980 : 283-90.
35) Katano H, Koga H, Ozeki N, et al. Trends in isolated meniscus repair and meniscectomy in Japan, 2011-2016. J Orthop Sci 2018 ; 23 : 676-81.
36) Noyes FR, Chen RC, Barber-Westin SD, et al. Greater than 10-year results of red-white longitudinal meniscal repairs in patients 20 years of age or younger. Am J Sports Med 2011 ; 39 : 1008-17.
37) Stein T, Mehling AP, Welsch F, et al. Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med 2010 ; 38 : 1542-8.
38) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
39) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
40) Ozeki N, Muneta T, Kawabata K, et al. Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 2017 ; 22 : 542-8.
41) Poole R, Blake S, Buschmann M, et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage 2010 ; 18 Suppl 3 : S10-6.
42) Hiyama K, Muneta T, Koga H, et al. Meniscal regeneration after resection of the anterior half of the medial meniscus in mice. J Orthop Res 2017 ; 35 : 1958-65.
43) Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 2009 ; 27 : 878-87.
44) Ozeki N, Muneta T, Koga H, et al. Transplantation of achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheum 2013 ; 65 : 2876-86.
45) Hatsushika D, Muneta T, Horie M, et al. Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. J Orthop Res 2013 ; 31 : 1354-9.
46) Hatsushika D, Muneta T, Nakamura T, et al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis Cartilage 2014 ; 22 : 941-50.
47) Kondo S, Muneta T, Nakagawa Y, et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J Orthop Res 2017 ; 35 : 1274-82.
48) Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005 ; 434 : 644-8.
49) Yu H, Adesida AB, Jomha NM. Meniscus repair using mesenchymal stem cells-a comprehensive review. Stem Cell Res Ther 2015 ; 6 : 86.
50) Moran CJ, Busilacchi A, Lee CA, et al. Biological augmentation and tissue engineering approaches in meniscus surgery. Arthroscopy 2015 ; 31 : 944-55.
51) Spencer SJ, Saithna A, Carmont MR, et al. Meniscal scaffolds : early experience and review of the literature. Knee 2012 ; 19 : 760-5.
52) Korpershoek JV, de Windt TS, Hagmeijer MH, et al. Cell-based meniscus repair and regeneration : at the brink of clinical translation? : a systematic review of preclinical studies. Orthop J Sports Med 2017 ; 5 : 2325967117690131.
53) Rongen JJ, Hannink G, van Tienen TG, et al. The protective effect of meniscus allograft transplantation on articular cartilage : a systematic review of animal studies. Osteoarthritis Cartilage 2015 ; 23 : 1242-53.
54) Kohn D, Wirth CJ, Reiss G, et al. Medial meniscus replacement by a tendon autograft. Experiments in sheep. J Bone Joint Surg Br 1992 ; 74 : 910-7.
55) Johnson LL, Feagin JA. Autogenous tendon graft substitution for absent knee joint meniscus : a pilot study. Arthroscopy 2000 ; 16 : 191-6.
56) Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001 ; 83-A Suppl 1 : S151-8.
57) Hayashi M, Muneta T, Ju YJ, et al. Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther 2008 ; 10 : R118.
58) Sekiya I, Tang T, Hayashi M, et al. Periodic knee injections of BMP-7 delay cartilage degeneration induced by excessive running in rats. J Orthop Res 2009 ; 27 : 1088-92.
59) Takahashi T, Muneta T, Tsuji K, et al. BMP-7 inhibits cartilage degeneration through suppression of inflammation in rat zymosan-induced arthritis. Cell Tissue Res 2011 ; 344 : 321-32.
60) Ozeki N, Muneta T, Koga H, et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage 2016 ; 24 : 1061-70.
61) Ozeki N, Muneta T, Matsuta S, et al. Synovial mesenchymal stem cells promote meniscus regeneration augmented by an autologous Achilles tendon graft in a rat partial meniscus defect model. Stem Cells 2015 ; 33 : 1927-38.

[5] 半月板損傷の評価・診断

P.73 掲載の参考文献
1) Shirasawa S, Koga H, Horie M, et al. Forced knee extension test is a manual test that correlates with the unstable feelings of patients with ACL injury before and after reconstruction. Knee 2016 ; 23 : 1159-63.
2) Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci : structure, complication, and function. Sports Health 2012 ; 4 : 340-51.
3) Thorlund JB, Pihl K, Nissen N, et al. Conundrum of mechanical knee symptoms : signifying feature of a meniscal tear? Br J Sports Med 2019 ; 53 : 299-303.
5) 宗田大. 膝痛 こだわりの保存治療. 東京 : メジカルビュー社 ; 2018. p10-13.
6) Malanga GA, Andrus S, Nadler SF, et al. Physical examination of the knee : a review of the original test description and scientific validity of common orthopedic tests. Arch Phys Med Rehabil 2003 ; 84 : 592-602.
7) Galli M, Marzetti E. Accuracy of McMurray and joint line tenderness tests in the diagnosis of chronic meniscal tears : an ad hoc receiver operator characteristic analysis approach. Arch Phys Med Rehabil 2017 ; 98 : 1897-9.
8) Kim SJ, Min BH, Han DY. Paradoxical phenomena of the McMurray test. An arthroscopic investigation. Am J Sports Med 1996 ; 24 : 83-7.
9) Karachalios T, Hantes M, Zibis AH, et al. Diagnostic accuracy of a new clinical test (the Thessaly test) for early detection of meniscal tears. J Bone Joint Am 2005 ; 87 : 955-62.
10) Mirzatolooei F, Yekta Z, Bayazidchi M, et al. Validation of the Thessaly test for detecting meniscal tears in anterior cruciate deficient knees. Knee 2010 ; 17 : 221-23.
11) Kurosaka M, Yagi S, Yoshiya S, et al. Efficacy of the axially loaded pivot shift test for the diagnosis of a meniscal tear. International Orthopaedics (SICOT) 1999 ; 23 : 271-4.
12) Guermazi A, Niu J, Hayashi D, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis : population based observational study (Framingham Osteoarthritis Study). BMJ 2012 ; 345 : e5339.
13) Chirichella PS, Jow S, Iacono S, et al. Treatment of knee meniscus pathology : rehabilitation, surgery, and orthobiologics. PM R. 2019 ; 11 : 292-308.
14) Khan M, Evaniew N, Bedi A, et al. Arthroscopic surgery for degenerative tears of the meniscus : a systematic review and meta-analysis. CMAJ 2014 ; 186 : 1057-64.
P.91 掲載の参考文献
1) Helms CA. The meniscus : recent advances in MR imaging of the knee. AJR Am J Roentgenol 2002 ; 179 : 1115-22.
2) Schafer FK, Schafer PJ, Brossmann J, et al. Value of fat-suppressed proton-density-weighted turbo spin-echo sequences in detecting meniscal lesions : comparison with arthroscopy. Acta Radiol 2006 ; 47 : 385-90.
3) Lim D, Lee YH, Kim S, et al. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus : focusing on reader-defined axial reconstruction. Eur J Radiol 2013 ; 82 : 2296-302.
4) Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 1983 ; 65 : 538-47.
5) Mink JH, Deutsch AL. Magnetic resonance imaging of the knee. Clin Orthop Relat Res 1989 ; 244 : 29-47.
6) Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004 ; 12 : 177-90.
7) Hunter DJ, Lo GH, Gale D, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment : BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008 ; 67 : 206-11.
8) Wadhwa V, Omar H, Coyner K, et al. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging. Eur J Radiol 2016 ; 85 : 15-24.
9) Magee TH, Hinson GW. MRI of meniscal bucket-handle tears. Skeletal Radiol 1998 ; 27 : 495-9.
10) LaPrade CM, James EW, Cram TR, et al. Meniscal root tears : a classification system based on tear morphology. Am J Sports Med 2015 ; 43 : 363-9.
11) Furumatsu T, Fujii M, Kodama Y, et al. A giraffe neck sign of the medial meniscus : a characteristic finding of the medial meniscus posterior root tear on magnetic resonance imaging. J Orthop Sci 2017 ; 22 : 731-6.
12) Feucht MJ, Salzmann GM, Bode G, et al. Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 119-25.
13) Krych AJ, Wu IT, Desai VS, et al. High rate of missed lateral meniscus posterior root tears on preoperative magnetic resonance imaging. Orthop J Sports Med 2018 ; 6 : 2325967118765722.
14) Minami T, Muneta T, Sekiya I, et al. Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1174-81.
15) Liu X, Feng H, Zhang H, et al. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 2011 ; 39 : 832-7.
16) Yeo Y, Ahn JM, Kim H, et al. MR evaluation of the meniscal ramp lesion in patients with anterior cruciate ligament tear. Skeletal Radiol 2018 ; 47 : 1683-9.
17) Vance K, Meredick R, Schweitzer ME, et al. Magnetic resonance imaging of the postoperative meniscus. Arthroscopy 2009 ; 25 : 522-30.
18) Ciliz D, Ciliz A, Elverici E, et al. Evaluation of postoperative menisci with MR arthrography and routine conventional MRI. Clin Imaging 2008 ; 32 : 212-9.
19) Sneag DB, Shah P, Koff MF, et al. Quantitative ultrashort echo time magnetic resonance imaging evaluation of postoperative menisci : a pilot study. HSS J 2015 ; 11 : 123-9.
20) Ahn JH, Lee YS, Ha HC, et al. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 2009 ; 37 : 1564-9.
21) Ahn JH, Lee SH, Yoo JC, et al. Arthroscopic partial meniscectomy with repair of the peripheral tear for symptomatic discoid lateral meniscus in children : results of minimum 2 years of follow-up. Arthroscopy 2008 ; 24 : 888-98.
22) Rauscher I, Stahl R, Cheng J, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 2008 ; 249 : 591-600.
23) 中川裕介, 関矢一郎, 宗田大. MRI T2/T1rho/T1 (delayed gadolinium-enhanced MRI) mappingによる関節軟骨・半月板の評価. 整形外科 2016 ; 67 : 655-63.
24) Nakagawa Y, Sekiya I, Kondo S, et al. Relationship between MRI T1rho value and histological findings of intact and radially incised menisci in microminipigs. J Magn Reson Imaging 2016 ; 43 : 434-45.
25) Kondo S, Muneta T, Nakagawa Y, et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J Orthop Res 2017 ; 35 : 1274-82.
26) 中川裕介. MRI検査 : T1rhoマッピングにおける半月板変性の評価. 別冊整形外科 2015 ; 34 : 36-41.
27) Nakagawa Y, Muneta T, Kondo S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis Cartilage 2015 ; 23 : 1007-17.
28) 中川裕介, 宗田大, 関矢一郎. 半月変性断裂に対する細胞治療の試み. 臨床整形外科 2016 ; 51 : 247-53.
29) Reichenbach S, Yang M, Eckstein F, et al. Does cartilage volume or thickness distinguish knees with and without mild radiographic osteoarthritis? The Framingham Study. Ann Rheum Dis 2010 ; 69 : 143-9.
30) Eckstein F, Wirth W. Quantitative cartilage imaging in knee osteoarthritis. Arthritis 2011 ; 2011 : 475684.
31) Wenger A, Englund M, Wirth W, et al. Relationship of 3D meniscal morphology and position with knee pain in subjects with knee osteoarthritis : a pilot study. Eur Radiol 2012 ; 22 : 211-20.
32) Emmanuel K, Quinn E, Niu J, et al. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2016 ; 24 : 262-9.
33) Dai H, Huang ZG, Chen ZJ, et al. Diagnostic accuracy of ultrasonography in assessing meniscal injury : meta-analysis of prospective studies. J Orthop Sci 2015 ; 20 : 675-81.
34. Chiba D, Maeda S, Sasaki E, et al. Meniscal extrusion seen on ultrasonography affects the development of radiographic knee osteoarthritis : a 3-year prospective cohort study. Clin Rheumatol 2017 ; 36 : 2557-64.

