新型コロナ データで迫るその姿

出版社: 化学同人
著者:
発行日: 2021-03-10
分野: 衛生・公衆衛生  >  予防/健康管理
ISBN: 9784759820638
電子書籍版: 2021-03-10 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,310 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

2,310 円(税込)

商品紹介

国内外のデータを徹底分析しファクトから見えてきた新型コロナの「正体」

目次

  • 第1章 新型コロナを知る―敵を知り己を知れば百戦危うからず
    第2章 感染症数理モデルから考える新型コロナ対策
        ―人流を減らす、十分な換気、PCR検査陽性率を下げる
    第3章 なぜ新型コロナ死亡率は国によって数十倍以上違うのか?
    第4章 mRNAワクチン―ゲーム・チェンジャーになれるか?
    第5章 新型コロナは人類共通の脅威である
    第6章 120年スパンでみるとコロナ禍で死亡率は増えていない
        ―日本の死亡率曲線の推移
    第7章 専門家の知見をどう政治決断に活かすか?

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

はじめに

P.1 掲載の参考文献
(1) https://www2.nhk.or.jp/hensei/program/p.cgi?area=001&date=2020-12-27&ch=21&eid=02713&f=46
(2) Faust JS, et al. Comparison of Estimated Excess Deaths in New York City During the COVID-19 and 1918 Influenza Pandemics. JAMA Netw Open. 2020;3:e2017527. doi:10.1001/jamanetworkopen.2020.17527.
(3) Korber B, et al. Tracking Changes in SARS-CoV-2 Spike:Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812-827.e19. doi:10.1016/j. cell. 2020.06.043.
(4) Implications of the Emerging SARS-CoV-2 Variant VOC 202012/01. https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-emerging-variant.html
(5) Gu H, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy.Science. 2020;369:1603-1607. doi:10.1126/science. abc4730.
(6) Wise J, Covid-19:New coronavirus variant is identified in UK. BMJ. 2020;371:m4857. http://dx.doi.org/10.1136/bmj.m4857
(7) NERVTAG meeting on SARS-CoV-2 variant under investigation. https://khub.net/documents/135939561/338928724/SARS-CoV-2+variant+under+investigation%2C+meeting+minutes.pdf/962e866b-161f-2fd5-1030-32b6ab467896?t=1608470511452
(8) Asch DA, et al. Variation in US Hospital Mortality Rates for Patients Admitted With COVID-19 During the First 6 Months of the Pandemic. JAMA Intern Med. Published online December 22, 2020. doi:10.1001/jamainternmed. 2020.8193.
(9) Gupta S, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020;180:1436-1446. doi:10.1001/jamainternmed. 2020.3596.
(10) Operation Warp Speed (OWP). https://www.hhs.gov/coronavirus/explaining-operation-warp-speed/index.html
(11) Xie X, et al. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. bioRxiv. Preprint posted online January 7, 2021. doi:10.1101/2021. 01.07.425740.
(12) Wu K, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv. Preprint posted online January 25, 2021. doi:10.1101/2021.01.25.427948.
(13) Zhang W, et al. Emergence of a novel SARS-CoV-2 strain in Southern California, USA. medRxiv. Preprint posted online January 20, 2021. doi:10.1101/2021.01.18.2124978.
(14) Starr TN, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints of folding and ACE2 binding. Cell. 2020;182(5):1295-1310. doi:10.1016/j.cell.2020.08.012.
(15) Abbasi J. COVID-19 and mRNA Vaccines-First Large Test for a New Approach. JAMA. 2020;324(12):1125-1127. doi:10.1001/jama.2020.16866.

