先進医療NAVIGATOR がん免疫療法最前線

出版社: 日本医学出版
著者:
発行日: 2023-07-25
分野: 臨床医学:一般  >  臨床医学一般
ISBN: 9784865770605
電子書籍版: 2023-07-25 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

4,400 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

4,400 円(税込)

商品紹介

2014年にオプジーボ(R)が日本で世界初の承認薬となってから約10年が経ち、現在では10種類以上の免疫チェックポイント阻害剤が開発されています。
がん免疫療法については多くの問題が山積していましたが、分子免疫学的解析が可能となり、基礎研究の加速度的な進歩が期待されます。
本書は基礎研究に基づいたがん免疫の仕組みや、最新のがん免疫治療法など、より深く理解していただけるよう解説しました。

目次

  • 第1章 がん免疫の基礎
    1 自然免疫
    2 樹状細胞
    3 腫瘍抗原と抗原提示
    4 抗腫瘍エフェクター細胞
    5 制御性T細胞
    6 免疫逃避機構
    7 がんゲノムと免疫
    8 腫瘍微小環境
    9 腸内細菌と免疫
    10 腫瘍細胞とエフェクターT細胞の代謝競合改善を介した腫瘍免疫の向上

    第2章 がん免疫療法
    1 免疫チェックポイント阻害剤
    2 抗体療法(ADCを含む)
    3 ワクチン療法
    4 T細胞療法(TIL,TCR-T)
    5 細胞療法・遺伝子治療(CAR-T)
    6 iPS細胞技術を用いたT細胞製剤の開発-即納型のがん免疫細胞療法-
    7 ウイルス療法

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1章 がん免疫の基礎

P.4 掲載の参考文献
1) Takaoka, A. & Yamada, T. Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. Int Immunol 31, 477-488 (2019). https://doi.org : 10.1093/intimm/dxz034
2) Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res, 3-11 (1991)
3) Starnes, C.O. Coley's toxins in perspective. Nature 357, 11-12 (1992). https://doi.org : 10.1038/357011a0
4) Man, S.M. & Jenkins, B.J. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 22, 397-413 (2022). https://doi.org : 10.1038/s41568-022-00462-5
5) Guha, M. Anticancer TLR agonists on the ropes. Nat Rev Drug Discov 11, 503-505 (2012). https://doi.org : 10.1038/nrd3775
6) Rakoff-Nahoum, S. & Medzhitov, R. Toll-like receptors and cancer. Nat Rev Cancer 9, 57-63 (2009). https://doi.org : 10.1038/nrc2541
7) Mullard, A. Can innate immune system targets turn up the heat on 'cold' tumours? Nat Rev Drug Discov 17, 3-5 (2018). https://doi.org : 10.1038/nrd.2017.264
8) Woo, S.R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830-842 (2014). https://doi.org : 10.1016/j.immuni.2014.10.017
9) Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol 193, 6124-6134 (2014). https://doi.org : 10.4049/jimmunol.1401869
10) Gao, P. et al. Cyclic [G (2',5') pA (3',5') p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094-1107 (2013). https://doi.org : 10.1016/j.cell.2013.04.046
11) Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788-792 (2009). https://doi.org : 10.1038/nature08476
12) Diamond, M.S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208, 1989-2003 (2011). https://doi.org : 10.1084/jem.20101158
13) Fuertes, M.B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208, 2005-2016 (2011). https://doi.org : 10.1084/jem.20101159
14) Le Naour, J., Zitvogel, L., Galluzzi, L., Vacchelli, E. & Kroemer, G. Trial watch : STING agonists in cancer therapy. Oncoimmunology 9, 1777624 (2020).