[6] 前十字靱帯損傷との関係および変形性膝関節症における位置づけと治療方針

P.100 掲載の参考文献
1) Brambilla L, Pulici L, Carimati G, et al. Prevalence of associated lesions in anterior cruciate ligament reconstruction : correlation with surgical timing and with patient age, sex, and body mass index. Am J Sports Med 2015 ; 43 : 2966-73.
2) Tsujii A, Nakamura N, Horibe S. Age-related changes in the knee meniscus. Knee 2017 ; 24 : 1262-70.
3) Ridley TJ, McCarthy MA, Bollier MJ, et al. Age differences in the prevalence of isolated medial and lateral meniscal tears in surgically treated patients. Iowa Orthop J 2017 ; 37 : 91-4.
4) Makinejad MD, Abu Osman NA, Abu Bakar WAW, et al. Preliminary analysis of knee stress in full extension landing. Clinics 2013 ; 68 : 1180-8.
5) Seedhom BB, Hargeaves DJ. Transmission of the load in the knee joint with special reference to the role of the menisci. PART II : experimental results, discussion and conclusions. Engineering in Medicine 1979 ; 8 : 220-8.
6) Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991 ; 19 : 210-5.
7) Kato Y, Oshida M, Aizawa S, et al. Discoid lateral menisci in Japanese cadaver knees. Mod Rheumatol 2004 ; 14 : 154-9.
8) Ryu K, Iriuchishima T, Oshida M, et al. Evaluation of the morphological variations of the meniscus : a cadaver study. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 15-9.
9) Wadhwac V, Omar H, Coyner K, et al. ISAKOS classification of meniscal tears-illustration on 2D and 3D isotropic spin echo MR imaging. Eur J Radiol 2016 ; 85 : 15-24.
10) Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991 ; 19 : 210-6.
11) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
12) Papadopoulos A, Kirkos JM, Kapetanos GA. Histomorphologic study of discoid meniscus. Arthroscopy 2009 ; 25 : 262-8.
13) Ahn JH, Lee YS, Ha HC, et al. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 2009 ; 37 : 1564-9.
14) Magnussen RA, Pedroza AD, Donaldson CT, et al. Time from ACL injury to reconstruction and the prevalence of additional intra-articular pathology : is patient age an important factor? Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 2029-34.
15) Yan F, Xie F, Gong X, et al. Effect of anterior cruciate ligament rupture on secondary damage to menisci and articular cartilage. Knee 2016 ; 23 : 102-5.
16) Kim SH, Lee SH, Kim KI, et al. Diagnostic accuracy of sequential arthroscopic approach for ramp lesions of the posterior horn of the medial meniscus in anterior cruciate ligament-deficient knee. Arthroscopy 2018 ; 34 : 1582-9.
17) Liu X, Feng H, Zhang H, et al. Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 2011 ; 39 : 832-7.
18) Kumar NS, Spencer T, Cote MP, et al. Is edema at the posterior medial tibial plateau indicative of a ramp lesion? An examination of 307 patients with anterior cruciate ligament reconstruction and medial meniscal tears. Orthop J Sports Med 2018 ; 6 : 2325967118780089 doi : 10.1177/2325967118780089.
19) DePhillipo NN, Cinque ME, Chahla J, et al. Incidence and detection of meniscal ramp lesions on magnetic resonance imaging in patients with anterior cruciate ligament reconstruction. Am J Sports Med 2017 ; 45 : 2233-7.
20) Seil1 R, Mouton C, Coquay J, et al. Ramp lesions associated with ACL injuries are more likely to be present in contact injuries and complete ACL tears. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1080-5.
21) Liu X, Zhang H, Feng H, et al. Is it necessary to repair stable ramp lesions of the medial meniscus during anterior cruciate ligament reconstruction? A prospective randomized controlled trial. Am J Sports Med 2017 ; 45 : 1004-11.
22) Shelboune KD, Nitz PA. The O'Donoghue triad revisited. Combined knee injuries involving anterior cruciate and medial collateral ligament tears. Am J Sports Med 1991 ; 19 : 474-7.
23) Ferretti A, Monaco E, Ponzo A, et al. The unhappy triad of the knee re-revisited. Int Orthop. 2018 doi : 10.1007/s00264-018-4181-7.
24) Widener DB, Wilson DJ, Galvin JW, et al. The prevalence of meniscal tears in young athletes undergoing revision anterior cruciate ligament reconstruction. Arthroscopy 2015 ; 31 : 680-3.
25) Sanders TL, Kremers HM, Bryan AJ, et al. Is anterior cruciate ligament reconstruction effective in preventing secondary meniscal tears and osteoarthritis? Am J Sports Med 2016 ; 44 : 1699-707.
26) Akpinar B, Thorhauery E, Irrgang JJ, et al. Alteration of knee kinematics after anatomic anterior cruciate ligament reconstruction is dependent on associated meniscal injury. Am J Sports Med 2018 ; 46 : 1158-65.
27) Sonnery-Cottet B, Saithna A, Blakeney WG, et al. Anterolateral ligament reconstruction protects the repaired medial meniscus : A comparative study of 383 anterior cruciate ligament reconstructions from the SANTI study group with a minimum follow-up of 2 years. Am J Sports Med 2018 ; 46 : 1819-26.
28) Jones MH, Spindler KP. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction : data from the MOON cohort. J Orthop Res 2017 ; 35 : 1366-74.
29) Katakura M, Horie M, Watanabe T, et al. Effect of meniscus repair on pivot-shift during anterior cruciate ligament reconstruction : Objective evaluation using triaxial accelerometer. Knee 2019 ; 26 : 124-31.
30) Yagishita K, Muneta T, Ogiuchi T, et al. Healing potential of meniscal tears without repair in knees with anterior cruciate ligament reconstruction. Am J Sports Med 2004 ; 32 : 1953-61.
31) Thorlund JB, Juhl CB, Roos EM, et al. Arthroscopic surgery for degenerative knee : systematic review and meta-analysis of benefits and harms. BMJ 2015 ; 350 : h2747. doi : 10.1136/bmj.h2747.
32) Karpinski K, Muller-Rath R, Niemeyer P, et al. Subgroups of patients with osteoarthritis and medial meniscus tear or crystal arthropathy benefit from arthroscopic treatment. Knee Surg Sports Traumatol Arthrosc 2019 ; 27 : 782-796.
33) Monk P, Roberts PG, Palmer AJ, et al. The urgent need for evidence in arthroscopic meniscal surgery. A systematic review of the evidence for operative management of meniscal tears. Am J Sports Med 2017 ; 45 : 965-72.
34) Magnussen RA, Mansour AA, Carey JL, et al. Meniscus status at ACL reconstruction is associated with the presence of radiographic signs of osteoarthritis at 5-10 Year follow-up : a systematic review. J Knee Surg 2009 ; 22 : 347-57.
35) Kijowski R, Woods MA, McGuine TA, et al. Arthroscopic partial meniscectomy : MR imaging for prediction of outcome in middle-aged and elderly patients. Radiology 2011 ; 259 : 203-12.
36) Zikria B, Hafezi-Nejad N, Roemer FW, et al. Meniscal surgery : risk of radiographic joint space narrowing progression and subsequent knee replacement--Data from the Osteoarthritis Initiative. Radiology 2017 ; 282 : 807-16.
37) Ahn JH, Jeong HJ, Lee YS, et al. Comparison between conservative treatment and arthroscopic pull-out repair of the medial meniscus root tear and analysis of prognostic factors for the determination of repair indication. Arch Orthop Trauma Surg 2015 ; 135 : 1265-76.
38) Guermazi A, Hayashi D, Jarraya M, et al. Medial posterior meniscal root tears are associated with development or worsening of medial tibiofemoral cartilage damage : the Multicenter Osteoarthritis Study. Radiology 2013 ; 268 : 814-21.
39) Hada S, Ishijima M, Kaneko H, et al. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res Ther 2017 ; 19 : 201 doi : 10.1186/s13075-017-1411-0.
40) Chiba D, Maeda S, Sasaki E, et al. Meniscal extrusion seen on ultrasonography affects the development of radiographic knee osteoarthritis : a 3-year prospective cohort study. Clin Rheumatol 2017 ; 36 : 2557-64.
41) van der Voet JA, Runhaar J, van der Plas P, et al. Baseline meniscal extrusion associated with incident knee after 30 months in overweight and obese women. Osteoarthritis Cartilage 2017 ; 25 : 1299-1303.
42) Achtnich A, Petersen W, Willinger L, et al. Medial meniscus extrusion increases with age and BMI and is depending on different loading conditions. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 2282-8.
43) Goto N, Okazaki K, Akiyama T, et al. Alignment factors affecting the medial meniscus extrusion increases the risk of osteoarthritis development. Knee Surgery, Sports Traumatology, Arthroscopy https://doi.org/10.1007/s00167-018-5286-7
44) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.