第1章 新型コロナを知る - 敵を知り己を知れば百戦殆うからず

P.21 掲載の参考文献
(1) Gandhi RT, et al. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/NEJMcp2009249.
(2) Berlin DA, et al. Severe Covid-19. N Engl J Med. 2020 May 15. doi:10.1056/NEJMcp2009575.
(3) Tillett RL, et al. Genomic evidence for reinfection with SARS-CoV-2:a case study. Lancet Infect Dis. 2020;S1473-3099(20)30764-7. doi:10.1016/S1473-3099(20)30764-7.
(4) Nath A, Long-Haul COVID. Neurology. 2020;95(13):559-560. doi:10.1212/WNL. 0000000000010640.
(5) Riphagen S, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395:1607-1608. doi:10.1016/S0140-6736(20)31094-1.
(6) Zhong NS, et al. Epidemiology and cause of severe acute respiratory syndrome(SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003;362:1353-1358. doi:10.1016/S0140-6736(03)14630-2.
(7) Zaki AM, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814-1820. doi:10.1056/NEJMoa1211721.
(8) Wit E, et al. SARS and MERS:recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-34. doi:10.1038/nrmicro.2016.81.
(9) Kanwar A, et al. Human Coronavirus-HKU1 Infection Among Adults in Cleveland,Ohio. Open Forum Infect Dis. 2017;4(2):ofx052. doi:10.1093/ofid/ofx052.
(10) Chu DK, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19:a systematic review and meta-analysis. Lancet. 2020;395:1973-1987. doi:10.1016/S0140-6736(20)31142-9.
(11) van Doremalen N, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564-1567. doi:10.1056/NEJMc2004973.
(12) Liu Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020;582:557-560. doi:10.1038/s41586-020-2271-3.
(13) Luca Borro L, et al. The Role of Air Conditioning in the Diffusion of Sars-CoV-2 in Indoor Environments:a First Computational Fluid Dynamic Model, based on Investigations performed at the Vatican State Children's Hospital. Environ Res. 2020;110343. doi:10.1016/j.envres.2020.110343.
(14) Leung NHL, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26:676-680. doi:10.1038/s41591-020-0843-2.
(15) Wang X, et al. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Health Care Workers. JAMA. 2020;324:703-704. doi:10.1001/jama.2020.12897.
(16) Wang Y, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing:a cohort study in Beijing, China. BMJ Glob Health. 2020;5:e002794. doi:10.1136/bmjgh-2020-002794.
(17) Luby SP, et al. Effect of handwashing on child health:a randomised controlled trial.Lancet. 2005;366(9481):225-233. doi:10.1016/S0140-6736(05)66912-7.
(18) Zeng W, et al. Association of Daily Wear of Eyeglasses With Susceptibility to Coronavirus Disease 2019 Infection. JAMA Ophthalmol. 2020;138:1196-1199. doi:10.1001/jamaophthalmol. 2020.3906.
(19) Li Q, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382:1199-1207. doi:10.1056/NEJMoa2001316.
(20) Rothe C. et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382:970-971. doi:10.1056/NEJMc2001468.
(21) Wei WE, et al. Presymptomatic transmission of SARS-CoV-2-Singapore, January 23-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:411-415. doi:10.15585/mmwr.mm6914e1.
(22) Ganyani T, et al. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020;25. doi:10.2807/1560-7917.ES.2020.25.17.2000257.
(23) Johansson MA, et al. SARS-CoV-2 Transmission From People Without COVID-19 Symptoms. JAMA Netw Open. 2021;4(1):e2035057. doi:10.1001/jamanetworkopen. 2020.35057.
(24) Cheng HY, et al. Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset. JAMA Intern Med. 2020;180(9):1262. doi:10.1001/jamainternmed.2020.4097.
(25) Symptom-based strategy to discontinue isolation for persons with COVID-19. Centers for Disease Control and Prevention website. Updated May 3, 2020. Accessed July 6, 2020. https://www.cdc.gov/coronavirus/2019-ncov/community/strategy-discontinue-isolation.html
(26) Lipsitch M, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003;300:1966-70. doi:10.1126/science.1086616.
(27) Wiersinga JW, et al. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA. 2020;324:782-793. doi:10.1001/jama.2020.12839.
(28) Butler-Laporte G, et al. Comparison of Saliva and Nasopharyngeal Swab Nucleic Acid Amplification Testing for Detection of SARS-CoV-2:A Systematic Review and Meta-analysis. JAMA Intern Med. Published online January 15, 2021. doi:10.1001/jamainternmed. 2020.8876.
(29) Wu Z, et al. Characteristics of and Important Lessons From the Coronavirus Disease 2019(COVID-19) Outbreak in China:Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-1242. doi:10.1001/jama. 2020.2648.
(30) Beigel JH, et al. Remdesivir for the Treatment of Covid-19-Final Report. N Engl J Med. 2020;383(19):1813-1826. doi:10.1056/NEJMoa2007764.
(31) Patel MM, et al. Change in Antibodies to SARS-CoV-2 Over 60 Days Among Health Care Personnel in Nashville, Tennessee. JAMA. 2020 Sep 17:e2018796. doi:10.1001/jama. 2020.18796.
(32) Ibarrondo FJ, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med. 2020;383:1085-1087. doi:10.1056/NEJMc2025179.
(33) Gudbjartsson DF, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med. 2020:383(18):1724-1734. doi:10.1056/NEJMoa2026116.
(34) Huang C, et al. 6-month consequences of COVID-19 in patients discharged from hospital:a cohort study. Lancet. 2021;397:220-232. doi:10.1016/S0140-6736(20) 32656-8.