15) Ramanjulu, J.M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439-443 (2018). https://doi.org : 10.1038/s41586-018-0705-y
16) Deng, L. et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity 41, 843-852 (2014). https://doi.org : 10.1016/j.immuni.2014.10.019
17) Parkes, E.E. et al. Activation of a cGAS-STING-mediated immune response predicts response to neoadjuvant chemotherapy in early breast cancer. Br J Cancer 126, 247-258 (2022). https://doi.org : 10.1038/s41416-021-01599-0
18) Tian, J. et al. 5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic STING. EMBO J 40, e106065 (2021). https://doi.org : 10.15252/embj.2020106065
19) Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13, 1050-1059 (2007). https://doi.org : 10.1038/nm1622
20) Mackenzie, K.J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461-465 (2017). https://doi.org : 10.1038/nature23449
21) Harding, S.M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466-470 (2017). https://doi.org : 10.1038/nature23470
22) Hu, Y. et al. Paclitaxel Induces Micronucleation and Activates Pro-Inflammatory cGAS-STING Signaling in Triple-Negative Breast Cancer. Mol Cancer Ther 20, 2553-2567 (2021). https://doi.org : 10.1158/1535-7163.MCT-21-0195
23) Lohard, S. et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to antimitotic treatment. Nat Commun 11, 259 (2020). https://doi.org : 10.1038/s41467-019-13689-y
24) Marinello, J. et al. Topoisomerase I poison-triggered immune gene activation is markedly reduced in human small-cell lung cancers by impairment of the cGAS/STING pathway. Br J Cancer 127, 1214-1225 (2022). https://doi.org : 10.1038/s41416-022-01894-4
25) Galluzzi, L., Humeau, J., Buque, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17, 725-741 (2020). https://doi.org : 10.1038/s41571-020-0413-z
26) Jacquelot, N., Seillet, C., Vivier, E. & Belz, G.T. Innate lymphoid cells and cancer. Nat Immunol 23, 371-379 (2022). https://doi.org : 10.1038/s41590-022-01127-z
P.8 掲載の参考文献
1) Steinman RM, et al. J Exp Med. 137 (5) : 1142-62. (1973)
2) Kvedaraite E, et al. Human dendritic cells in cancer. Sci Immunol. 7 (70) : eabm9409. (2022)
3) Ziegler-Heitbrock L, et al. Nat Rev Immunol. 23 (1) : 1-2. (2023)
4) Guilliams M, et al. Nat Rev Immunol. 14 (8) : 571-8. (2014)
5) Eisenbarth SC. Nat Rev Immunol. 19 (2) : 89-103. (2019)
6) Spranger S, et al. Cancer Cell. 31 (5) : 711-723.e4. (2017)
7) Ataide MA, et al. Nat Immunol. 21 (11) : 1397-1407. (2020)
8) Aoki H, et al. Cancer Immunol Res. (2023) In press.
P.11 掲載の参考文献
1) Waldman, A.D., Fritz, J.M. & Lenardo, M.J. A guide to cancer immunotherapy : from T cell basic science to clinical practice. Nat Rev Immunol 20, 651-668, doi : 10.1038/s41577-020-0306-5 (2020).
2) Rock, K.L., Reits, E. & Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol 37, 724-737, doi : 10.1016/j.it.2016.08.010 (2016).
3) Yewdell, J.W. DRiPs solidify : progress in understanding endogenous MHC class I antigen processing. Trends Immunol 32, 548-558, doi : 10.1016/j.it.2011.08.001 (2011).
4) Wearsch, P.A. & Cresswell, P. The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20, 624-631, doi : 10.1016/j.ceb.2008.09.005 (2008).
5) Zaretsky, J.M. et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med 375, 819-829, doi : 10.1056/NEJMoa1604958 (2016).
6) Hammer, G.E., Kanaseki, T. & Shastri, N. The final touches make perfect the peptide-MHC class I repertoire. Immunity 26, 397-406, doi : 10.1016/j.immuni.2007.04.003 (2007).
7) Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes at the core of cancer immunotherapy. Nat Rev Cancer 14, 135-146, doi : 10.1038/nrc3670 (2014).
8) Schumacher, T.N. & Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 348, 69-74, doi : 10.1126/science.aaa4971 (2015).
9) Le, D.T. et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science, doi : 10.1126/science.aan6733 (2017).
10) Samstein, R.M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51, 202-206, doi : 10.1038/s41588-018-0312-8 (2019).
11) Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222-226, doi : 10.1038/nature23003 (2017).
