[1] C. Itzykson and J. -B Zuber, Quantum Field Theory, MacGraw-Hill, New York, 1980.
[2] L. D. Faddeev and A. A. Slavnov, Gauge Field-Introduction to Quantum Theory, Benjamin, New York, 1980;2nd Edition, Addison-Wesley, Reading, 1991.
[3] P. Ramond, Field Theory:A Modern Primer(2nd Edition), Perseus Books, Reading, 1994.
[4] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Perseus Books, Reading, 1995.
[5] A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003.
[6] 九後汰一郎『ゲージ場の量子論I, II』, 培風館, 東京, 1989年.
[7] M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press, 1983.
[8] J. B. Kogut, An Introduction to Lattice Gauge Theory and Spin Systems, Rev. Mod. Phys. 51(1979)659.
[9] E. Seiler, Gauge Theories as a Problems of Constructive Quantum Field Theory and Statistical Mechanics, Springer-Verlag, Berlin, 1982.
[10] H. J. Rothe, Lattice Gauge Theories, An Introduction, World Scientific, Singapore, 1992.
[11] I. Montvay and G. Munster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
[12] ボゴリューボフ他, 『場の量子論の数学的方法』(江沢洋 他訳), 東京図書出版, 東京, 1980年.
[13] J. Glim and A. Jaffe, Quantum Physics, A Functional Integral Point of View, Springer-Verlag, Berlin, 1981.
[14] K. G. Wilson and J.B. Kogut, Renormalization group and ε-expansion, Phys. Report C12(1974)75.
[15] S. -K. Ma, Modern Theory of Critical Phenomena, Benjamin, New York, 1976.
[16] 江沢洋, 渡辺敬二, 鈴木増雄, 田崎晴明著, 『繰り込み群の方法』(岩波講座 現代の物理学 第13巻), 岩波書店, 東京, 1994年.
[17] K. G. Wilson, Renormalization of a Scalar Field Theory in Strong Gou pling, Phys Rev. D6(1972)419.
[18] M. Aizenman,Geometric Analysis of φ4 Field and Ising Models. Parts I and II, Commun. Math. Phys. 86(1982)1
[18] J. Frohlich, On the Triviality of λφd4;Theories and the Approach to the Critical Point in d>-4 Dimensions, Nucl. Phys. B200[FS4](1982)281.
[19] H. Georgi, Lie Algebra in Particle Physics, Benjamin ,New York, 1982.
[20] K. G. Wilson, Confinement of Quarks, Phys. Rev. D10(1974)2445.
[21] S. Elitzur, Impossibility of Spontaneously Broken Local Symmetry, Phys. Rev. D12(1975)3978.
[22] C. J. Morningstar and M. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D60(1990)034509.
[23] 青木慎也, 『格子上のカイラルフェルミオン』(現代物理学最前線7), 1-61ページ, 共立出版株式会社, 東京, 2002年.
[23] 青木慎也, 「格子上のカイラル対称性」, パリテイ(丸善)2002年6月号19ページ.
[24] K. G. Wilson, Quarks and Strings on a Lattice, in"Gauge Theories and Modern Field Theory"(ed. by R. Arnowitt and P. Nath), MIT Press, Cambridge, 1975.
[25] K. G. Wilson, Quarks and Strings on a Lattice, in"New Phenomena in Subnuclear Physics"(ed. by A. Zichichi), Plenum Press, New York, 1977.
[26] H. B. Nielsen and M. Ninomiya Absence of Neutrinos on a Lattice I. Proof by Homotopy Theory, Nucl. Phys. B185(1981)20;erratum:B195(1981)541;Absence of Neutrinos on a Lattice II. Intuitive Topology Proof, Nucl. Phys. Bl93(1981)173.
[27] L. H. Karsten, Lattice fermions in Euclidean space time, Phys. Lett. 104B(1981)315.
[28] L. H. Karsten and J. Smit, Lattice Fermions:Species Doubling, Chiral Invariance and the Triangle Anomaly, Nucl. Phys. B183(1981)2649.