(35) Greenhalgh T, et al. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026. doi:10.1136/bmj. m3026.
(36) Carfi A, et al. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603-605. doi:10.1001/jama. 2020.12603.
(37) Tenforde MW, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network-United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:993-998. doi:10.15585/mmwr. mm6930e1.
(38) Carfi A, et al. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603-605. doi:10.1001/jama.2020.12603.
(39) Huang C, et al. 6-month consequences of COVID-19 in patients discharged from hospital:a cohort study. Lancet. 2021;16;397(10270):220-232. doi:10.1016/S0140-6736(20)32656-8.
(40) Puntmann VO, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1265-1273. doi:10.1001/jamacardio. 2020.3557.
(41) Myoung-Hwa Lee M-H, et al. Microvascular Injury in the Brains of Patients with Covid-19. N Engl J Med. 2020 Dec 30. doi:10.1056/NEJMc2033369.
(42) Viner RM, et al. Susceptibility to SARS-CoV-2 Infection Among Children and Adolescents Compared With Adults A Systematic Review and Meta-analysis. JAMA Pediatr. 2020;25;e204573. doi:10.1001/jamapediatrics. 2020.4573.
(43) Castagnoli R, et al. Syndrome Coronavirus 2(SARS-CoV-2) Infection in Children and Adolescents:A Systematic Review. JAMA Pediatr. 2020;174:882-889. doi:10.1001/jamapediatrics.2020.1467.
(44) Dani Dumitriu D, et al. Outcomes of Neonates Born to Mothers With Severe Acute Respiratory Syndrome Coronavirus 2 Infection at a Large Medical Center in New York City. JAMA Pediatr. 2020. doi:10.1001/jamapediatrics. 2020.4298.
(45) Heald-Sargent T, et al. Age-Related Differences in Nasopharyngeal Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2) Levels in Patients With Mild to Moderate Coronavirus Disease 2019 (COVID-19). JAMA Pediatr. 2020;174:902-903. doi:10.1001/jamapediatrics.2020.3651.
(46) DIAMOND online.学校休校は専門家会議「完全スルー」で決まった,社会不安を生みかねない.https://diamond.jp/articles/-/230489
(47) Auger KA, et al. Association Between Statewide School Closure and COVID-19 Incidence and Mortality in the US. JAMA. 2020;324:859-870. doi:10.1001/jama. 2020.14348.
(48) Zhang J. "How Did People Respond to the COVID-19 Pandemic during Its Early Stage? A Case Study in Japan". https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3595063
(49) Christakis DA, et al. Estimation of US Children's Educational Attainment and Years of Life Lost Associated With Primary School Closures During the Coronavirus Disease 2019 Pandemic. JAMA Netw Open. 2020;3:e2028786. doi:10.1001/jamanetworkopen. 2020.28786.
(50) Xie X, et al. Mental Health Status Among Children in Home Confinement During the Coronavirus Disease 2019 Outbreak in Hubei Province, China. JAMA Pediatr. 2020;174:898-900. doi:10.1001/jamapediatrics.2020.1619.
(51) Verdeoni L, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic:an observational cohort study. Lancet. 2020;395:1771-1778. doi:10.1016/S0140-6736(20)31103-X.
(52) Davies P, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2(PIMS-TS) in the UK:a multicentre observational study. Lancet Child Adolesc Health. 2020:S2352-464230215-7. doi:10.1016/S2352-4642(20)30215-7.
(53) Feldstein LR, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020;383(4):334-346. doi:10.1056/NEJMoa2021680.
(54) Dufort EM, et al. Multisystem Inflammatory Syndrome in Children in New York State. N Engl J Med. 2020;383(4):347-358. doi:10.1056/NEJMoa2021756.
(55) Toubiana J, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France:prospective observational study. BMJ. 2020;369:m2094. doi:10.1136/bmj. m2094.
(56) Whittaker E, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020:e2010369. doi:10.1001/jama. 2020.10369.
(57) Riphagen S, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607-1608. doi:10.1016/S0140-6736(20)31094-1.
(58) Xu S, et al. COVID-19 and Kawasaki Disease in Children. Pharmacol Res. 2020;159:104951. doi:10.1016/j. phrs. 2020.104951.
(59) Dong Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6):e20200702. doi:10.1542/peds. 2020-0702.
(60) Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453-454. doi:10.1038/s41577-020-0367-5.
(61) 浦島充佳『エビデンスに基づく小児科』医学教育出版社.
(62) NHK News Web.医療機関の出産の予約数 前年同期比 31%減 コロナ影響も調査へ. https://www3.nhk.or.jp/news/html/20201212/k10012761221000.html
(63) Jering KS, et al. Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth With and Without COVID-19. JAMA Intern Med. Published online January 15, 2021. doi:10.1001/jamainternmed. 2020.9241.
(64) Williamson EJ, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430-436. doi:10.1038/s41586-020-2521-4.
(65) 東洋経済 ONLINE.新型コロナウイルス 国内感染の状況. https://toyokeizai.net/sp/visual/tko/covid19/
(66) Yang W, et al. Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave:a model-based analysis. Lancet Infect Dis. 2020;S1473-3099(20)30769-6. doi:10.1016/S1473-3099(20)30769-6.
(67) THE WORLD BANK. Population ages 65 and above (% of total population). https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
(68) Price-Haywood EG, et al. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. 2020;382:2534-2543. doi:10.1056/NEJMsa2011686.
(69) THE WORLD BANK. Population ages 65 and above (% of total population).
(71) McMichael TM, et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N Engl J Med. 2020;382:2005-2011. doi:10.1056/NEJMoa2005412.