12) Ott, P.A. et al. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell 183, 347-362 e324, doi : 10.1016/j.cell.2020.08.053 (2020).
13) Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov, doi : 10.1038/s41573-021-00387-y (2022).
14) Kanaseki, T., Tokita, S. & Torigoe, T. Proteogenomic discovery of cancer antigens : Neoantigens and beyond. Pathol Int, doi : 10.1111/pin.12841 (2019).
15) Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat Biotechnol, doi : 10.1038/s41587-021-01038-8 (2021).
16) Kikuchi, Y. et al. CD8 (+) T-cell Immune Surveillance against a Tumor Antigen Encoded by the Oncogenic Long Noncoding RNA PVT1. Cancer Immunol Res, doi : 10.1158/2326-6066.CIR-20-0964 (2021).
17) Yarchoan, M., Hopkins, A. & Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 377, 2500-2501, doi : 10.1056/NEJMc1713444 (2017)
P.15 掲載の参考文献
1) Vivier, E. et al. Nat Rev Immunol 12, 239-252 (2012)
2) Ramirez-Labrada, A. et al. Front Immunol 13, 896228 (2022)
3) Wolf, N.K. et al. Nat Rev Immunol 23, 90-105 (2023)
4) Philip, M. et al. Nat Rev Immunol 22, 209-223 (2022)
5) Aoki, T. et al. Cancer Sci 111, 2223-2233 (2020)
6) Fujii, S.I. et al. Trends Immunol 40, 984-997 (2019)
P.18 掲載の参考文献
1) Nishikawa H, et al. Definition of target antigens for naturally occurring CD4 (+) CD25 (+) regulatory T cells. J Exp Med. 2005 ; 201 : 681-6.doi : 10.1084/jem.2004195
2) Itahashi K, et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors. Sci Immunol. 2022 Oct 14 ; 7 (76) : eabk0957. doi : 10.1126/sciimmunol.abk0957.
3) Koyama S, Nishikawa H. Mechanisms of regulatory T cell infiltration in tumors : implications for innovative immune precision therapies. J Immunother Cancer. 2021 Jul ; 9 (7) : e002591. doi : 10.1136/jitc-2021-002591.
4) Kumagai S, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020 Nov ; 21 (11) : 1346-1358. doi : 10.1038/s41590-020-0769-3.
5) Kamada T, et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A. 2019 May 14 ; 116 (20) : 9999-10008. doi : 10.1073/pnas.1822001116.
6) Kumagai S, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022 Feb 14 ; 40 (2) : 201-218.e9. doi : 10.1016/j.ccell.2022.01.001.
7) Kumagai S et al. An Oncogenic Alteration. Immunity 2020. doi : 10.1016/j.immuni.2020.06.016.
P.21 掲載の参考文献
1) Ohno Y, Kitamura H, Takahashi N, Ohtake J, Kaneumi S, Sumida K, Homma S, Kawamura H, Minagawa N, Shibasaki S, Taketomi A. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4 (+) T cells. Cancer Immunol Immunother. 65 (2) : 193-204. 2016.
2) Wang X, Xiang H, Toyoshima Y, Shen W, Shichi S, Nakamoto H, Kimura S, Sugiyama K, Homma S, Miyagi Y, Taketomi A, Kitamura H. Arginase-1 inhibition reduces migration ability and metastatic colonization of colon cancer cells. Cancer Metab. 11 (1) : 1. 2023.
3) Toyoshima Y, Kitamura H, Xiang H, Ohno Y, Homma S, Kawamura H, Takahashi N, Kamiyama T, Tanino M, Taketomi A. IL6 Modulates the Immune Status of the Tumor Microenvironment to Facilitate Metastatic Colonization of Colorectal Cancer Cells. Cancer Immunol Res. 7 (12) : 1944-1957.2019.
P.24 掲載の参考文献
1) Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S. Development of tumor mutation burden as an immunotherapy biomarker : utility for the oncology clinic. Ann Oncol. 2019 Jan 1 ; 30 (1) : 44-56.
2) Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017 ; 357 : 409-13.