[7] 半月板手術の統計情報

P.114 掲載の参考文献
1) Fairbank JC. Knee joint changes after meniscectomy. J Bone Joint Surg Br 1948 ; 30B : 664-70.
2) Garrett WE Jr, Swiontkowski MF, Weinstein JN, et al. American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon : Part-II, certification examination case mix. J Bone Joint Surg Am 2006 ; 88 : 660-7.
3) Lubowitz JH, Poehling GG. Save the meniscus. Arthroscopy 2011 ; 27 : 301-2. doi : 10.1016/j.arthro.2010.12.006.
4) Vidal AF. The save the meniscus society : commentary on an article by Jeffrey J. Nepple, MD, et al. : "meniscal repair outcomes at greater than five years. a systematic literature review and meta-analysis". J Bone Joint Surg Am 2012 ; 94 : e186. doi : 10.2106/JBJS.L.01243.
5) Abrams GD, Frank RM, Gupta AK, et al.Trends in meniscus repair and meniscectomy in the United States, 2005-2011. Am J Sports Med 2013 ; 41 : 2333-9.
6) Montgomery SR, Zhang A, Ngo SS, et al. Cross-sectional analysis of trends in meniscectomy and meniscus repair. Orthopedics 2013 ; 36 : e1007-13.
7) 厚生労働省 老健局・保健局. 医療・介護等の解析基盤に関する有識者会議 第1回医療・介護データ等の解析基盤に関する有識者会議 (2018年5月16日開催) 資料2-2 NDB, 介護DB等の役割と解析基盤について. (https://www.mhlw.go.jp/file/05-Shingikai-12401000-Hokenkyoku-Soumuka/0000206673.pdf, 2019年1月閲覧).
8) 厚生労働省保険局医療介護連携政策課 保険システム高度化推進室. 第1回NDBオープンデータ【解説編】. (http://www.mhlw.go.jp/file/06-Seisakujouhou-12400000-Hokenkyoku/0000141549.pdf, 2019年1月閲覧).
9) 加藤源太. レセプト情報・特定健診等情報データベース (NDB) 利活用の歩み. 生体医工学 2017 ; 55 : 143-50.
10) 厚生労働省. NDBオープンデータ. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177182.html, 2019年1月閲覧).
11) 厚生労働省. 第1回NDBオープンデータ. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000139390.html, 2019年1月閲覧).
12) 厚生労働省. 第2回NDBオープンデータ. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221.html, 2019年1月閲覧).
13) 厚生労働省. 第3回NDBオープンデータ. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000177221_00002.html, 2019年1月閲覧).
14) 厚生労働省. 社会医療診療行為別統計. (https://www.mhlw.go.jp/toukei/list/26-19.html, 2019年1月閲覧).
15) 総務省統計局, 独立行政法人統計センター. 社会医療診療行為別統計 (e-Stat). (https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00450048&tstat=000001029602, 2019年1月閲覧).
16) Katano H, Koga H, Ozeki N, et al. Trends in isolated meniscus repair and meniscectomy in Japan, 2011-2016. J Orthop Sci 2018 ; 23 : 676-81.
17) 厚生労働省. 複数手術に係る費用の特例を定める件. 平成30年厚生労働省告示 第72号. (https://www.mhlw.go.jp/file/06-Seisakujouhou-12400000-Hokenkyoku/0000198309.pdf, 2019年1月閲覧).
18) Kawata M, Sasabuchi Y, Taketomi S, et al. Annual trends in arthroscopic meniscus surgery : analysis of a national database in Japan. PLoS One 2018 ; 13 : e0194854. doi : 10.1371/journal.pone.0194854.
19) 厚生労働省保険局医療介護連携政策課 保険システム高度化推進室. レセプト情報・特定健診等情報 (レセプト情報等) の収集経路. (https://www8.cao.go.jp/kisei-kaikaku/kaigi/meeting/2013/wg3/kenko/141106/item1-2-1.pdf, 2019年1月閲覧).
20) 伊藤伸介. わが国における政府統計のデータシェアリングの現状と課題. 図2. 情報管理 2016 ; 58 : 836-43. (https://www.jstage.jst.go.jp/article/johokanri/58/11/58_836/_html/-char/ja, 2019年1月閲覧).
21) 厚生労働省保険局医療介護連携政策課 保険データ企画室. (https://www.mhlw.go.jp/content/12400000/000346720.pdf, 2019年1月閲覧).
22) 厚生労働省. 平成28年社会医療診療行為別統計の概況 統計の概要. (https://www.mhlw.go.jp/toukei/saikin/hw/sinryo/tyosa16/dl/gaiyo.pdf, 2019年1月閲覧).