(72) Arons MM, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020;382:2081-2090. doi:10.1056/NEJMoa2008457.
(73) Hand J, et al. Severe Respiratory Illness Outbreak Associated with Human Coronavirus NL63 in a Long-Term Care Facility. Emerg Infect Dis. 2018;24:1964-1966. doi:10.3201/eid2410.180862.
(74) Scully EP, et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442-447. doi:10.1038/s41577-020-0348-8.
(75) Takahashi T, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588(7837):315-320. doi:10.1038/s41586-020-2700-3.
(76) van der Made CI, et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA. 2020;324:1-11. doi:10.1001/jama.2020.13719.
(77) Scully EP, et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442-447. doi:10.1038/s41577-020-0348-8.
(78) Van Kerkhove MD, et al. Risk factors for severe outcomes following 2009 influenza A(H1N1) infection:a global pooled analysis. PLoS Med. 2011;8(7):e1001053. doi:10.1371/journal. pmed. 1001053.
(79) Popkin BM, et al. Individuals with obesity and COVID-19:A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21:e13128.doi:10.1111/obr.13128.
(80) Huizinga GP, et al. The Collision of Meta-Inflammation and SARS-CoV-2 Pandemic Infection. Endocrinology. 2020;161(11):bqaa154. doi:10.1210/endocr/bqaa154.
(81) Sheridan PA, et al, Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond). 2012;36:1072-1077. doi:10.1038/ijo. 2011.208.
(82) Adhikari S, et al. Assessment of community-level disparities in coronavirus disease 2019(COVID-19) infections and deaths in large US metropolitan areas. JAMA Netw Open. 2020;3(7):e2016938. doi:10.1001/jamanetworkopen. 2020.16938.
(83) Liao TF, et al. Association of Social and Economic Inequality With CoronavirusDisease 2019 Incidence and Mortality Across US Counties. JAMA Netw Open. 2021;4(1):e2034578. doi:10.1001/jamanetworkopen. 2020.34578.
(84) Karmakar M, et al. Association of Social and Demographic Factors With COVID-19 Incidence and Death Rates in the US. JAMA Netw Open. 2021;4(1):e2036462. doi:10.1001/jamanetworkopen. 2020.36462.
(85) Bilaloglu S et al. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA. 2020;324:799-801. doi:10.1001/jama.2020.13372.
(86) Lowe KE, et al. Association of Smoking and Cumulative Pack-Year Exposure With COVID-19 Outcomes in the Cleveland Clinic COVID-19 Registry. JAMA Intern Med. Published online January 25, 2021. doi:10.1001/jamainternmed. 2020.8360.
(87) Wen CP, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy:a prospective cohort study. Lancet. 2011;378(9798):1244-53. doi:10.1016/S0140-6736(11) 60749-6.
(88) Grasselli G, et al. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy:Early Experience and Forecast During an Emergency Response. JAMA. 2020;323(16):1545-1546. doi:10.1001/jama. 2020.4031.
(89) 「スウェーデンはなぜロックダウンしなかったのか」『NIRAオピニオンペーパー』No.52, 2020年7月.https://www.nira.or.jp/pdf/opinion52.pdf
(90) OECD, Testing for COVID-19:A way to lift confinement restrictions (4 May 2020), pp.14. https://www.oecd.org/coronavirus/policy-responses/testing-for-covid-19-a-way-to-lift-confinement-restrictions-89756248/
(91) Ishikawa Y, et al. Critical Care Medical Centers May Play an Important Role in Reducing the Risk of COVID-19 Death in Japan. SN Compr Clin Med. 2020;1-4. doi:10.1007/s42399-020-00547-y.
(92) 厚生労働省. 第2編 保健衛生 第2章 医療. https://www.mhlw.go.jp/toukei/youran/indexyk_2_2.html
(93) 厚生労働省. 第2編 保健衛生 第3章 生活環境. https://www.mhlw.go.jp/toukei/youran/indexyk_2_3.html
(94) 厚生労働省. 第2編 保健衛生 第4章 薬事. https://www.mhlw.go.jp/toukei/youran/indexyk_2_4.html
(95) 厚生労働省. 医療施設調査. https://www.mhlw.go.jp/toukei/list/79-1.html
(96) 厚生労働省. 医療施設調査. https://www.mhlw.go.jp/toukei/list/79-1.html
(97) 日本集中医療学会. 各都道府県別 ICU ならびにハイケアユニット等のベッド数. https://www.jsicm.org/news/upload/icu_hcu_beds.pdf#search=%27
(98) 総務省消防庁. 令和2年版 救急救助の現況 救急編. https://www.fdma.go.jp/publication/rescue/items/kkkg_h30_01_kyukyu.pdf
(99) 総務省消防庁. 平成30年版 消防白書. https://www.fdma.go.jp/publication/hakusho/h30/46816.html
(100) 厚生労働省. 設置主体保健所数. https://www.mhlw.go.jp/content/10900000/000617302.pdf#search=%27設置主体別保健所数%27
(101) 総務省消防庁. 都道府県メディカルコントロール. https://www.fdma.go.jp/singi_kento/kento/items/kento217_17_sankou-5.pdf#search=%27都道府県メディカルコントロール%27
(102) 総務省統計局. 人口推計(2019年(令和元年)10月1日現在). https://www.stat.go.jp/data/jinsui/2019np/index.html
(103) 総務省統計局. 人口推計(2019年(令和元年)10月1日現在). https://www.stat.go.jp/data/jinsui/2019np/index.html
(104) ナレッジステーション. 高校卒業者の都道府県別主要進路(平成30年度学校基本調査). https://data.gakkou.net/h30koukou006/
(105) 総務省. 平成29年度 市町村税課税状況等の調査. https://www.soumu.go.jp/main_sosiki/jichi_zeisei/czaisei/czaisei_seido/ichiran09_17.html
(107) Ishikawa, SN Compr Clin Med. 2020.
(108) https://www.who.int/publications/i/item/public-health-criteria-to-adjust-public-health-and-social-measures-in-the-context-of-covid-19
(109) 国立感染症研究所. 現場からの概況:ダイアモンドプリンセス号におけるCOVID-19症例(2020年2月19日掲載). https://www.niid.go.jp/niid/ja/diseases/ka/corona-virus/2019-ncov/2484-idsc/9410-covid-dp-01.html
(110) 厚生労働省. 新型コロナウイルス感染症の現在の状況と厚生労働省の対応について(令和2年11月20日版). https://www.mhlw.go.jp/stf/newpage_14979.html
(111) Kasper MR, et al. An Outbreak of Covid-19 on an Aircraft Carrier. N Engl J Med.2020;383(25):2417-2426. doi:10.1056/NEJMoa2019375.
(112) みなと保健所からのお知らせ. 2020年11月11日.