3) Sun W, Zhang Q, Wang R, Li Y, Sun Y, Yang L. Targeting DNA Damage Repair for Immune Checkpoint Inhibition : Mechanisms and Potential Clinical Applications. Front Oncol. 2021 May 7 ; 11 : 648687.
4) Spranger S, Gajewski TF. Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncoimmunology. 2015 Aug 31 ; 5 (3) : e1086862.
5) Yaguchi T, Goto Y, Kido K, et al. Immune suppression and resistance mediated by constitutive activation of Wnt/β-catenin signaling in human melanoma cells. J Immunol. 2012 ; 189 (5) : 2110-2117.
6) Khalili JS, Liu S, Rodriguez-Cruz TG, et al. Oncogenic BRAF (V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res. 2012 ; 18 (19) : 5329-5340
7) Kandalaft LE, Motz GT, Busch J, Coukos G. Angiogenesis and the tumor vasculature as antitumor immune modulators : the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol. 2011 ; 344 (344) : 129-148.
8) DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. Nature Reviews Immunology. 2021 ; 21 (12) : 785-97.
9) Koyama, S. et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T cell activity in the lung tumor microenvironment. Cancer Res. 76, 999-1008 (2016).
10) Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271-285 (2009).
11) Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022 ; 19 (1) : 23-36.
12) Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer. 2021 ; 7 (12) : 1089-1101.
13) Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell. 2016 ; 167 (2) : 397-404.e9.
P.27 掲載の参考文献
1) Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 ; 366 (26) : 2443-54.
2) Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012 ; 366 (26) : 2455-65.
3) Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 ; 363 (8) : 711-23.
4) Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy : Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016 ; 8 (328) : 328rv4.
5) Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014 ; 515 (7528) : 563-7.
6) Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014 ; 515 (7528) : 568-71.
7) Duan J, Wang Y, Jiao S. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment : Opportunities and challenges. Cancer Med. 2018 ; 7 (9) : 4517-29.
8) Tada Y, Togashi Y, Kotani D, Kuwata T, Sato E, Kawazoe A, et al. Targeting VEGFR2 with Ramucirumab strongly impacts effector/activated regulatory T cells and CD8 (+) T cells in the tumor microenvironment. J Immunother Cancer. 2018 ; 6 (1) : 106.
9) Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 ; 348 (6230) : 124-8.
10) Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016 ; 16 (5) : 275-87.
11) Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016 ; 375 (19) : 1823-33.
12) Sugiyama E, Togashi Y, Takeuchi Y, Shinya S, Tada Y, Kataoka K, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer. Sci Immunol. 2020 ; 5 (43).
13) Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J Clin Oncol. 2018 ; 36 (7) : 633-41.
14) Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017 ; 127 (8) : 2930-40.
15) Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 2019 ; 16 (6) : 356-71.
16) Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018 ; 18 (1) : 35-45.
17) Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019.
18) Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol. 2021 ; 51 (12) : 2708-3145.
19) Spitzer MH, Nolan GP. Mass Cytometry : Single Cells, Many Features. Cell. 2016 ; 165 (4) : 780-91.
20) Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, Zlobec I, et al. Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front. Cell. 2020 ; 182 (5) : 1341-59.e19.
21) Chuah S, Chew V. High-dimensional immune-profiling in cancer : implications for immunotherapy. J Immunother Cancer. 2020 ; 8 (1).
22) Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018 ; 557 (7706) : 575-9.
23) Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med. 2019 ; 25 (1) : 89-94.
24) Philip M, Schietinger A. Heterogeneity and fate choice : T cell exhaustion in cancer and chronic infections. Curr Opin Immunol. 2019 ; 58 : 98-103.
25) Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8 (+) T cell differentiation. Nat Rev Immunol. 2018 ; 18 (5) : 340-56.
26) Kumagai S, Togashi Y, Kamada T, Sugiyama E, Nishinakamura H, Takeuchi Y, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020 ; 21 (11) : 1346-58.
27) Nagasaki J, Inozume T, Sax N, Ariyasu R, Ishikawa M, Yamashita K, et al. PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes. Cell Rep. 2022 ; 38 (5) : 110331.
28) Umemoto K, Togashi Y, Arai Y, Nakamura H, Takahashi S, Tanegashima T, et al. The potential application of PD-1 blockade therapy for early-stage biliary tract cancer. Int Immunol. 2019.
29) Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014 ; 124 (5) : 2246-59.
30) Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, et al. PD-1 (+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A. 2019 ; 116 (20) : 9999-10008.
31) Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020 ; 577 (7791) : 549-55.
32) Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020 ; 577 (7791) : 556-60.
33) Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020 ; 577 (7791) : 561-5.
34) Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017 ; 14 (7) : 399-416.
35) Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009 ; 9 (3) : 162-74.
36) Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016 ; 37 (3) : 208-20.
37) Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell. 2018 ; 175 (4) : 1014-30.e19.
P.32 掲載の参考文献
1) Cani, P.D. Gut microbiota-at the intersection of everything? Nat Rev Gastroenterol Hepatol 14, 321-322, doi : 10.1038/nrgastro.2017.54 (2017).
2) Arboleya, S. et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79, 763-772, doi : 10.1111/j.1574-6941.2011.01261.x (2012).
3) Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 852, doi : 10.1016/j.chom.2015.05.012 (2015).
4) Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97-103, doi : 10.1126/science.aan4236 (2018).
5) Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91-97, doi : 10.1126/science.aan3706 (2018).
6) Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104-108, doi : 10.1126/science.aao3290 (2018).
7) Karla A Lee et. al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma Nat Med 2022 Mar ; 28 (3) : 535-544.doi : 10.1038/s41591-022-01695-5. Epub 2022 Feb 28.
8) Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 29, 1437-1444, doi : 10.1093/annonc/mdy103 (2018).
9) Hamada, K. et al. Antibiotic Usage Reduced Overall Survival by over 70% in Non-small Cell Lung Cancer Patients on Anti-PD-1 Immunotherapy. Anticancer Res 41, 4985-4993, doi : 10.21873/anticanres.15312 (2021).
10) Sun, M., Wu, W., Liu, Z. & Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 52, 1-8, doi : 10.1007/s00535-016-1242-9 (2017).
11) Skelly, A.N., Sato, Y., Kearney, S. & Honda, K. Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19, 305-323, doi : 10.1038/s41577-019-0144-5 (2019)
12) Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun 11, 2168, doi : 10.1038/s41467-020-16079-x (2020).
13) Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595-602, doi : 10.1126/science.abf3363 (2021).
14) Baruch et al., Fecal microbiota transplant promotes response in immunotherapy refractory melanoma patients Science 371, 602-609 (2021)
15) Spencer CN et. al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response Science 2021 Dec 24 ; 374 (6575) : 1632-1640. doi : 10.1126/science.aaz7015. Epub 2021 Dec 23
16) Dizman N. et. al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma : a randomized phase 1 trial Nat Med 2022 Apr ; 28 (4) : 704-712. doi : 10.1038/s41591-022-01694-6. Epub 2022 Feb 28.
17) Mao YQ et. al. The antitumour effects of caloric restriction are mediated by the gut microbiome Nat Metab 2023 Jan 16. doi : 10.1038/s42255-022-00716-4. Online ahead of print.
P.36 掲載の参考文献
1) Buck MD et al. J Exp Med 2015 ; 212 : 1345-1360.
2) Vander Heiden MG et al. Science 2009 ; 324 (5930) : 1029-33.
4) Chang CH et al. Cell 2013 ; 153 (6) : 1239-51.
5) Chang CH et al. Cell 2015 ; 162 (6) : 1229-41.
6) Airley R et al. Clin Cancer Res 2001 ; 7 (4) : 928-34.
7) Zhang D, et al. Cancer Lett 2014 ; 355 (2) : 176-83.
8) Leone RD et al : Science 2019 ; 366 (6468) : 1013-1021.
9) Nishida M et al. J Immunother Cancer 2021 ; 9 (9) : e002954.
10) Chao R et al. Front Immunol 2022 ; 13 : 864225.

第2章 がん免疫療法

P.39 掲載の参考文献
1) Okazaki, T. et al. : Nat Immunol, 14 : 1212-1218, 2013.
2) Waterhouse, P. et al. : Science, 270 : 985-8, 1995.