[29] J. W. Milnor, Topology from the differential viewpoint, The University Press of Virginia, Charlottesville, 1965.
[30] 田村一郎, 『トポロジー』(岩波全書), 岩波書店, 東京, 1972年.
[31] D. Friedan, A Proof of the Nielsen-Ninomiya Theorem, Commun, Math. Phys. 85(1982)481.
[32] L. Susskind,Lattice Fermions, Phys. Rev. D16(1977 3031.
[33] J. Kogut and L. Susskind, Hamiltonian formulation of Wilson's lattice gauge theories, Phys. Rev. D11(1975)395.
[34] H. S. Sharatchandra, H. J. Thun and P. Weisz, Susskind Fermions on a Euclidean Lattice, Nucl. Phys. B192(1981)205.
[35] 青木慎也, 「格子フェルミオンと力イラル対称性」, 素粒子論研究(京都)69(1984)107.
[36] N. Kawamoto, Towards the phase structure of Euclidean lattice gauge theories with fermions, Nucl. Phys. B190[FS3](1981)617.
[37] J. M. Blairon, B. Brout, F. Englert and J. Greensite, Chiral Symmetry Breaking in the Action Formulation of Lattice Gauge Theory, Nucl. Phys. B180[FS2](1981)439.
[38] N. Kawamoto and J. Smit, Effective Lagrangian and dynamical symmetry breaking in strongly coupled lattice QCD, Nucl. Phys. B192(1981)100
[39] J. Hoek, N. Kawamoto and J. Smit, Baryons in the effective Lagrangian of strongly coupled lattice QCD, Nucl. Phys. B199(1982)495.
[40] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson,, Nucl. Phys. B190(1981)504.
[41] H. Kluberg-Stern, A. Morel and B. Petersson, Spectrum of lattice gauge theories with fermions from 1/d expansion at strong coupling, Nucl.Phys. B215[FS7](1983)527.
[42] I. Ichinose, The Strong-coupling Expansion of Lattice QCD,Phys. Lett. B135(1984)148;Effective Lagrangian of Mesons and Baryons in the Strong-coupling Expansion of Lattice QCD, Nucl. Phys. B249(1985)715.
[43] S. Aoki, New phase structure for lattice QCD with Wilson fermions, Phys. Rev. D30(1984)2653
[43] S. Aoki, U(1)problem on a lattice:Strong-coupling limit, Phys. Rev. D33(1986)2399
[43] S. Aoki, U(1)problem on a lattice:Strong-coupling expansion, Phys. Rev. D34(1986)3170
[43] S. Aoki, Solution to the U(1)problem on a lattice, Phys. Rev. Lett. 57(1986)3136.
[44] S. Aoki, U(1)Problem and Lattice QCD,Nucl. Phys. B314(1989)79.
[45] S. Aoki, Numerical Evidence for a Parity-Violating Phase in Lattice QCD with Wilson Fermions, Phys. Lett. B190(1987)140.
[46] S. Aoki and A. Gocksch, Spontaneous Breaking of Parity in Quenched Lattice QCD with Wilson Fermions, Phys. Lett. B231(1989)449
[46] S. Aoki and A. Gocksch, More on parity and Wilson fermions. Quenched simulations in finite temperature QCD, Phys. Lett. B243(1990)409.
[47] S. Aoki, A. Ukawa and T. Umemura, Finite Temperature Phase Structure of Lattice QCD with Wilson Quark Action, Phys. Rev. Lett. 76(1996)873.
[48] S. Aoki, T. Kaneda and A. Ukawa, Structure of critical lines in quenched lattice QCD with the Wilson quark action, Phys. Rev. D56(1997)1808.
[49] S. Aoki, On the Phase structure of QCD with Wilson fermions, Prog. Theor. Phys. Supplement 122(1996)179.
[50] S. R. Sharpe and R. Singleton Jr., Spontaneous Flavor and Parity Breaking with Wilson Fermions, Phys. Rev. D58(1998)074501.