第2章 感染症数理モデルから考える新型コロナ対策 - 人流を減らす、十分な換気、PCR検査陽性率を下げる

P.99 掲載の参考文献
(1) Wu JT, et al. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:a modelling study. Lancet. 2020;395:689-697. doi:10.1016/S0140-6736(20)30260-9.
(2) Hancock K, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med. 2009;361(20):1945-52. doi:10.1056/NEJMoa0906453.
(3) Anderson RM, May RM. Population biology of infectious diseases:Part I. Nature. 1979;280:361-367. doi:10.1038/280361a0.
(4) May RM, Anderson RM. Population biology of infectious diseases:Part II. Nature. 1979;280:455-461. doi:10.1038/280455a0.
(5) Moderbacher CR, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020;183(4):996-1012.e19. doi:10.1016/j. cell. 2020.09.038.
(6) Simonovich VA, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med. 2020;NEJMoa2031304. doi:10.1056/NEJMoa2031304.
(7) Libster R, et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med. 2021 Jan. 6. doi:10.1056/NEJMoa2033700.
(8) Netea MG, et al. Trained immunity:A program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi:10.1126/science. aaf1098.
(9) Fanucchi S, et al. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity. 2020;54(1):32-43. doi:10.1016/j. immuni. 2020.10.011.
(10) 日本経済新聞. 「対策ゼロなら40万人死亡」厚労省クラスター対策班(2020年4月15日). https://www.nikkei.com/article/DGXMZO58067590V10C20A4CE0000
(11) 厚生労働省. 新型コロナウイルスに関連した肺炎の患者の発生について(1例目). https://www.mhlw.go.jp/stf/newpage_08906.html
(13) 首相官邸. 新型コロナウイルス感染症に関する菅内閣総理大臣記者会見(令和3年1月7日). https://www.kantei.go.jp/jp/99_suga/statement/2021/0107kaiken.html
(14) Matthew A. Crane MA, et al. Change in Reported Adherence to Nonpharmaceutical Interventions During the COVID-19 Pandemic, April-November 2020. JAMA. Published online January 22, 2021. doi:10.1001/jama. 2021.0286.
(15) 厚生労働省. 新規陽性者数の推移(報告日別,HER-SYSデータ). https://www.mhlw.go.jp/content/10900000/000718606.pdf
(16) Google. COVID-19 コミュニティ モビリティ レポート. https://www.google.com/covid19/mobility/?hl=ja
(17) Our World in Data. Coronavirus Pandemic(COVID-19). https://ourworldindata.org/coronavirus
(18) Wikipedia. National Centre for Infectious Diseases. https://en.wikipedia.org/wiki/National_Centre_for_Infectious_Diseases
(19) https://news.tbs.co.jp/newseye/tbs_newseye4145502.html
(20) Martineau AR, et al. Vitamin D supplementation to prevent acute respiratory tract infections:systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj. i6583.
(21) Meltzer DO, et al. Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Netw Open. 2020;3(9):e2019722. doi:10.1001/jamanetworkopen. 2020.19722.
(22) ClinicalTrials. gov. Trial of Vitamin D to Reduce Risk and Severity of COVID-19 and Other Acute Respiratory Infections (CORONAVIT). https://clinicaltrials.gov/ct2/show/NCT04579640
(23) Wang CJ, et al. Response to COVID-19 in Taiwan:Big Data Analytics, New Technology, and Proactive Testing. JAMA. 2020;323:1341-1342. doi:10.1001/jama. 2020.3151.
(24) Our World in Data. Policy Responses to the Coronavirus Pandemic. https://ourworldindata.org/policy-responses-covid
(25) Google.COVID-19 コミュニティ モビリティ レポート.
(26) Hsu CH, et al. How to Defend COVID-19 in Taiwan? Talk about People's Disease Awareness, Attitudes, Behaviors and the Impact of Physical and Mental Health. Int J Environ Res Public Health. 2020;17:4694. doi:10.3390/ijerph17134694.

第3章 なぜ新型コロナ死亡率は国によって数十倍以上違うのか ?