3) Leach, DR. et al. : Science, 271 : 1734-6, 1996.
4) Nishimura, H. et al. : Immunity, 11 : 141-151, 1999.
5) Nishimura, H. et al. : Science, 291 : 319-322, 2001.
6) Hodi, FS. et al. : N Engl J Med, 363 : 711-23, 2010.
7) Topalian, SL. et al. : N Engl J Med, 366 : 2443-54, 2012.
8) Iwai, Y. et al. : Proc Natl Acad Sci USA, 99 : 12293-12297, 2002.
9) Iwai, Y. et al. : Int Immunol, 17 : 133-44, 2005.
10) Triebel F, et al. : J Exp Med. 1990 171 : 1393-405.
P.42 掲載の参考文献
1) Criscitiello C. et al., Journal of Hematology & Oncology 2021 ; 14 : 20.
2) Yamamoto H. et al., Jpn J Clin Oncol 2015 ; 45 : 12-18.
3) Mitsunaga S. et al., Nat Med 2011 ; 12 : 1685-1691.
4) Einsele H. et al., Cancer 2020 ; 126 : 3192-3201.
P.44 掲載の参考文献
1) Sawada Y, Yoshikawa T, Nobuoka D, et al. Phase I trial of glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma : immunological evidence and potential for improving overall survival. Clin Cancer Res 18 : 3686-3696, 2012.
2) Sawada Y, Yoshikawa T, Fujii S, et al. Remarkable tumor lysis in a hepatocellular carcinoma patient immediately following glypican-3-derived peptide vaccination : an autopsy case. Hum Vaccin Immunother 9 : 1228-1233, 2013.
3) Suzuki S, Shibata K, Kikkawa F, et al. Significant clinical response of progressive recurrent ovarian clear cell carcinoma to glypican-3-derived peptide vaccine therapy : two case reports. Hum Vaccin Immunother 10 : 338-343, 2014.
4) Sawada Y, Yoshikawa T, Ofuji K, et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. OncoImmunology 5 : e1129483, 2016.
5) Tsuchiya N, Hosono A, Yoshikawa T, et al. Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. OncoImmunology 7 : e1377872, 2017.
6) Taniguchi M, Mizuno S, Yoshikawa T, et al. Peptide vaccine as an adjuvant therapy for glypican-3 positive hepatocellular carcinoma induces peptide specific CTLs and improves long prognosis. Cancer Sci 111 : 2747-2759, 2020.
7) Shimizu Y, Suzuki T, Yoshikawa T, et al. Cancer Immunotherapy Targeted Glypican-3 or Neoantigens. Cancer Sci 109 : 531-541, 2018.
8) Charneau J, Suzuki T, Shimomura M, et al. Development of antigen-prediction algorithm for personalized neoantigen vaccine using human leukocyte antigen transgenic mouse. Cancer Sci 113 : 1113-1124, 2022.
P.50 掲載の参考文献
1) Rosenberg SA, Restifo NP. Science. 348 (6230), 62-68, 2015
2) Morgan R.A., et al. Science. 314 (5796) : 126-9, 2006
3) Johnson, L.A., et al. Blood 114 (3) : 535-46, 2009
4) Robbins PF, et al. J Clin Oncol 29, 917-924, 2011
5) Robbins PF, et al. Clin Cancer Res 21 (5), 1019-1027, 2015
6) Hong et al. Nat Med 29 (1) : 104-114, 2023
7) Kageyama S, et al. Clin Cancer Res 21 (10), 2268-2277, 2015
8) Tawara I., et al. Blood. 130 (18) : 1985-1994, 2017
9) Ishihara M., et al. J Immunother Cancer : 10 (6) : e003811, 2022
10) Fraietta JA, et al. Nature. 558, 307-312, 2018.
11) Chen J et al. Nature. 567 (7749), 530-534, 2019
12) Klebanoff CA et al. JCI Insight. 7 ; 2 (23), 2017
13) Ren L, et al. Clin Cancer Res 23 (9), 2255-2266, 2017
14) Asai H et al. PLoS One 8 (2), e56820, 2013.
15) Muller Net al. J Immunother 38 (5), 197-210, 2015.