[51] C. Vafa and E. Witten, Parity Conservation in Quantum Chromodynamics, Phys. Rev. Lett. 53(1984)535.
[52] D. B. Kaplan, A Method for Simulating Chiral Fermions on the Lattice, Phys. Lett. B288(1992)342.
[53] Y. Shamir, Chiral Fermions from Lattice Boundaries, Nucl. Phys. B406(1993)90.
[54] V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl. Phys. B439(1995)54.
[55] T. Blum, 'Domain wall fermions in vector gauge theories, Nucl. Phys. B(Proc. Suppl.)73(1999)167.
[56] P. H. Ginsparg and K.G. Wilson, A Remnant of Chiral Symmetry on the Lattice, Phys. Rev.D25(1982)2649.
[57] P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. B(Proc. Suppl. )63A-C(1998)53.
[58] N. Neuberger, More about exactly massless quarks on the lattice, Phys. Lett. B427(1998)353.
[59] P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in QCD with a finite cut-off, Phys. Lett. B427(1998)125.
[60] M. Luscher,Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B428(1998)342.
[61] P. Hernandez, K. Jansen and M. Luscher, Locality properties of Neuberger's lattice Dirac operator, Nucl. Phys. B552(1999)363.
[62] N. Neuberger, Bounds on the Wilosn Dirac Operator, Phys. Rev. D61(2000)085015.
[63] Y. Kikukawa and T. Noguchi, Low energy effective action of domain-wall fermion and the Ginsparg-Wilson relation, hep-lat/9902022.
[64] Y. Kikukawa, Locality bound for effective four-dimensional action of domain-wall fermion, Nucl. Phys. B584(2000)511.
[65] K. Fujikawa, Relation Trγ5=0 and the index theorem in lattice gauge theory, Phys. Rev. D60(1999)074505.
[66] A. Ukawa, Lattice QCD at Finite Temperature,
[67] M. Creutz, Monte Carlo Study of Quantized SU(2)Gauge Theory, Phys. Rev. D21(1980)2308.
[68] N. Cabibbo and E. Marinari, A new method for updating SU(N)matrices in computer simulations of gauge theories, Phys. Lett. 119B(1982)387.
[69] M. Okawa, Monte Carlo Study of the Eguchi-Kawai Model, Phys. Rev. Lett. 49(1982)353.
[70] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. 195B(1987)216.
[71] JLQCD Collaboration(S. Aoki et al.), Polynomial Hybrid Monte Carlo Algorithm for Lattice QCD with Odd Number of Flavors, Phys. Rev. D65(2002)094507.
[72] 森正武, 『数値解析』(共立数学講座12), 共立出版株式会社, 東京, 1973年.
[73] CP-PACS Collaboration(S. Aoki et al.), Quenched Light Hadron Spectrum, Phys. Rev. Lett. 84(2000)238.
[74] CP-PACS Collaboration(S. Aoki et al.), Light Hadron Spectrum and Quark Masses from Quenched Lattice QCD, Phys. Rev. D66(2002)077501.
[75] 小柳義夫・中川徹, 『SALS入門』, 東大出版会, 東京, 1990年.
[76] http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
[77] CP-PACS Collaboration(S. Aoki et al. ), Dynamical Quark Effects on Light Quark Masses, Phys. Rev. Lett. 85(2000)4674.
[78] CP-PACS Collaboration(S. Aoki et al. ), Light Hadron Spectroscopy with Two Flavors of Dynamical Quarks on the Lattice, Phys. Rev. D65(2002)054505.
[79] CP-PACS Collaboration(S. Aoki et al. ), Topological Susceptibility in Lattice QCD with Two Flavors of Dynamical Quarks, Phys. Rev. D64(2001)114501.
[80] S. Aoki and K. Higashijima, The recovery of the chiral symmetry in lattice Gross-Neveu model, Prog. Theor. Phys. 76(1986)521.
[81] S. Aoki and Y. Taniguchi, One loop calculation in lattice QCD with domain-wall quarks, Phys. Rev. D59(1999)054510.