P.155 掲載の参考文献
(1) Worldometers. Coronavirus. https://www.worldometers.info/coronavirus/
(2) Murray CJL, et al. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918-20 pandemic:a quantitative analysis. Lancet. 2006;368(9554):2211-2218. doi:10.1016/S0140-6736(06)69895-4.
(3) Weinberger DM, et al. Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020. JAMA Intern Med. 2020;180:1336-1344. doi:10.1001/jamainternmed. 2020.3391.
(4) 国立感染症研究所. 我が国における超過死亡の推定 2020年11月. https://www.niid.go.jp/niid/ja/from-idsc/493-guidelines/9986-excess-mortality-20nov.html
(5) WHO. Ambient and household air pollution attributable death rate (per 100000 population). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ambient-and-household-air-pollution-attributable-death-rate-(per-100-000-population)
(6) The World Bank. World Bank Country and Lending Groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
(7) Baggett TP, et al. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston. JAMA. 2020;323:2191-2192. doi:10.1001/jama. 2020.6887.
(8) 新宿区. 新宿区PCR検査スポット検査(職種別)(7月). https://www.city.shinjuku.lg.jp/content/000294021.pdf
(9) Severe Covid-19 GWAS Group. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383:1522-1534. doi:10.1056/NEJMoa2020283.
(10) National Library of Medicine. dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs11385942
(11) National Library of Medicine. dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs11385942
(12) Zeberg H, Paabo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587(7835):610-612. doi:10.1038/s41586-020-2818-3.
(13) Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710-722. doi:10.1126/science. 1188021.
(14) Baker MG, et al. Successful Elimination of Covid-19 Transmission in New Zealand. N Engl J Med. 2020;383:e56. doi:10.1056/NEJMc2025203.
(15) Pathak G. Disentangling the Molecular Relationships Underlying COVID-19 Severity. https://www.covid19hg.org/blog/2020-10-28-twas-working-group/
(16) Pairo-Castineira E, et al. Genetic mechanisms of critical illness in Covid-19. https://www.medrxiv.org/content/10.1101/2020.09.24.20200048v2.full.pdf
(17) Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20:453-454. doi:10.1038/s41577-020-0367-5.
(18) 山中伸弥による新型コロナウイルス情報発信. 解決すべき課題. https://www.covid19-yamanaka.com/cont11/main.html
(19) WHO. Bacille Calmette-Guerin(BCG) vaccination and COVID-19. https://www.who.int/news-room/commentaries/detail/bacille-calmette-gu%C3%A9rin-(bcg)-vaccination-and-covid-19
(20) Curtis N, et al. Considering BCG vaccination to reduce the impact of COVID-19. Lancet. 2020;395(10236):1545-1546. doi:10.1016/S0140-6736(20)31025-4.
(21) Arts RJW, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89-100.e5. doi:10.1016/j. chom. 2017.12.010.
(22) Giamarellos-Bourboulis EJ, et al. Activate:Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell. 2020;183(2):315-323.e9. doi:10.1016/j. cell. 2020.08.051.
(23) Roth AE, et al. Effect of revaccination with BCG in early childhood on mortality:randomised trial in Guinea-Bissau. BMJ. 2010;340:c671. doi:10.1136/bmj. c671.
(24) de Castro MJ, et al. Nonspecific (Heterologous) Protection of Neonatal BCG Vaccination Against Hospitalization Due to Respiratory Infection and Sepsis. Clin Infect Dis. 2015;60(11):1611-1619. doi:10.1093/cid/civ144.
(25) Netea MG, et al. Trained immunity:A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181(5):969-977. doi:10.1016/j. cell. 2020.04.042.
(26) Aronson NE, et al. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives:A 60-year follow-up study. JAMA. 2004;291(17):2086-2091. doi:10.1001/jama. 291.17.2086.
(27) O'Neill LAJ, Netea, M. G. BCG-induced trained immunity:Can it offer protection against COVID-19? Nat. Rev. Immunol. 2020;20(6):335-337. doi:10.1038/s41577-020-0337-y.
(28) Urashima M, et al. BCG Vaccination and Mortality of COVID-19 across 173 Countries:An Ecological Study. Int J Environ Res Public Health. 2020;17(15):E5589. doi:10.3390/ijerph17155589.
(29) Hamiel U, et al. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA. 2020;323:2340-2341. doi:10.1001/jama. 2020.8189.
(30) Liu PT, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770-3. doi:10.1126/science. 1123933.
(31) Urashima M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255-60. doi:10.3945/ajcn. 2009.29094.
(32) Martineau AR, et al. Vitamin D supplementation to prevent acute respiratory tract infections:systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj. i6583.
(33) Meltzer DO, et al. Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Netw Open. 2020;3(9):e2019722. doi:10.1001/jamanetworkopen. 2020.19722.
(34) ClinicalTrials.gov. Trial of Vitamin D to Reduce Risk and Severity of COVID-19 and Other Acute Respiratory Infections (CORONAVIT). https://clinicaltrials.gov/ct2/show/NCT04579640

第4章 mRNAワクチン - ゲーム・チェンジャーになれるか ?