16) Adachi K et al. Nat Biotechnol. 36 (4) : 346-351, 2018.
17) Okamoto S, et al., Cancer Res 69 (23), 9003-9011, 2009
18) Okamoto S, et al., Mol Ther-Nucleic Acids 1, e63, 2012
19) 池田裕明 医学のあゆみ 256 (7) : 798-805, 2016
20) 池田裕明 : T細胞輸注療法 (TIL療法, TCR-T療法) 実験医学 34 (12) (増刊), 2016
P.53 掲載の参考文献
1) Maude SL, et al. N Engl J Med. 2018 ; 378 : 439-448
2) Schuster SJ, et al. N Engl J Med. 2019 ; 380 : 45-56
3) Neelapu SS, et al. N Engl J Med. 2017 ; 377 : 2531-2544.
4) Abramson JS, et al. Lancet. 2020 ; 396 : 839-852.
5) Munshi NC, et al. N Engl J Med. 2021 ; 384 : 705-716.
6) Berdeja JG, et al. Lancet. 2021 ; 398 : 314-324.
7) Schultz LM, et al. J Clin Oncol. 2022 ; 40 : 945-955.
8) Shah NN, et al. Nat Med. 2020 ; 26 : 1569-1575.
9) Spiegel JY, et al. Nat Med. 202 ; 27 : 1419-1431.
10) Gattinoni L, et al. Nat Med. 2011 ; 17 : 1290-7.
11) Deng Q, et al. Nat Med. 2020 ; 26 : 1878-1887.
12) Yoshikawa T, et al. Blood. 2022 ; 139 : 2156-2172.
13) Belk JA, et al. Cancer Cell. 2022 ; 40 : 768-786.
14) Siddiqui et al. Cureus. 2021 ; 13 : e14494
15) Hou et al. Dis Markers. 2019 ; 2019 : 3425291
16) Flugel et al. Nat Rev Clin Oncol. 2023 ; 20 : 49-62
17) Hou et al. Nat Rev Drug Discov. 2021 ; 20 : 531-550
18) Ahmed et al. JAMA Oncol. 2017 ; 3 : 1094-1101
19) Zhang et al. Mol Ther. 2017 ; 25 : 1248-1258
20) Thistlethwaite et al. Cancer Immunol Immunother. 2017 ; 66 : 1425-1436
21) Guo et al. Clin Cancer Res. 2018 ; 24 : 1277-1286
22) Feng et al. Protein Cell. 2018 ; 9 : 838-847
23) Zhan et al. J Clin Oncol. 2019 ; 37 : 2509-2509
24) Becerra et al. J Clin Oncol. 2019 ; 37 : 2536-2536
25) Adusumilli et al. J Clin Oncol. 2019 ; 37 : 2511-2511
P.58 掲載の参考文献
1) Poirot, L., Philip, B., Schiffer-Mannioui, C., Le Clerre, D., Chion-Sotinel, I., Derniame, S., Potrel, P., Bas, C., Lemaire, L., Galetto, R., et al. (2015). Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies. Cancer Res. 75, 3853-3864.10.1158/0008-5472.CAN-14-3321.
2) Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S.J.C., Hamieh, M., Cunanan, K.M., Odak, A., Gonen, M., and Sadelain, M. (2017). Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113-117. 10.1038/nature21405.
3) Ren, J., Liu, X., Fang, C., Jiang, S., June, C.H., and Zhao, Y. (2017). Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 23, 2255-2266. 10.1158/1078-0432.CCR-16-1300.
4) Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S., Koseki, H., and Kawamoto, H. (2013). Regeneration of Human Tumor Antigen-Specific T Cells from iPSCs Derived from Mature CD8+ T Cells. Cell Stem Cell 12, 31-36. 10.1016/j.stem.2012.12.006.
5) Maeda, T., Nagano, S., Ichise, H., Kataoka, K., Yamada, D., Ogawa, S., Koseki, H., Kitawaki, T., Kadowaki, N., Takaori-Kondo, A., et al. (2016). Regeneration of CD8αβ T Cells from T-cell-Derived iPSC Imparts Potent Tumor Antigen-Specific Cytotoxicity. Cancer Res. 76, 6839-6850. 10.1158/0008-5472.CAN-16-1149.