[8] 外側円板状半月板とその問題

P.126 掲載の参考文献
1) Ahn JH, Lee SH, Yoo JC, et al. Arthroscopic partial meniscectomy with repair of the peripheral tear for symptomatic discoid lateral meniscus in children : Results of minimum 2 years of follow-up. Arthroscopy 2008 ; 24 : 888-98.
2) Adachi N, Ochi M, Uchio Y, et al. Torn discoid lateral meniscus treated using partial central meniscectomy and suture of the peripheral tear. Arthroscopy 2004 ; 20 : 536-42.
3) Carter CW, Hoellwarth J, Weiss JM. Clinical outcomes as a function of meniscal stability in the discoid meniscus : a preliminary report. J Pediatr Orthop 2012 ; 32 : 9-14.
4) Wasser L, Knorr J, Accadbled F, et al. Arthroscopic treatment of discoid meniscus in children : clinical and MRI results. Orthop Traumatol Surg Res 2011 ; 97 : 297-303.
5) Wong T, Wang CJ. Functional analysis on the treatment of torn discoid lateral meniscus. Knee 2011 ; 18 : 369-72.
6) Yoo WJ, Jang WY, Park MS, et al. Arthroscopic treatment for symptomatic discoid meniscus in children : midterm outcomes and prognostic factors. Arthroscopy 2015 ; 31 : 2327-34.
7) Irani RN, Karasick D, Karasick S. A possible explanation of the pathogenesis of osteochondritis dissecans. J Pediatr Orthop 1984 ; 4 : 358-60.
8) Aichroth PM, Patel DV, Marx CL. Congenital discoid lateral meniscus in children. A follow-up study and evolution of management. J Bone Joint Surg Br 1991 ; 73 : 932-6.
9) Raber DA, Friederich NF, Hefti F. Discoid lateral meniscus in children. Long-term follow-up after total meniscectomy. J Bone Joint Surg Am 1998 ; 80 : 1579-86.
10) Mitsuoka T, Shino K, Hamada M, et al. Osteochondritis dissecans of the lateral femoral condyle of the knee joint. Arthroscopy 1999 ; 15 : 20-6.
11) Takigami J, Hashimoto Y, Tomihara T, et al. Predictive factors for osteochondritis dissecans of the lateral femoral condyle concurrent with a discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 799-805.
12) Washington ER III, Root L, Liener UC. Discoid lateral meniscus in children. Long-term follow-up after excision. J Bone Joint Surg Am 1995 ; 77 : 1357-61.
13) Chedal-Bornu B, Morin V, Saragaglia D. Meniscoplasty for lateral discoid meniscus tears : long-term results of 14 cases. Orthop Traumatol Surg Res 2015 ; 101 : 699-702.
14) Habata T, Uematsu K, Kasanami R, et al. Long-term clinical and radiographic follow-up of total resection for discoid lateral meniscus. Arthroscopy 2006 ; 22 : 1339-43.
15) Kim SJ, Chun YM, Jeong JH, et al. Effects of arthroscopic meniscectomy on the long-term prognosis for the discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2007 ; 15 : 1315-20.
16) Lee CR, Bin SI, Kim JM, et al. Magnetic resonance imaging findings in symptomatic patients after arthroscopic partial meniscectomy for torn discoid lateral meniscus. Arthroscopy 2016 ; 32 : 2366-72.
17) Yamasaki S, Hashimoto Y, Takigami J, et al. Risk factors associated with knee joint degeneration after arthroscopic reshaping for juvenile discoid lateral meniscus. Am J Sports Med 2017 ; 45 : 570-7.
18) Young RB. The external semilunar cartilage as a complete disc. In : Mem Memo Anat 1. Williams and Norgate ; 1889. p.179.
19) Watanabe M, Takeda S, Ikeuchi H. Atlas of arthroscopy. 3rd ed. Tokyo : Igaku-Shoin ; 1979. p.75-130.
20) Kramer DE, Micheli LJ, Meniscal tears and discoid meniscus in children : diagnosis and treatment. J Am Acad Orthop Surg 2009 ; 17 : 698-707.
21) Ikeuchi H. Arthroscopic treatment of the discoid lateral meniscus. Technique and long-term results. Clin Orthop Relat Res 1982 ; 167 : 19-28.
22) Papadopoulos A, Karathanasis A, Kirkos JM, et al. Epidemiologic, clinical and arthroscopic study of the discoid meniscus variant in Greek population. Knee Surg Sport Traumatol Arthrosc 2009 ; 17 : 600-6.
23) Dickhaut SC, DeLee JC. The discoid lateral-meniscus syndrome. J Bone Joint Surg Am 1982 ; 64 : 1068-73.
24) Albertsson M, Gillquist J. Discoid lateral menisci : a report of 29 cases. Arthroscopy 1988 ; 4 : 211-4.
25) Kim SJ, Kim DW, Min BH. Discoid lateral meniscus associated with anomalous insertion of the medial meniscus. Clin Orthop Relat Res 1995 (315) : 234-7.
26) Ryu K, Iriuchishima T, Oshida M, et al. Evaluation of the morphological variations of the meniscus : a cadaver study. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 15-9.
27) Kato Y, Oshida M, Aizawa S, et al. Discoid lateral menisci in Japanese cadaver knees. Mod Rheumatol 2004 ; 14 : 154-9.
28) Ahn JH, Lee SH, Yoo JC, et al. Bilateral discoid lateral meniscus in knees : evaluation of the contralateral knee in patients with symptomatic discoid lateral meniscus. Arthroscopy 2010 ; 26 : 1348-56.
29) Bae JH, Lim HC, Hwang DH, et al. Incidence of bilateral discoid lateral meniscus in an Asian population : an arthroscopic assessment of contralateral knees. Arthroscopy 2012 ; 28 : 936-41.
30) Chung JY, Roh JH, Kim JH, et al. Bilateral occurrence and morphologic analysis of complete discoid lateral meniscus. Yonsei Med J 2015 ; 56 : 753-9.
31) Gardner E, O'Rahilly R. The early development of the knee joint in staged human embryos. J Anat 1968 ; 102 : 289-99.
32) Smillie IS. The congenital discoid meniscus. J Bone Joint Surg Br 1948 ; 30-B : 671-82.
33) Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am 1983 ; 65 : 538-47.
34) Fukazawa I, Hatta T, Uchio Y, et al. Development of the meniscus of the knee joint in human fetuses. Congenit Anom (Kyoto) 2009 ; 49 : 27-32.
35) Tena-Arregui J, Barrio-Asensio C, Viejo-Tirado F, et al. Arthroscopic study of the knee joint in fetuses. Arthroscopy 2003 ; 19 : 862-8.
36) Le Minor JM. Comparative morphology of the lateral meniscus of the knee in primates. J Anat 1990 ; 170 : 161-71.
37) Kaplan EB. Discoid lateral meniscus of the knee joint ; nature, mechanism, and operative treatment. J Bone Joint Surg Am 1957 ; 39 : 77-87.
38) Dashefsky JH. Discoid lateral meniscus in three members of a family. Case repots. J Bone Joint Surg Am 1971 ; 53 : 1208-10.
39) Gebhardt MC, Rosenthal RK. Bilateral lateral discoid meniscus in identical twins. J Bone Joint Surg Am 1979 ; 61 : 1110-1.
40) Kelly BT, Green DW. Discoid lateral meniscus in children. Curr Opin Pediatr 2002 ; 14 : 54-61.
41) Atay OA, Pekmezci M, Doral MN, et al. Discoid meniscus : an ultrastructural study with transmission electron microscopy. Am J Sports Med 2007 ; 35 : 475-8.
42) Papadopoulos A, Kirkos JM, Kapetanos GA. Histomorphologic study of discoid meniscus. Arthroscopy 2009 ; 25 : 262-8.
43) Cui JH, Min BH. Collagenous fibril texture of the discoid lateral meniscus. Arthroscopy 2007 ; 23 : 635-41.
44) Kushare I, Klingele K, Samora W. Discoid meniscus : diagnosis and management. Orthop Clin North Am 2015 ; 46 : 533-40.
45) Araki Y, Ashikaga R, Fujii K, et al. MR imaging of meniscal tears with discoid lateral meniscus. Eur J Radiol 1998 ; 27 : 153-60.
46) Samoto N, Kozuma M, Tokuhisa T, et al. Diagnosis of discoid lateral meniscus of the knee on MR imaging. Magn Reson Imaging 2002 ; 20 : 59-64.
47) Silverman JM, Mink JH, Deutsch AL. Discoid meniscus of the knee : MR imaging appearance. Radiology 1989 ; 173 : 351-4.
48) Ryu KN, Kim IS, Kim EJ, et al. MR imaging of tears of discoid lateral menisci. Am J Roentgenol 1998 ; 171 : 963-7.
49) Hamada M, Shino K, Kawano K, et al. Usefulness of magnetic resonance imaging for detecting intrasubstance tear and/or degeneration of lateral discoid meniscus. Arthroscopy 1994 ; 10 : 645-53.
50) Auge WK II, Kaeding CC. Bilateral discoid medial menisci with extensive intrasubstance cleavage tears : MRI and arthroscopic correlation. Arthroscopy 1994 ; 10 : 313-8.
51) Yoo WJ, Lee K, Moon HJ, et al. Meniscal morphologic changes on magnetic resonance imaging are associated with symptomatic discoid lateral meniscal tear in children. Arthroscopy 2012 ; 28 : 330-6.
52) Bin SI, Kim JC, Kim JM, et al. Correlation between type of discoid lateral menisci and tear pattern. Knee Surg Sports Traumatol Arthrosc 2002 ; 10 : 218-22.
53) Choi SH, Shin KE, Chang MJ, et al. Diagnostic criterion to distinguish between incomplete and complete discoid lateral meniscus on MRI. J Magn Reson Imaging 2013 ; 38 : 417-21.
54) Mason RB, Horne JG. The posteroanterior 45 degrees flexion weight-bearing radiograph of the knee. J Arthroplasty 1995 ; 10 : 790-2.
55) Kim SJ, Moon SH, Shin SJ. Radiographic knee dimensions in discoid lateral meniscus : comparison with normal control. Arthroscopy 2000 ; 16 : 511-6.
56) Jordan MR. Lateral meniscal variants : evaluation and treatment. J Am Acad Orthop Surg 1996 ; 4 : 191-200.
57) Schulte LA. Discoid knee menisci in children. Arch Chir Neerl 1976 ; 28 : 115-12.
58) Ha CW, Lee YS, Park JC. The condylar cutoff sign : quantifying lateral femoral condylar hypoplasia in a complete discoidmeniscus. Clin Orthop Relat Res 2009 ; 467 : 1365-9.
59) Jose J, Buller LT, Rivera S, et al. Wrisberg-variant discoid lateral meniscus : Current concepts, treatment options, and imaging features with emphasis on dynamic ultrasonography. Am J Orthop (Belle Mead NJ) 2015 ; 44 : 135-9.
60) Hayashi LK, Yamaga H, Ida K, et al. Arthroscopic meniscectomy for discoid lateral meniscus in children. J Bone Joint Surg Am 1988 ; 70 : 1495-1500.
61) Fujikawa K, Iseki F, Mikura Y. Partial resection of the discoid lateralmeniscus of the child's knee.J Bone Joint Surg Am 1981 ; 63-B : 391-5.
62) Vandermeer RD, Cunningham FK. Arthroscopic treatment of the discoid lateral meniscus : results of long-term follow-up. Arthroscopy 1989 ; 5 : 101-9.
63) Lee YS, Teo SH, Ahn JH, et al. Systematic review of the long-term surgical outcomes of discoid lateral meniscus. Arthroscopy 2017 ; 33 : 1884-95.
64) Smuin DM, Swenson RD, Dhawan A. Saucerization versus complete resection of a symptomatic discoid lateral meniscus at short- and long-term follow-up : a systematic review. Arthroscopy. 2017 ; 33 : 1733-42.
65) Aglietti P, Bertini FA, Buzzi R, et al. Arthroscopic meniscectomy for discoid lateral meniscus in children and adolescents : 10-year follow-up. Am J Knee Surg 1999 ; 12 : 83-7.
66) Kim SJ, Yoo JH, Kim HK. Arthroscopic one-piece excision technique for the treatment of symptomatic lateral discoid meniscus. Arthroscopy 1996 ; 12 : 752-5.
67) Matsuo T, Kinugasa K, Sakata K, et al. Post-operative deformation and extrusion of the discoid lateral meniscus following a partial meniscectomy with repair. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 390-6.
68) Atay OA, Doral MN, Leblebicioglu G, et al. Management of discoid lateral meniscus tears : observations in 34 knees. Arthroscopy 2003 ; 19 : 346-52.
69) Bin SI, Jeong SI, Kim JM, et al. Arthroscopic partial meniscectomy for horizontal tear of discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2002 ; 10 : 20-4.
70) Lee SW, Chun YM, Choi CH, et al. Single-leaf partial meniscectomy in extensive horizontal tears of the discoid lateral meniscus : Does decreased peripheral meniscal thickness affect outcomes? (Mean four-year follow-up). Knee 2016 ; 23 : 472-7.
71) Haemer JM, Wang MJ, Carter DR, et al. Benefit of single-leaf resection for horizontal meniscus tear. Clin Orthop Relat Res 2007 ; 457 : 194-202.
72) Pellacci F, Montanari G, Prosperi P, et al. Lateral discoid meniscus : treatment and results. Arthroscopy 1992 ; 8 : 526-30.
73) Hagino T, Ochiai S, Senga S et al. Arthroscopic treatment of symptomatic discoid meniscus in children. Arch Orthop Trauma Surg 2017 ; 137 : 89-94.
74) Good CR, Green DW, Griffith MH, et al. Arthroscopic treatment of symptomatic discoid meniscus in children : classification, technique, and results. Arthroscopy 2007 ; 23 : 157-63.
75) Klingele KE, Kocher MS, Hresko MT, et al. Discoid lateral meniscus : prevalence of peripheral rim instability. J Pediatr Orthop 2004 ; 24 : 79-82.
76) Bellier G, Dupont JY, Larrain M, et al. Lateral discoid menisci in children. Arthroscopy 1989 ; 5 : 52-6.
77) Kim JH, Bin SI, Lee BS, et al. Does discoid lateral meniscus have inborn peripheral rim instability? Comparison between intact discoid lateral meniscus and normal lateral meniscus. Arch Orthop Trauma Surg 2018 ; 138 : 1725-30.
78) Ahn JH, Lee YS, Ha HC, et al. A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 2009 ; 37 : 1564-9.
79) Koga H, Muneta T, Watanabe T, et al. Two-Year Outcomes After Arthroscopic Lateral Meniscus Centralization. Arthroscopy 2016 ; 32 : 2000-8.
80) Sugawara O, Miyatsu M, Yamashita I, et al. Problems with repeated arthroscopic surgery in the discoid meniscus. Arthroscopy 1991 ; 7 : 68-71.
81) Okazaki K, Miura H, Matsuda S, et al. Arthroscopic resection of the discoid lateral meniscus : long-term follow-up for 16 years. Arthroscopy 2006 ; 22 : 967-71.
82) Ahn JY, Kim TH, Jung BS, et al. Clinical results and prognostic factors of arthroscopic surgeries for discoid lateral menisci tear : analysis of 179 cases with minimum 2 years follow-up. Knee Surg Relat Res 2012 ; 24 : 108-12.
83) Ogut T, Kesmezacar H, Akgun I, et al. Arthroscopic meniscectomy for discoid lateral meniscus in children and adolescents : 4.5 year follow-up. J Pediatr Orthop B 2003 ; 12 : 390-7.
84) Asik M, Sen C, Taser OF, et al. Discoid lateral meniscus : diagnosis and results of arthroscopic treatment. Knee Surg Sports Traumatol Arthrosc 2003 ; 11 : 99-104.
85) Kose O, Celiktas M, Egerci OF, et al. Prognostic factors affecting the outcome of arthroscopic saucerization in discoid lateral meniscus : a retrospective analysis of 48 cases. Musculoskelet Surg 2015 ; 99 : 165-70.
86) Ding J, Zhao J, He Y, et al. Risk factors for articular cartilage lesions in symptomatic discoid lateral meniscus. Arthroscopy 2009 ; 25 : 1423-6.
87) Lu Y, Li Q, Hao J. Torn discoid lateral meniscus treated with arthroscopic meniscectomy : observations in 62 knees. Chin Med J (Engl) 2007 ; 120 : 211-5.
88) Lee DH, Kim TH, Kim JM, et al. Results of subtotal/total or partial meniscectomy for discoid lateral meniscus in children. Arthroscopy 2009 ; 25 : 496-503.
89) Ahn JH, Kang DM, Choi KJ. Risk factors for radiographic progression of osteoarthritis after partial meniscectomy of discoid lateral meniscus tear. Orthop Traumatol Surg Res 2017 ; 103 : 1183-8.
90) Fu D, Guo L, Yang L, et al. Discoid lateral meniscus tears and concomitant articular cartilage lesions in the knee. Arthroscopy 2014 ; 30 : 311-8.
92) Hughston JC, Hergenroeder PT, Courtenay BG. Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg Am 1984 ; 66 : 1340-8.
93) Cahill BR, Phillips MR, Navarro R. The results of conservative management of juvenile osteochondritis dissecans using joint scintigraphy. A prospective study. Am J Sports Med 1989 ; 17 : 601-6.
94) Anderson AF, Lipscomb AB, Coulam C. Antegrade curettement, bone grafting and pinning of osteochondritis dissecans in the skeletally mature knee. Am J Sports Med 1990 ; 18 : 254-61.
95) Ficat P, Arlet J, Mazieres B. Osteochondritis dissecans and osteonecrosis of the lower end of the femur. Value of bone marrow functional exploration. Sem Hosp Paris 1975 ; 51 : 1907-16.
96) Laor T, Zbojniewicz AM, Eismann EA, et al. Juvenile osteochondritis dissecans : is it a growth disturbance of the secondary physis of the epiphysis? AJR 2012 ; 199 : 1121-8.
97) Mubarak SJ, Carroll NC. Familial osteochondritis dissecans of the knee. Clin Orthop Relat Res 1979 ; 140 : 131-6.
98) Aichroth PM, Patel DV, Marx CL. Congenital discoid lateral meniscus in children. A follow-up study and evolution of management. J Bone Joint Surg Br 1991 ; 73 : 932-6.
99) Smillie IS. Treatment of osteochondritis dissecans. J Bone Joint Surg Br 1957 ; 39 : 248-60.
100) Lim HC, Bae JH. Meniscoplasty for stable osteochondritis dissecans of the lateral femoral condyle combined with a discoid lateral meniscus : a case report. J Med Case Rep 2011 ; 5 : 434.
101) Camathias C, Hirschmann MT, Vavken P, et al. Meniscal suturing versus screw fixation for treatment of osteochondritis dissecans : clinical and magnetic resonance imaging results. Arthroscopy 2014 ; 30 : 1269-79.
102) Deie M, Ochi M, Sumen Y, et al. Relationship between osteochondritis dissecans of the lateral femoral condyle and lateral menisci types. J Pediatr Orthop 2006 ; 26 : 79-82.
103) Mizuta H, Nakamura E, Otsuka Y, et al. Osteochondritis dissecans of the lateral femoral condyle following total resection of the discoid lateral meniscus. Arthroscopy 2001 ; 17 : 608-12.
104) Hashimoto Y, Yoshida G, Tomihara T, et al. Bilateral osteochondritis dissecans of the lateral femoral condyle following bilateral total removal of lateral discoid meniscus : a case report. Arch Orthop Trauma Surg 2008 ; 128 : 1265-8.
105) Ishikawa M, Adachi N, Nakamae A, et al. Progression of stable juvenile osteochondritis dissecans after 10 years of meniscectomy of the discoid lateral meniscus. J Pediatr Orthop B 2017 ; 26 : 487-90.
106) Kamei G, Adachi N, Deie M, et al. Characteristic shape of the lateral femoral condyle in patients with osteochondritis dissecans accompanied by a discoid lateral meniscus. J Orthop Sci 2012 ; 17 : 124-8.
107) Nakayama H, Iseki T, Kambara S, et al. Analysis of risk factors for poor prognosis in conservatively managed juvenile osteochondritis dissecans of the lateral femoral condyle. Knee 2016 ; 23 : 950-4.
108) Matsumoto H, Suda Y, Otani T, et al. Meniscoplasty for osteochondritis dissecans of bilateral lateral femoral condyle combined with discoid meniscus : case report. J Trauma 2000 ; 49 : 964-6.