P.193 掲載の参考文献
(1) Menachery VD, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med. 2015;21:1508-1513. doi:10.1038/nm.3985.
(2) Wiersinga WJ, et al. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19):A Review. JAMA. 2020;324:782-793. doi:10.1001/jama. 2020.12839.
(3) Wu F, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265-269. doi:10.1038/s41586-020-2008-3.
(4) Lu R, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding. Lancet. 2020;395:565-74. doi:10.1016/S0140-6736(20)30251-30258.
(5) Lopes RD, et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19:A Randomized Clinical Trial. JAMA. 2021;325(3):254-264. doi:10.1001/jama. 2020.25864
(6) Fajgenbaum DC, et al. Cytokine Storm. N Engl J Med. 2020;383:2255-2273. doi:10.1056/NEJMra2026131.
(7) NIH. NIH Clinical Trial of Investigational Vaccine for COVID-19 Begins. https://www.niaid.nih.gov/news-events/nih-clinical-trial-investigational-vaccine-covid-19-begins
(8) Wolff JA, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465-1468. doi:10.1126/science.1690918.
(9) Abbasi J. COVID-19 and mRNA Vaccines-First Large Test for a New Approach. JAMA. 2020;324:1125-1127. doi:10.1001/jama. 2020.16866.
(10) The New England Journal of Medicine. Covid-19 Vaccine Resource Center. https://www.nejm.org/covid-vaccine?cid=DM108101_&bid=352117343
(11) Pardi N, et al. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261-279. doi:10.1038/nrd.2017.243.
(12) Fuller DH, et al. Amplifying RNA Vaccine Development. N Engl J Med. 2020;382:2469-2471. doi:10.1056/NEJMcibr2009737.
(13) Abbasi J. COVID-19 and mRNA Vaccines-First Large Test for a New Approach. JAMA. 2020;324(12):1125-1127. doi:10.1001/jama. 2020.16866.
(14) Jackson LA, et al. An mRNA Vaccine against SARS-CoV-2-Preliminary Report. N Engl J Med. 2020;383(20):1920-1931. doi:10.1056/NEJMoa2022483.
(15) Mulligan MJ, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-593. doi:10.1038/s41586-020-2639-4.
(16) Corbett KS, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544-1555. doi:10.1056/NEJMoa2024671.
(17) NIH. Phase 3 Clinical Trial of Investigational Vaccine for COVID-19 Begins. https://www.niaid.nih.gov/news-events/phase-3-clinical-trial-investigational-vaccine-covid-19-begins
(18) COVID-19. Join our COVID-19 Volunteer Screening Registry. https://www.coronaviruspreventionnetwork.org/
(19) Voysey M, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222)against SARS-CoV-2:an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2020;32661-1. doi:10.1016/S0140-6736(20)32661-1.
(20) Logunov DY, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine:an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. February 2, 2021 doi.org/10.1016/S0140-6736(21) 00234-8.
(21) NOVAVAX. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase3 Trial. https://ir.novavax.com/node/15506/pdf
(22) Polack FP, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;NEJMoa2034577. doi:10.1056/NEJMoa2034577.
(23) Baden LR, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2020;NEJMoa2035389. doi:10.1056/NEJMoa2035389.
(24) Shimabukuro T, et al. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine. JAMA. 2021 Jan 21. doi:10.1001/jama. 2021.0600.
(25) CDC. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine-United States, December 21, 2020-January 10, 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7004e1.htm
(26) Castells MC, et al. Maintaining Safety with SARS-CoV-2 Vaccines. N Engl J Med. 2020;NEJMra2035343. doi:10.1056/NEJMra2035343.
(27) McNeil MM, et al. Vaccine-associated hypersensitivity. J Allergy Clin Immunol. 2018;141(2):463-472. doi:10.1016/j. jaci. 2017.12.971.
(28) Gostin LO, et al. A 7-Point Action Agenda to End the COVID-19 Pandemic for President-elect Biden. JAMA. 2021;325(1):17-18. doi:10.1001/jama. 2020.23848.
(29) 厚生労働省. 令和元年(2019)人口動態統計月報年計(概数)の概況. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/nengai19/dl/gaikyouR1.pdf
(30) The New England Journal of Medicine. Covid-19 Vaccine Resource Center. https://www.nejm.org/covid-vaccine?cid=DM108101_&bid=352117343
(31) 日本産婦人科学会.子宮頸がんと HPV ワクチンに関する正しい理解のために. http://www.jsog.or.jp/modules/jsogpolicy/index.php?content_id=4