6) Maeda, T., Nagano, S., Kashima, S., Terada, K., Agata, Y., Ichise, H., Ohtaka, M., Nakanishi, M., Fujiki, F., Sugiyama, H., et al. (2020). Regeneration of Tumor-Antigen-Specific Cytotoxic T Lymphocytes from iPSCs Transduced with Exogenous TCR Genes. Mol. Ther. -Methods Clin. Dev. 19, 250-260. 10.1016/j.omtm.2020.09.011.
7) Yamada, D., Iyoda, T., Vizcardo, R., Shimizu, K., Sato, Y., Endo, T.A., Kitahara, G., Okoshi, M., Kobayashi, M., Sakurai, M., et al. (2016). Efficient Regeneration of Human Vα24+ Invariant Natural Killer T Cells and Their Anti-Tumor Activity In Vivo : In Vivo Anti-Tumor Activity of Human iPS-NKT Cells. STEM CELLS 34, 2852-2860. 10.1002/stem.2465.
8) Kobayashi, H., Tanaka, Y., Yagi, J., Minato, N., and Tanabe, K. (2011). Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol. Immunother. 60, 1075-1084. 10.1007/s00262-011-1021-7.
9) Watanabe, D., Koyanagi-Aoi, M., Taniguchi-Ikeda, M., Yoshida, Y., Azuma, T., and Aoi, T. (2018). The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture. STEM CELLS Transl. Med. 7, 34-44. 10.1002/sctm.17-0021.
10) Zeng, J., Tang, S.Y., and Wang, S. (2019). Derivation of mimetic γδ T cells endowed with cancer recognition receptors from reprogrammed γδ T cell. PLOS ONE 14, e0216815. 10.1371/journal.pone.0216815.
11) Capsomidis, A., Benthall, G., Van Acker, H.H., Fisher, J., Kramer, A.M., Abeln, Z., Majani, Y., Gileadi, T., Wallace, R., Gustafsson, K., et al. (2018). Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells : Enhanced Cytotoxicity with Retention of Cross Presentation. Mol. Ther. 26, 354-365. 10.1016/j.ymthe.2017.12.001.
12) Heczey, A., Liu, D., Tian, G., Courtney, A.N., Wei, J., Marinova, E., Gao, X., Guo, L., Yvon, E., Hicks, J., et al. (2014). Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824-2833. 10.1182/blood-2013-11-541235.
13) Rotolo, A., Caputo, V.S., Holubova, M., Baxan, N., Dubois, O., Chaudhry, M.S., Xiao, X., Goudevenou, K., Pitcher, D.S., Petevi, K., et al. (2018). Enhanced Anti-lymphoma Activity of CAR19-iNKT Cells Underpinned by Dual CD19 and CD1d Targeting. Cancer Cell 34, 596-610.e11. 10.1016/j.ccell.2018.08.017.
14) Bollino, D., and Webb, T.J. (2017). Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl. Res. 187, 32-43. 10.1016/j.trsl.2017.06.003.
15) Li, Y., Hermanson, D.L., Moriarity, B.S., and Kaufman, D.S. (2018). Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 23, 181-192.e5. 10.1016/j.stem.2018.06.002.
P.61 掲載の参考文献
1) Kaufman HL, et al : Nat Rev Drug Discov. 2015 Sep ; 14 (9) : 642-62.
2) Andtbacka RH, et al : J Clin Oncol. 2015 Sep 1 ; 33 (25) : 2780-8.
3) Todo T, et al : Nat Med. 2022, 28 : 1630-1639.
4) Ravirala, D. et al : J. Immunother. Cancer. 2021 Jul ; 9 (7) : e002454
5) Macedo N, et al : J. Immunother Cancer. 2020 Oct ; 8 (2) : e001486.
6) Gallego Perez-Larraya, J. et al : New Engl. J. Med. 2022, 386 : 2471-2481
7) Puzanov, I. et al : Clin. Oncol. 2016, 34, 2619-2626.

最近チェックした商品履歴

Loading...