[9] 半月板切除とその問題

P.136 掲載の参考文献
1) Makris EA, Hadidi P, Athanasiou KA. The knee meniscus : structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011 ; 32 : 7411-31.
2) Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med 1982 ; 10 : 90-5.
3) Mariani PP, Garofalo R, Margheritini F. Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc 2008 ; 16 : 574-80.
4) Son IJ, Kim MK, Kim JY, et al. Osteonecrosis of the knee after arthroscopic partial meniscectomy. Knee Surg Relat Res 2013 ; 25 : 150-4.
5) Steinmetz S, Bonnomet F, Rahme M et al. Rapid chondrolysis of the medial knee compartment after arthroscopic meniscal resection : a case report. J Med Case Rep 2016 ; 10 : 81. doi : 10.1186/s13256-016-0841-7.
6) Englund M. Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 2004 ; 50 : 2811-9.
7) Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br 1948 ; 30B : 664-70.
8) Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl) 1998 ; 197 : 317-24.
9) Petty CA, Lubowitz JH. Does arthroscopic partial meniscectomy result in knee osteoarthritis? A systematic review with a minimum of 8 years' follow-up. Arthroscopy 2011 ; 27 : 419-24.
10) Hede A, Larsen E, Sandberg H. Partial versus total meniscectomy. A prospective, randomised study with long-term follow-up. J Bone Joint Surg Br 1992 ; 74 : 118-21.
11) Ahn JH, Kim KI, Wang JH. Long-term results of arthroscopic reshaping for symptomatic discoid lateral meniscus in children. Arthroscopy 2015 ; 31 : 867-73.
12) Kim SJ, Chun YM, Jeong JH. Effects of arthroscopic meniscectomy on the long-term prognosis for the discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2007 ; 15 : 1315-20.
13) Lee DH, Kim TH, Kim JM, et al. Results of subtotal/total or partial meniscectomy for discoid lateral meniscus in children. Arthroscopy 2009 ; 25 : 496-503.
14) Englund M, Guermazi A, Gale D. et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008 ; 359 : 1108-15.
15) 小田邉浩二, 浅原弘嗣, Martin Lotz. 変性半月板の病理. Bone Joint Nerve 2014 ; 4 : 7-16.
16) Yim JH, Seon JK, Song EK, et al. A comparative study of meniscectomy and nonoperative treatment for degenerative horizontal tears of the medial meniscus. Am J Sports Med 2013 ; 41 : 1565-70.
17) Katz JN, Losina E. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med 2013 ; 368 : 1675-84.
18) Sihvonen R, Paavola M, Malmivaara A. et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med 2013 ; 369 : 2515-24.
19) Gauffin H, Tagesson S, Meunier A. et al. Knee arthroscopic surgery is beneficial to middle-aged patients with meniscal symptoms : a prospective, randomised, single-blinded study. Osteoarthr Cartilage 2014 ; 22 : 1808-16.
20) Kuraishi J, Akizuki S, Takizawa T, et al. Arthroscopic lateral meniscectomy in knees with lateral compartment osteoarthritis : a case series study. Arthroscopy 2006 ; 22 : 878-83.
21) 堀内博志, 秋月章, 瀧澤勉 ほか. 症状のある変性外側半月板に対する治療 -半月板切除術-. Bone Joint Nerve 2014 ; 4 : 109-14.
22) Chatain F, Adeleine P, Chambat P, et al. A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees : 10-year minimum follow-up. Arthroscopy 2003 ; 19 : 842-9.
23) Pena E, Calvo B, Martinez MA, et al. Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 2006 ; 24 : 1001-10.
24) Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy : a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy 2011 ; 27 : 1275-88.
25) Baratz ME, Fu FH, Mengato R. Meniscal tears : the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 1986 ; 14 : 270-5.
26) Magnussen RA, Mansour AA, Carey JL, et al. Meniscus status at anterior cruciate ligament reconstruction associated with radiographic signs of osteoarthritis at 5-10 year follow-up : a systematic review. J Knee Surg 2009 ; 22 : 347-57.
27) Xu C, Zhao J. A meta-analysis comparing meniscal repair with meniscectomy in the treatment of meniscal tears : the more meniscus, the better outcome? Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 164-70.
28) Stein T, Mehling AP, Welsch F, et al. Long-term outcome after arthroscopic meniscal repair versus arthroscopic partial meniscectomy for traumatic meniscal tears. Am J Sports Med 2010 ; 38 : 1542-48.
29) Lutz C, Dalmay F, Ehkirch FP, et al. Meniscectomy versus meniscal repair : 10 years radiological and clinical results in vertical lesions in stable knee. Orthop Traumatol Surg Res 2015 ; 101 : S327-31.
30) 田中哲平 ほか. 半月単独損傷における半月縫合術と半月切除術の試合復帰までの期間の検討. JOSKAS 2018 ; 43 : 663-8.
31) Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 1982 ; 64 : 883-8.
32) Papageorgiou CD, Gil JE, Kanamori A, et al. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 2001 ; 29 : 226-31.
33) Allen CR, Wong EK, Livesay GA, et al. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 2000 ; 18 : 109-15.
34) Oiestad BE, Engebretsen L, Storheim K, et al. Knee osteoarthritis after anterior cruciate ligament injury : a systematic review. Am J Sports Med 2009 ; 37 : 1434-43.
35) Culvenor AG, Collins NJ, Guermazi A, et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction : a magnetic resonance imaging evaluation. Arthritis Rheumatol 2015 ; 67 : 946-55.
36) Ruano JS, Sitler MR, Driban JB. Prevalence of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction, with or without meniscectomy : an evidence-based practice article. J Athl Train 2017 ; 52 : 606-9.
37) Wang X, Wang Y, Bennell KL, et al. Cartilage morphology at 2-3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 426-36.
38) 小田邉浩二, 片倉麻衣, 中川裕介 ほか. 半月板損傷の合併はACL再建術後の関節裂隙狭小化に影響する-膝関節診断支援システム (KOACAD) を用いた解析-. 日整会誌 2016 ; 90 : S1101.
39) 星野傑, 古賀英之, 中川裕介 ほか. 二重束前十字靱帯再建術における半月板損傷の有無・処置法の違いが術後2年の自覚的・他覚的評価に与える影響-TMDU MAKS study-. 日整会誌 2018 ; 92 : S1208.
40) 猪野又慶, 大原敏之, 荻内隆司 ほか. 一重束前十字靱帯再建術における半月板損傷の有無・処置法の違いが術後2年成績に与える影響-TMDU MAKS studyにおける検討-. 日整会誌 2018 ; 92 : S1200.
41) Aglietti P, Zaccherotti G, De Biase P, et al. A comparison between medial meniscus repair, partial meniscectomy, and normal meniscus in anterior cruciate ligament reconstructed knees. Clin Orthop Relat Res 1994 ; 307 : 165-73.
42) Shelbourne KD, Carr DR. Meniscal repair compared with meniscectomy for bucket-handle medial meniscal tears in anterior cruciate ligament-reconstructed knees. Am J Sports Med 2003 ; 31 : 718-23.