第5章 新型コロナは人類共通の脅威である

P.221 掲載の参考文献
(1) Mulangu S, et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 2019;381:2293-2303. doi:10.1056/NEJMoa1910993.
(3) WHO Solidarity Trial Consortium. Repurposed Antiviral Drugs for Covid-19-Interim WHO Solidarity Trial Results. N Engl J Med. 2020;NEJMoa2023184. doi:10.1056/NEJMoa2023184.
(4) Grein J, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-2336. doi:10.1056/NEJMoa2007016.
(5) Cao B, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. doi:10.1056/NEJMoa2001282.
(6) Cavalcanti AB, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020;383:2041-2052. doi:10.1056/NEJMoa2019014.
(7) Simonovich VA, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med. 2020;NEJMoa2031304. doi:10.1056/NEJMoa 2031304.
(8) Wang Y, et al. Remdesivir in adults with severe COVID-19:a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569-1578. doi:10.1016/S0140-6736(20)31022-9.
(9) Beigel JH, et al. Remdesivir for the Treatment of Covid-19-Final Report. N Engl J Med. 2020;383:1813-1826. doi:10.1056/NEJMoa2007764.
(10) AFP.レムデシビル,コロナ治療に「明確」な効果米発表(2020年4月30日). https://www.afpbb.com/articles/-/3280993?pid=22336258
(11) RECOVERY. https://www.recoverytrial.net/
(13) RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19-Preliminary Report. N Engl J Med. 2020;NEJMoa2021436. doi:10.1056/NEJMoa2021436.
(14) Woodcock J, et al. Master Protocols to Study Multiple Therapies, Multiple Diseases,or Both. N Engl J Med. 2017;377:62-70. doi:10.1056/NEJMra1510062.
(15) Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383:2255-2273. doi:10.1056/NEJMra2026131.
(16) Stone JH, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020;NEJMoa2028836. doi:10.1056/NEJMoa2028836.
(17) Veiga VC, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019:randomised controlled trial. BMJ. 2021;372:n84. doi:10.1136/bmj. n84.
(18) RECOVERY Collaborative Group. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;383(21):2030-2040. doi:10.1056/NEJMoa2022926.
(19) Cao B, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382:1787-1799. doi:10.1056/NEJMoa2001282.
(20) Cavalcanti AB, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020;383(21):2041-2052. doi:10.1056/NEJMoa2019014.
(21) Simonovich VA, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med. 2020;NEJMoa2031304. doi:10.1056/NEJMoa2031304.

第6章 120年スパンでみるとコロナ禍で死亡率は増えていない - 日本の死亡率曲線の推移

P.235 掲載の参考文献
(1) 人口動態統計(明治32年~平成9年, eStat)
(2) CDC. Past Pandemics. https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html (Oct 4, 2020 accessed)
(3) 国立保健医療科学院. 貴重統計書. https://www.niph.go.jp/toshokan/koten/Statistics/10008882.html
(4) Murray CJ, et al. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918-20 pandemic:a quantitative analysis. Lancet. 2006;368(9554):2211-8. doi:10.1016/S0140-6736(06)69895-4.
(5) ウィキペディア. 関東大震災. https://ja.wikipedia.org/wiki/%E9%96%A2%E6%9D%B1%E5%A4%A7%E9%9C%87%E7%81%BD
(6) にゃん分間待ってやる. 【まとめ】第二次世界大戦(WW2)の国別死者数(犠牲者数)と激戦地一覧. https://u-ff.com/ww2/
(7) Yoshikura H. Spanish Flu, Asian Flu, Hong Kong Flu, and Seasonal Influenza in Japan under Social and Demographic Influence:Review and Analysis Using the Two-Population Model. Jpn J Infect Dis. 2014;67(4):245-57. doi:10.7883/yoken.67.245.
(8) Dawood FS, et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation:a modelling study. Lancet Infect Dis. 2012;12:687-95. doi:10.1016/S1473-3099(12)70121-4.
(9) NHK. 【社会保障70年の歩み】第4回・医療「無保険者3000万人から」. https://www.nhk.or.jp/hearttv-blog/3500/208772.html
(10) 自民党. 岸信介総裁時代. https://www.jimin.jp/aboutus/history/3.html
(11) 日本医師会. 国民皆保険制度の歴史. https://www.med.or.jp/people/info/kaifo/history/
(12) THE WORLD BANK. Population ages 65 and above (% of total population). https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
(13) WHO. Life expectancy at birth (years). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/life-expectancy-at-birth-(years)
(14) WHO. Life expectancy at age 60 (years). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/life-expectancy-at-age-60-(years)
(15) Wikipedia. List of countries with universal health care. https://en.wikipedia.org/wiki/List_of_countries_with_universal_health_care
(16) 朝日新聞. 日本人の平均寿命, 過去最高更新 女性は87.45歳(2020年7月31日).https://www.asahi.com/articles/ASN705HBNN70UTFL009.html
(17) Baggett TP, et al. Prevalence of SARS-CoV-2 Infection in Residents of a Large Homeless Shelter in Boston. JAMA. 2020;323(21):2191-2192. doi:10.1001/jama. 2020.6887.
(18) Gostin LO. A 7-Point Action Agenda to End the COVID-19 Pandemic for President-elect Biden. JAMA. 2021;325(1):17-18. doi:10.1001/jama.2020.23848.
(19) CDC. Health Disparities:Race and Hispanic Origin. https://www.cdc.gov/nchs/nvss/vsrr/covid19/health_disparities.htm
(20) ウィキペディア. 東日本大震災. https://ja.wikipedia.org/wiki/%E6%9D%B1%E6%97%A5%E6%9C%AC%E5%A4%A7%E9%9C%87%E7%81%BD

おわりに

P.262 掲載の参考文献
(1) Maruggi G, et al. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther. 2019;27:757-772. doi:10.1016/j. ymthe. 2019.01.020.

最近チェックした商品履歴

Loading...