[10] 半月板温存とその残された問題

P.143 掲載の参考文献
1) Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy : a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy 2011 ; 27 : 1275-88.
2) Bogunovic L, Kruse LM, Haas AK, et al. Outcome of all-inside second generation meniscal repair. Minimum five-year follow-up. J Bone Joint Surg Am 2014 ; 96 : 1303-7.
3) Tengrootenhuysen M, Meermans G, Pittoors K, et al. Long-term outcome after meniscal repair. Knee Surg Sports Traumatol Arthrosc 2011 ; 19 : 236-41.
4) Atoun E, Debbi R, Lubovsky O, et al. Arthroscopic trans-portal deep medial collateral ligament pie-crusting release. Arthro Tech 2013 ; 2 : e41-3.
5) Espejo-Reina A, Serrano-Fernandez JM, Martin-Castilla B, et al. Outcomes after repair of chronic bucket-handle tears of medial meniscus. Arthroscopy 2014 ; 30 : 492-6.
6) Hofbauer M, Thorhauer ED, Abebe E, et al. Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med 2014 ; 42 : 2715-21.
7) Li G, Li JS, Torriani M, et al. Short-term contact kinematic changes and longer-term biochemical changes in the cartilage after acl reconstruction : a pilot study. Ann Biomed Eng 2018 ; 46 : 1797-805.
8) Zimmerer A, Sobau C, Nietschke R, et al. Long-term outcome after all inside meniscal repair using the FasT-Fix system. J Orthop 2018 ; 15 : 602-5.
9) Shieh AK, Edmonds EW, Pennock AT. Revision meniscal surgery in children and adolescents : risk factors and mechanisms for failure and subsequent management. Am J Sports Med 2016 ; 44 : 838-43.
10) Frizziero A, Ferrari R, Giannotti E, et al. The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures. Muscles Ligaments Tendons J 2012 ; 2 : 295-301.
11) Hada S, Ishijima M, Kaneko H, et al. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res Ther 2017 ; 19 : doi : 10.1186/s13075-017-1411-0.
12) Ahn JH, Jeong HJ, Lee YS, et al. Comparison between conservative treatment and arthroscopic pull-out repair of the medial meniscus root tear and analysis of prognostic factors for the determination of repair indication. Arch Orthop Trauma Surg 2015 ; 135 : 1265-76.
13) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
14) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
15) Kim JG, MD, Han SW, Lee DH. Diagnosis and treatment of discoid meniscus. Knee Surg Relat Res 2016 ; 28 : 255-62.
16) Smuin DM, Swenson RD, Dhawan A. Saucerization versus complete resection of a symptomatic discoid lateral meniscus at short- and long-term follow-up : a systematic review. Arthroscopy 2017 ; 33 : 1733-42.
17) Shieh A, Bastromy T, Roocrofty J, et al. Meniscus tear patterns in relation to skeletal immaturity : children versus adolescents. Am J Sports Med 2013 ; 41 : 2779-83.

[11] 私たちの半月板機能温存の取り組み・手術法のすべて

P.153 掲載の参考文献
1) Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005 ; 64 : 556-63.
2) Lee DH, Lee BS, Kim JM, et al. Predictors of degenerative medial meniscus extrusion : radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011 ; 19 : 222-9.
3) Anderson L, Watts M, Shapter O, et al. Repair of radial tears and posterior horn detachments of the lateral meniscus : minimum 2-year follow-up. Arthroscopy 2010 ; 26 : 1625-32.
4) Kijowski R, Woods MA, McGuine TA, et al. Arthroscopic partial meniscectomy : MR imaging for prediction of outcome in middle-aged and elderly patients. Radiology 2011 ; 259 : 203-12.
5) Choi NH. Radial displacement of lateral meniscus after partial meniscectomy. Arthroscopy 2006 ; 22 : 575 e1-4.
6) Ahn JH, Lee YS, Yoo JC, et al. Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. Arthroscopy 2010 ; 26 : 67-75.
7) Nakata K, Shino K, Kanamoto T, et al. New technique of arthroscopic meniscus repair in radial tears. In : Doral M. (eds) Sports Injuries. Berlin : Springer ; 2011. p305-12.
8) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
9) Ahn JH, Lee SH, Yoo JC, et al. Arthroscopic partial meniscectomy with repair of the peripheral tear for symptomatic discoid lateral meniscus in children : results of minimum 2 years of follow-up. Arthroscopy 2008 ; 24 : 888-98.
10) Atay OA, Pekmezci M, Doral MN, et al. Discoid meniscus : an ultrastructural study with transmission electron microscopy. Am J Sports Med 2007 ; 35 : 475-8.
11) Koh YG, Moon HK, Kim YC, et al. Comparison of medial and lateral meniscal transplantation with regard to extrusion of the allograft, and its correlation with clinical outcome. J Bone Joint Surg Br 2012 ; 94 : 190-3.
12) An JS, Muneta T, Sekiya I, et al. Osteochondral lesion of lateral tibial plateau with extrusion of lateral meniscus treated with retrograde osteochondral autograft transplantation and arthroscopic centralisation. Asia Pac J Sports Med Arthrosc Rehabil Technol 2017 ; 8 : 18-23.
13) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
14) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
15) Nakagawa Y, Muneta T, Watanabe T, et al. Arthroscopic centralization achieved good clinical improvements and radiographic outcomes in a rugby player with osteoarthritis after subtotal lateral meniscectomy : a case report. J Orthop Sci 2017 ; doi : 10.1016/j.jos.2017.09.011.
P.163 掲載の参考文献
1) Beaufils P, Pujol N. Management of traumatic meniscal tear and degenerative meniscal lesions. Save the meniscus. Orthop Traumatol Surg Res 2017 ; 103 : S237-44.
2) Claes S, Hermie L, Verdonk R, et al. Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 1967-76.
3) Alford JW, Lewis P, Kang RW, et al. Rapid progression of chondral disease in the lateral compartment of the knee following meniscectomy. Arthroscopy 2005 ; 21 : 1505-9.
P.171 掲載の参考文献
1) Bollen SR. Posteromedial meniscocapsular injury associated with rupture of the anterior cruciate ligament : a previously unrecognised association. J Bone Joint Surg Br 2010 ; 92 : 222-3.
2) Stephen JM, Halewood C, Kittl C, et al. Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 2016 ; 44 : 400-8.
3) Patterson DC, Cirino CM, Gladstone JN. No safe zone : The anatomy of the saphenous nerve and its posteromedial branches. Knee 2019 ; 26 : 660-5.
P.186 掲載の参考文献
1) Hussain ZB, Chahla J, Mandelbaum BR, et al. The role of meniscal tears in spontaneous osteonecrosis of the knee : a systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med 2017 : doi : 10.1177/0363546517743734.
2) Kwak YH, Lee S, Lee MC, et al. Large meniscus extrusion ratio is a poor prognostic factor of conservative treatment for medial meniscus posterior root tear. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 781-6.
3) Chung KS, Ha JK, Ra HJ, et al. Pullout fixation of posterior medial meniscus root tears : correlation between meniscus extrusion and midterm clinical results. Am J Sports Med 2017 ; 45 : 42-9.
4) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
5) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
6) Koga H, Watanabe T, Horie M, et al. Augmentation of the pullout repair of a medial meniscus posterior root tear by arthroscopic centralization. Arthrosc Tech 2017 ; 6 : e1335-9.
7) LaPrade CM, James EW, Cram TR, et al. Meniscal root tears : a classification system based on tear morphology. Am J Sports Med 2015 ; 43 : 363-9.
P.195 掲載の参考文献
1) Minami T, Muneta T, Sekiya I, et al. Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1174-81.
2) Forkel P, Herbort M, Sprenker F, et al. The biomechanical effect of a lateral meniscus posterior root tear with and without damage to the meniscofemoral ligament : efficacy of different repair techniques. Arthroscopy 2014 ; 30 : 833-40.
3) Shybut TB, Vega CE, Haddad J, et al. Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 2015 ; 43 : 905-11.
4) Katakura M, Horie M, Watanabe T, et al. Effect of meniscus repair on pivot-shift during anterior cruciate ligament reconstruction : objective evaluation using triaxial accelerometer. Knee. 2019 ; 26 : 124-31.
5) Forkel P, Reuter S, Sprenker F, et al. Different patterns of lateral meniscus root tears in ACL injuries : application of a differentiated classification system. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 112-8.
P.202 掲載の参考文献
1) Pauli C, Grogan SP, Patil S, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 2011 ; 19 : 1132-41.
2) Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med 2008 ; 359 : 1108-15.
3) Sihvonen R, Englund M, Turkiewicz A, et al. Mechanical symptoms as an indication for knee arthroscopy in patients with degenerative meniscus tear : a prospective cohort study. Osteoarthritis Cartilage 2016 ; 24 : 1367-75.
4) Zhang AL, Miller SL, Coughlin DG, et al. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy. Knee 2015 ; 22 : 400-4.
5) Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy : a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy 2011 ; 27 : 1275-88.
P.216 掲載の参考文献
1) Niinimaki TT, Eskelinen A, Mann BS, et al. Survivorship of high tibial osteotomy in the treatment of osteoarthritis of the knee : finnish registry-based study of 3195 knees. J Bone Joint Surg Br 2012 ; 94 : 1517-21.
2) Fujisawa Y, Masuhara K, Shiomi S. The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop clin North Am 1979 ; 10 : 585-608.
3) Ziegler R, Goebel L, Cucchiarini M, et al. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II : standard and overcorrection do not cause articular cartilage degeneration. Knee Surg Sports Traumatol Arthrosc 2014 ; 22 : 1666-77.
4) Madry H, Ziegler R, Orth P, et al. Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I : Analysis of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 39-48.
5) Prakash J, Song EK, Lim HA, et al. High tibial osteotomy accelerates lateral compartment osteoarthritis in discoid meniscus patients. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1845-50.
6) Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 1992 ; 274 : 248-64.
7) Nakayama H, Schroter S, Yamamoto C, et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1873-8.
8) Akamatsu Y, Kumagai K, Kobayashi H, et al. Effect of Increased Coronal Inclination of the Tibial Plateau After Opening-Wedge High Tibial Osteotomy. Arthroscopy 2018 ; 34 : 2158-69.
9) Goshima K, Sawaguchi T, Shigemoto K, et al. Large opening gaps, unstable hinge fractures, and osteotomy line below the safe zone cause delayed bone healing after open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2019 ; 27 : 1291-8.
10) Otakara E, Nakagawa S, Arai Y, et al. Large deformity correction in medial open-wedge high tibial osteotomy may cause degeneration of patellofemoral cartilage : A retrospective study. Medicine 2019 ; 98 : e14299.
11) Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005 ; 64 : 556-63.
12) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
13) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
14) Koga H, Watanabe T, Horie M, et al. Augmentation of the Pullout Repair of a Medial Meniscus Posterior Root Tear by Arthroscopic Centralization. Arthrosc Tech 2017 ; 6 : e1335-9.
15) Ozeki N, Muneta T, Kawabata K, et al. Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 2017 ; 22 : 542-8.
P.229 掲載の参考文献
1) Kijowski R, Woods MA, McGuine TA, et al. Arthroscopic partial meniscectomy : MR imaging for prediction of outcome in middle-aged and elderly patients. Radiology 2011 ; 259 : 203-12.
2) Nasu H, Nimura A, Sugiura S, et al. An anatomic study on the attachment of the joint capsule to the tibia in the lateral side of the knee. Surg Radiol Anat 2018 ; 40 : 499-506.
3) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
4) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
5) Nakagawa Y, Muneta T, Watanabe T, et al. Arthroscopic centralization achieved good clinical improvements and radiographic outcomes in a rugby player with osteoarthritis after subtotal lateral meniscectomy : a case report. J Orthop Sci 2017 ; doi : 10.1016/j.jos.2017.09.011.

[12] 半月板温存術の短期成績と課題

P.239 掲載の参考文献
1) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
2) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.
3) Atay OA, Pekmezci M, Doral MN, et al. Discoid meniscus : an ultrastructural study with transmission electron microscopy. Am J Sports Med 2007 ; 35 : 475-8.
4) Koga H, Watanabe T, Horie M, et al. Augmentation of the pullout repair of a medial meniscus posterior root tear by arthroscopic centralization. Arthrosc Tech 2017 ; 6 : e1335-9.
6) Akizuki S, Yasukawa Y, Takizawa T. Does arthroscopic abrasion arthroplasty promote cartilage regeneration in osteoarthritic knees with eburnation? A prospective study of high tibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone. Arthroscopy 1997 ; 13 : 9-17.
7) Jung WH, Takeuchi R, Chun CW, et al. Comparison of results of medial opening-wedge high tibial osteotomy with and without subchondral drilling. Arthroscopy 2015 ; 31 : 673-9.
8) Minzlaff P, Feucht MJ, Saier T, et al. Osteochondral autologous transfer combined with valgus high tibial osteotomy : long-term results and survivorship analysis. Am J Sports Med 2013 ; 41 : 2325-32.
9) Bauer S, Khan RJ, Ebert JR, et al. Knee joint preservation with combined neutralising high tibial osteotomy (HTO) and Matrix-induced Autologous Chondrocyte Implantation (MACI) in younger patients with medial knee osteoarthritis : a case series with prospective clinical and MRI follow-up over 5 years. Knee 2012 ; 19 : 431-9.
10) Saw KY, Anz A, Jee CS, et al. High tibial osteotomy in combination with chondrogenesis after stem cell therapy : a histologic report of 8 cases. Arthroscopy 2015 ; 31 : 1909-20.
11) Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy : a prospective, randomized controlled clinical trial with 2 years' follow-up. Arthroscopy 2013 ; 29 : 2020-8.
12) Koh YG, Kwon OR, Kim YS, et al. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment : a prospective study. Arthroscopy 2014 ; 30 : 1453-60.
13) Harris JD, McNeilan R, Siston RA, et al. Survival and clinical outcome of isolated high tibial osteotomy and combined biological knee reconstruction. Knee 2013 ; 20 : 154-61.
14) Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis 2005 ; 64 : 556-63.
15) Ozeki N, Muneta T, Kawabata K, et al. Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 2017 ; 22 : 542-8.
16) Lee DH, Park SC, Park HJ, et al. Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2016 ; 24 : 3704-12.

[13] 半月板の再生医療と基礎研究

P.252 掲載の参考文献
1) Nakagawa Y, Sekiya I, Kondo S, et al. Relationship between MRI T1 rho value and histological findings of intact and radially incised menisci in microminipigs. J Magn Reson Imaging 2016 ; 43 : 434-45.
2) Verdonk PC, Forsyth RG, Wang J, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage 2005 ; 13 : 548-60.
3) Johnson LL, Feagin JA. Autogenous tendon graft substitution for absent knee joint meniscus : a pilot study. Arthroscopy 2000 ; 16 : 191-6.
4) Ozeki N, Muneta T, Koga H, et al. Transplantation of Achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheum 2013 ; 65 : 2876-86.
5) Verdonk P, Beaufils P, Bellemans J, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold : two-year safety and clinical outcomes. Am J Sports Med 2012 ; 40 : 844-53.
6) Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants : 5- to 6-year feasibility study results. Arthroscopy 2005 ; 21 : 515-25.
7) Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, et al. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy : a minimum 10-year follow-up study. Am J Sports Med 2011 ; 39 : 977-85.
8) Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution : animal study in sheep model--results at 12 months. Tissue Eng Part A 2012 ; 18 : 1573-82.
9) Gunja NJ, Athanasiou KA. Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res Ther 2007 ; 9 : R93.
10) Nakagawa Y, Muneta T, Otabe K, et al. Cartilage derived from bone marrow mesenchymal stem cells expresses lubricin in vitro and in vivo. PLoS One 2016 ; 11 : e0148777.
11) Ruiz-Iban MA, Diaz-Heredia J, Garcia-Gomez I, et al. The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone : an experimental study in rabbits. Arthroscopy 2011 ; 27 : 1688-96.
12) Nakagawa Y, Muneta T, Kondo S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis Cartilage 2015 ; 23 : 1007-17.
13) Izuta Y, Ochi M, Adachi N, et al. Meniscal repair using bone marrow-derived mesenchymal stem cells : experimental study using green fluorescent protein transgenic rats. Knee 2005 ; 12 : 217-23.
14) Vangsness CT Jr., Farr J 2nd, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy : a randomized, double-blind, controlled study. J Bone Joint Surg Am 2014 ; 96 : 90-8.
15) Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med 2004 ; 32 : 915-20.
16) Pangborn CA, Athanasiou KA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 2005 ; 11 : 1141-8.
17) Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 1998 ; 346 : 26-37.
18) Fox DB, Warnock JJ, Stoker AM, et al. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci 2010 ; 88 : 326-32.
19) Spindler KP, Mayes CE, Miller RR, et al. Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res 1995 ; 13 : 201-7.
20) Furumatsu T, Kanazawa T, Miyake Y, et al. Mechanical stretch increases Smad3-dependent CCN2 expression in inner meniscus cells. J Orthop Res 2012 ; 30 : 1738-45.
21) Lee CH, Rodeo SA, Fortier LA, et al. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med 2014 ; 6 : 266ra171.
22) Kawamura S, Lotito K, Rodeo SA. Biomechanics and healing response of the meniscus. Oper Tech Sports Med 2003 ; 11 : 68-76.
23) Hashimoto J, Kurosaka M, Yoshiya S, et al. Meniscal repair using fibrin sealant and endothelial cell growth factor. An experimental study in dogs. Am J Sports Med 1992 ; 20 : 537-41.
24) Port J, Jackson DW, Lee TQ, et al. Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med 1996 ; 24 : 547-55.
25) Ra HJ, Ha JK, Jang SH, et al. Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg Sports Traumatol Arthrosc 2013 ; 21 : 2126-30.
26) Chahla J, Kennedy NI, Geeslin AG, et al. Meniscal repair with fibrin clot augmentation. Arthrosc Tech 2017 ; 6 : e2065-9.
27) Ishida K, Kuroda R, Miwa M, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 2007 ; 13 : 1103-12.
28) Griffin JW, Hadeed MM, Werner BC, et al. Platelet-rich plasma in meniscal repair : does augmentation improve surgical outcomes? Clin Orthop Relat Res 2015 ; 473 : 1665-72.
29) Kaminski R, Kulinski K, Kozar-Kaminska K, et al. A prospective, randomized, double-blind, parallel-group, placebo-controlled study evaluating meniscal healing, clinical outcomes, and safety in patients undergoing meniscal repair of unstable, complete vertical meniscal tears (bucket handle) augmented with platelet-rich plasma. Biomed Res Int 2018 ; 2018 : 9315815. doi : 10.1155/2018/9315815.
30) Chahla J, Dean CS, Moatshe G, et al. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee : a systematic review of outcomes. Orthop J Sports Med 2016 ; 4 : 2325967115625481. doi : 10.1177/2325967115625481.
31) Zhong W, Sumita Y, Ohba S, et al. In vivo comparison of the bone regeneration capability of human bone marrow concentrates vs. platelet-rich plasma. PLoS One 2012 ; 7 : e40833.
32) Duygulu F, Demirel M, Atalan G, et al. Effects of intra-articular administration of autologous bone marrow aspirate on healing of full-thickness meniscal tear : an experimental study on sheep. Acta Orthop Traumatol Turc 2012 ; 46 : 61-7.

[14] 半月板修復と滑膜幹細胞を組み合わせた関節機能改善法

P.277 掲載の参考文献
1) Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 ; 8 : 315-7.
2) Sekiya I, Vuoristo JT, Larson BL, et al. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A 2002 ; 99 : 4397-402.
3) Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues : Superiority of synovium as a cell source. Arthritis Rheum 2005 ; 52 : 2521-9.
4) Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007 ; 327 : 449-62.
5) Koga H, Muneta T, Nagase T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis : suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008 ; 333 : 207-15.
6) Nimura A, Muneta T, Koga H, et al. Human synovial mesenchymal stem cells increase with human autologous serum ; A comparison to fetal bovine serum and to bone marrow cells. Arthritis Rheum 2008 ; 58 : 501-10.
7) Matsukura Y, Muneta T, Tsuji K, et al. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res 2014 ; 472 : 1357-64.
8) Morito T, Muneta T, Hara K, et al. Synovial fluid-derived mesenchymal stem cells increase after intraarticular ligament injury in humans. Rheumatology (Oxford) 2008 ; 47 : 1137-43.
9) Sekiya I, Ojima M, Suzuki S, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 2012 ; 30 : 943-9.
10) Katagiri K, Matsukura Y, Muneta T, et al. Fibrous synovium releases higher numbers of mesenchymal stem cells than adipose synovium in a suspended synovium culture model. Arthroscopy 2017 ; 33 : 800-10.
11) Horie M, Sekiya I, Muneta T, et al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 2009 ; 27 : 878-87.
12) Fox AJ, Wanivenhaus F, Burge AJ et al. The human meniscus : a review of anatomy, function, injury, and advances in treatment. Clin Anat 2015 ; 28 : 269-87.
13) King D. The healing of semilunar cartilages. 1936. Clin Orthop Relat Res 1990 ; 252 : 4-7.
14) Nakagawa Y, Muneta T, Kondo S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthritis Cartilage 2015 ; 23 : 1007-17.
15) Zhang D, Cheriyan T, Martin SD, et al. Lubricin distribution in the torn human anterior cruciate ligament and meniscus. J Orthop Res 2011 ; 29 : 1916-22.
16) Vangsness CT Jr., Farr J 2nd, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy : a randomized, double-blind, controlled study. J Bone Joint Surg Am 2014 ; 96 : 90-8.
17) Whitehouse MR, Howells NR, Parry MC, et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells : from in vitro optimization to a first-in-human study. Stem Cells Transl Med 2017 ; 6 : 1237-48.
18) Sekiya I, Koga H, Otabe K, et al. Additional Use of Synovial Mesenchymal Stem Cell Transplantation Following Surgical Repair of a Complex Degenerative Tear of the Medial Meniscus of the Knee : A Case Report. Cell Transplant. 2019 : 963689719863793.
19) Harris JD, Cavo M, Brophy R, et al. Biological knee reconstruction : a systematic review of combined meniscal allograft transplantation and cartilage repair or restoration. Arthroscopy 2011 ; 27 : 409-18.
20) Schuttler KF, Haberhauer F, Gesslein M, et al. Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss : maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc 2016 ; 24 : 1478-84.
21) Hatsushika D, Muneta T, Horie M, et al. Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. J Orthop Res 2013 ; 31 : 1354-9.
22) Hatsushika D, Muneta T, Nakamura T, et al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis Cartilage 2014 ; 22 : 941-50.
23) Kondo S, Muneta T, Nakagawa Y, et al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J Orthop Res 2017 ; 35 : 1274-82.
24) Sekiya I, Muneta T, Horie M, et al. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res 2015 ; 473 : 2316-26.
25) Yoshimura N, Muraki S, Oka H, et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women : the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 2009 ; 27 : 620-8.
26) Guermazi A, Eckstein F, Hayashi D, et al. Baseline radiographic osteoarthritis and semi-quantitatively assessed meniscal damage and extrusion and cartilage damage on MRI is related to quantitatively defined cartilage thickness loss in knee osteoarthritis : the Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 2015 ; 23 : 2191-8.
27) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
28) Koga H, Muneta T, Watanabe T, et al. Two-year outcomes after arthroscopic lateral meniscus centralization. Arthroscopy 2016 ; 32 : 2000-8.

[15] 半月板損傷の保存治療

P.287 掲載の参考文献
1) Rathleff CR, Cavallius C, Jensen HP, et al. Successful conservative treatment of patients with MRI-verified meniscal lesions. Knee Surg Sports Traumatol Arthrosc 2015 ; 23 : 178-83.
2) Salata MJ, Gibbs AE, Sekiya JK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med 2010 ; 38 : 1907-16.
3) Brophy RH, Wojahn RD, Lillegraven O, et al. Outcomes of arthroscopic posterior medial meniscus root repair : association with Body Mass Index. J Am Acad Orthop Surg 2019 ; 27 : 104-11.
4) Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med 2008 ; 359 : 1108-15.
5) Barker JU, Strauss EJ, Lodha S, et al. Extra-articular mimickers of lateral meniscal tears. Sports Health 2011 ; 3 : 82-8.
6) Krych AJ, Johnson NR, Mohan R, et al. Partial meniscectomy provides no benefit for symptomatic degenerative medial meniscus posterior root tears. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 1117-22.
7) Krych AJ, Reardon PJ, Johnson NR, et al. Non-operative management of medial meniscus posterior horn root tears is associated with worsening arthritis and poor clinical outcome at 5-year follow-up. Knee Surg Sports Traumatol Arthrosc 2017 ; 25 : 383-9.
8) Zikria B, Hafezi-Nejad N, Roemer FW, et al. Meniscal surgery : risk of radiographic joint space narrowing progression and subsequent knee replacement-data from the Osteoarthritis Initiative. Radiology 2017 ; 282 : 807-16.
9) van de Graaf VA, Noorduyn JCA, Willigenburg NW, et al. Effect of early surgery vs physical therapy on knee function among patients with nonobstructive meniscal tears : The ESCAPE randomized clinical trial. JAMA 2018 ; 320 : 1328-37.
10) Tengrootenhuysen M, Meermans G, Pittoors K, et al. Long-term outcome after meniscal repair. Knee Surg Sports Traumatol Arthrosc 2011 ; 19 : 236-41.
11) 宗田大. 膝痛 こだわりの保存治療. 東京 : メジカルビュー社. 2018, p2-38.
12) 宗田大. 膝痛 知る診る治す. 東京 : メジカルビュー社. 2010, p74-93.

[16] 半月板温存術後のリハビリテーション

P.298 掲載の参考文献
1) DeFroda SF, Bokshan SL, Boulos A, et al. Variability of online available physical therapy protocols from academic orthopedic surgery programs for arthroscopic meniscus repair. Phys Sportsmed 2018 ; 46 : 355-60.
2) Eberbach H, Zwingmann J, Hohloch L, et al. Sport-specific outcomes after isolated meniscal repair : a systematic review. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 762-71.
3) Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991 ; 19 : 210-6.
4) Amano H, Iwahashi T, Suzuki T, et al. Analysis of displacement and deformation of the medial meniscus with a horizontal tear using a three-dimensional computer model. Knee Sur Sports Traumatol Arthrosc 2015 ; 23 : 1153-60.
5) Pache S, Aman ZS, Kennedy M, et al. Meniscal root tears : current concepts review. Arch Bone Jt Surg 2018 ; 6 : 250-9.
6) Hussain ZB, Chahla J, Mandelbaum BR, et al. The role of meniscal tears in spontaneous osteonecrosis of the knee. A systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med 2019 ; 47 : 501-7.
7) Guermazi A, Hayashi D, Jarraya M, et al. Medial posterior meniscal root tears are associated with development or worsening of medial tibiofemoral cartilage damage : the multicenter osteoarthritis study. Radiology 2013 ; 268 : 814-21.
8) Feucht MJ, Kuhle J, Bode G, et al. Arthroscopic transtibial pullout repair for posterior medial meniscus root tears : a systematic review of clinical, radiographic, and second-look arthroscopic results. Arthroscopy 2015 ; 31 : 1808-16.
9) Perez-Blanca A, Prado Novoa M, Lombardo Torre M, et al. The role of suture cutout in the failure of meniscal root repair during the early post-operative period : a biomechanical study. Int Orthop 2018 ; 42 : 811-8.
11) Spang Iii RC, Nasr MC, Mohamadi A, et al. Rehabilitation following meniscal repair : a systematic review. BMJ Open Sport Exerc Med 2018 ; 4 : e000212. doi : 10.1136/bmjsem-2016-000212.
12) O'Donnell K, Freedman KB, Tjoumakaris FP. Rehabilitation protocols after isolated meniscal repair : a systematic review. Am J Sports Med 2017 ; 45 : 1687-97.
13) Perkins B, Gronbeck KR, Yue RA, et al. Similar failure rate in immediate post-operative weight bearing versus protected weight bearing following meniscal repair on peripheral, vertical meniscal tears. Knee Surg Sports Traumatol Arthrosc 2018 ; 26 : 2245-50.
14) Kamimura T, Kimura M. Meniscal repair of degenerative horizontal cleavage tears using fibrin clots : clinical and arthroscopic outcomes in 10 cases. Orthop J Sports Med 2014 ; 2 : 2325967114555678. doi : 10.1177/2325967114555678.
15) Chahla J, Kennedy NI, Geeslin AG, et al. Meniscal repair with fibrin clot augmentation. Arthrosc Tech 2017 ; 6 : e2065-9. doi : 10.1016/j.eats.2017.08.006.
16) Chirichella PS, Jow S, Iacono S, et al. Treatment of knee meniscus pathology : rehabilitation, surgery, and orthobiologics. PM R 2019 ; 11 : 292-308.
17) Van Steyn MO, Mariscalco MW, Pedroza AD, et al. The hypermobile lateral meniscus : a retrospective review of presentation, imaging, treatment, and results. Knee Surg Sports Traumatol Arthrosc 2016 ; 24 : 1555-9.
18) Nakata K, Shino K, Kanamoto T, et al. New technique of arthroscopic meniscus repair in radial tears. Sports Injuries 2011 : 305-11.
19) Koga H, Muneta T, Yagishita K, et al. Arthroscopic centralization of an extruded lateral meniscus. Arthrosc Tech 2012 ; 1 : e209-12.
20) Aune KT, Andrews JR, Dugas JR, et al. Return to play after partial lateral meniscectomy in National Football League athletes. Am J Sports Med 2014 ; 42 : 1865-72.
21) Kim SG, Nagao M, Kamata K, et al. Return to sport after arthroscopic meniscectomy on stable knees. BMC Sports Sci Med Rehabil 2013 ; 5 : 23.
22) 宗田大. 膝痛 こだわりの保存治療. 東京 : メジカルビュー社. 2018, p122.

最近チェックした商品履歴

Loading...